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Abstract
Background: Staphylococcus aureus is a human pathogen that causes a wide variety of life-
threatening infections using a large number of virulence factors. One of the major global regulators
used by S. aureus is the staphylococcal accessory regulator (sarA). We have identified and
characterized a new gene (modulator of sarA: msa) that modulates the expression of sarA. Genetic
and functional analysis shows that msa has a global effect on gene expression in S. aureus. However,
the mechanism of Msa function is still unknown. Function predictions of Msa are complicated by
the fact that it does not have a homologous partner in any other organism. This work aims at
predicting the structure and function of the Msa protein.

Results: Preliminary sequence analysis showed that Msa is a putative membrane protein. It would
therefore be very difficult to purify and crystallize Msa in order to acquire structure information
about this protein. We have used several computational tools to predict the physico-chemical
properties, secondary structural features, topology, 3D tertiary structure, binding sites, motifs/
patterns/domains and cellular location. We have built a consensus that is derived from analysis
using different algorithms to predict several structural features. We confirm that Msa is a putative
membrane protein with three transmembrane regions. We also predict that Msa has
phosphorylation sites and binding sites suggesting functions in signal transduction.

Conclusion: Based on our predictions we hypothesise that Msa is a novel signal transducer that
might be involved in the interaction of the S. aureus with its environment.

Background
Introduction
Staphylococcus aureus is an important human pathogen
that causes several diseases ranging from superficial skin
infections to life-threatening diseases such as osteomyeli-
tis and endocarditis. S. aureus is capable of infecting a

wide range of tissues in humans because of the large
number of virulence factors and the complex regulatory
networks that control them [1]. In addition, S. aureus is
increasingly resistant to multiple antibiotics thus becom-
ing a growing threat to public health. There is an urgent
need to understand the complex regulatory networks used
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by S. aureus to cause disease. Regulatory networks are
attractive therapeutic targets for future treatment of antibi-
otic resistant infections.

Modulator of sarA (msa)
One of the important global regulators of virulence in S.
aureus is the Staphylococcal accessory regulator (sarA) [2].
sarA regulates over 100 genes in S. aureus several of which
are associated with virulence [3]. sarA plays an important
role in disease [4]. sarA itself is regulated by several loci
that modulate its function. We recently identified a novel
gene, msa, that modulate the function of sarA [5]. We
showed that msa is essential for full expression of sarA and
that mutation of msa affected the expression of several vir-
ulence factors in both sarA-dependent and sarA-independ-
ent manners [5]. Microarray analyses of the msa mutant
show that Msa has a global effect on genes in S. aureus
(unpublished data). These studies indicate that msa is an
important locus in S. aureus and that the characterization
of the Msa protein would be very useful in understanding
staphylococcal regulatory networks.

Computational tools
Several bioinformatics tools have been developed to pre-
dict the structure and functional properties of bio mole-
cules. These tools use a wide variety of algorithms to
predict the properties of proteins at different levels [6,7].
The accuracy of these bioinformatics tools has been
improving; however, each tool has its own advantages
and disadvantages. A particular algorithm has its own
characteristic specificity, sensitivity, robustness, computa-
tional cost, etc. These characteristics can be tested against
benchmarks of known datasets (e. g., Critical Assessment
of Techniques for Protein Structure Prediction – CASP). In
order to make the most accurate predictions, several
methods should be used to build a consensus.

The aim of this work is to predict the structure and func-
tional properties of the Msa protein of S. aureus to the
highest possible accuracy. Our prediction results show
that the Msa is a putative integral membrane protein with
three probable transmembrane regions. We also predict
that the Msa contains phosphorylation sites in the loop
regions (both inside and outside the membrane). The 3-D
structure analysis of the Msa also predicts the presence of
putative binding sites. Thus, based on this computational
analysis, and previous experimental data [5] we hypothe-
sise that Msa might play a role in signal transduction. The
fact that Msa has no known homolog means that it would
be a novel signal transducer.

Results and discussion
Primary sequence analysis
The conceptually translated Msa protein is made of 133
amino acids with a predicted molecular weight of 15.6571

kDa and an isoelectric point (pI) of 6.71. The GRAVY
index value 1.021 shows that Msa is probably an insolu-
ble protein. The Codon adaptation index (CAI) value pre-
dicts the Msa as a highly expressed protein. This is
consistent with experimental results described previously
by our group [5].

Homology and similarity
The Msa is highly conserved among the different strains of
S. aureus (RF122, MRSA252, MSSA476, MW2, COL,
Mu50, N315, and NCTC 8325). Even though there were
several variations in the nucleotide sequences, we
observed good conservation at the amino acid level. Mul-
tiple sequence alignment and phylogenetic analysis of
both nucleotide sequences (SAUSA300_1294,
SACOL1436, SAOUHSC_01402, SAV1401, msa,
SAS1342, MW1289, SAR1413, and SAB1257c) and pro-
tein sequences (YP_493991, YP_186288, YP_499929,
NP_371925, NP_374514, YP_043463, NP_646106) from
different strains show that they are identical. The only two
exceptions were strains RF122 and MRSA252 which
showed slight variations in the Msa sequences. In RF122,
the protein sequence (YP_416734) was 97% similar to the
Msa sequence from N315 while in MRSA252, the protein
sequence (YP_040815) was 98% similar to the Msa from
N315. The phylogeny of the Msa protein closely resem-
bled that of the phylogeny of these organisms as deter-
mined by Multi Locus Sequence Typing (MLST) [8]. The
position and effect of mutations in the Msa protein
sequence of the strains MRSA252 and RF122 are discussed
in the "3-D structure prediction and analysis" section.

Our similarity search results against several sequence and
structure databases, using different BLAST programs,
showed that there were no significant closely related
homologs for the Msa protein, except for one in S. epider-
midis. Even though there were no significant (based on E-
value and score) homolog for Msa, BLAST also listed sev-
eral membrane proteins with remote similarities (align-
ment Score of 32–35 and E values scores from 0.91–10)
only to the first few amino acids of the Msa protein (that
corresponds to the predicted signal peptide region).

Localization predictions
All the tools used to predict the cellular location of the
protein indicated that Msa is a putative membrane pro-
tein. This prompted us to examine the sequence for pres-
ence of signal peptide and potential cleavage sites in the
Msa protein sequence. Seven out of eight signal peptide
prediction tools indicated the presence of a potential sig-
nal peptide in the Msa protein (Table 1). The majority of
the programs also predicted an N-terminal cleavage site
between the amino acid 19 and 20.
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Topology predictions
We performed topology analysis on the Msa sequence
using several prediction programs that yielded widely dis-
crepant results (Table 2). Even though most programs
failed to recognize the signal peptide, a consensus topol-
ogy emerged (Table 3). The predicted topology of the Msa
is IN-OUT with three putative transmembrane segments
(from amino acid positions 27–47, 54–75, 108–125). The
N-terminal is predicted as present in the cytoplasmic side
of the membrane while the C-terminal is predicted as out-
side the membrane. Our consensus topology also passed
the positive-inside rule and charge bias test [9], with a
charge bias of +1 towards the inside of the membrane.

Secondary structure prediction results indicated the pres-
ence of four distinct helical regions (Figure 1). One helical
region corresponds to the cytoplasmic helix while the
other three correspond to the integral membrane helices.
These results are consistent with the predicted topology.

Domains/patterns/motifs
We searched for the presence of domains, patterns and
motifs in the Msa protein sequence, to gain insight into its
functions and structure. The SMART results showed the
presence of all the structural domains that we earlier iden-

tified using topology prediction programs and signal pep-
tide prediction programs, viz. an N-terminal signal
peptide and three transmembrane regions. In addition,
SMART also predicted the presence of a PreATP-grasp
domain (d1gsa_1) from the SCOP database. Even though
this result had an E-value of 1.5, it was interesting because
the predicted domain is a putative binding domain and
falls in the predicted cytoplasmic region of Msa (residues
85–116). Our pattern search in the Msa protein sequence,
using different programs against the PROSITE database,
gave similar results (except for PPSearch, which did not
predict the Tyrosine kinase site at position 48), showing
the presence of three putative phosphorylation sites
(Table 4). All of the predicted sites were found in the
exposed regions of the Msa. Analysis of the location of
these putative phosphorylation sites showed that two of
the putative phosphorylation sites are outside the mem-
brane while one of them is predicted in the cytoplasmic
region. We also observed that these putative phosphoryla-
tion sites are highly conserved among different strains of
S. aureus. This suggests that Msa might be phosphorylated
by kinases in the cytoplasm as well as kinases on the out-
side of the membrane (e.g. from the host cells). These pre-
dictions further suggest that Msa might function as a

Table 1: Signal peptide and cleavage position prediction for the Msa protein

Signal Peptide Cleavage Position

SignalP Present 29
PrediSi Present 29
sigcleave Present 20
PSORT Present 20
Phobius Present 20
SIG-Pred Present* 20
iPSORT Present No prediction
SOSUIsignal Absent No prediction
Consensus Present 20

* Predicted as an eukaryotic signal peptide

Table 2: Topology predictions for the Msa protein

TopPred TMpred PHDhtm TMHMM SPLIT HMMTOP MEMSAT DAS TSEG

N-
terminal

IN IN OUT IN IN IN IN - -

# of TMS 3 3 3 4 4 4 4 4 4
TMS 1* 3–23 - 14–34 3–21 2–23 6–23 7–23 8–21 3–22
TMS 2 27–47 29–47 - 25–47 27–47 28–47 30–47 27–44 24–47
TMS 3 - 55–75 55–72 54–76 54–69 60–77 54–70 57–67** 54–75
TMS 4 106–126 107–123 108–125 108–125 107–126 108–125 108–125 110–124 105–128

TMS, transmembrane segments
* Analysis with several signal peptide prediction tools indicate that this TMS is a putative signal peptide
** Probability not significant
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signal transducer and provides important targets for
mutagenesis experiments to test this hypothesis.

Membrane bound receptors are important components of
signal transduction in all living systems. The major class
of receptors in eukaryotes contain seven transmembrane
segments (7 TM). Prokaryotes use 7 TM class receptors
also, however, a recent study showed that prokaryotes
carry novel receptor classes that have transmembrane seg-
ments ranging from one to eight [10,11]. The Msa protein
sequence did not have significant homology with any of
the known receptors and experimental studies are under-
way to evaluate its function as a signal transducer.

3-D structure prediction and analysis
Homology based tertiary structure prediction for the Msa
protein failed, because of the lack of homologous struc-
tures. We used fold recognition based structure prediction
server Phyre to model the tertiary structure of the Msa pro-
tein. Visualization and analysis of the predicted structure
using Swiss-PDB Viewer (SPDBV) showed that the pre-
dicted structure correlated with the other predicted struc-

tural features of Msa in terms of the number and positions
of the transmembrane helices (Figure 2). We refined the
predicted structure by fixing side chains, fixing problem-
atic loops, removal of amino acid clashes (bumps) and
energy minimization. The refinements did not yield any
drastic change in the initial predicted structure. This was
confirmed by visually inspecting the structure and verify-
ing the backbone structure using Ramachandran plot (Fig-
ure 3) and computing the total energy difference between
the initial model and the refined model.

We analysed the predicted tertiary structure for clefts and
binding sites using ProFunc server and found putative
binding sites in the cytoplasmic region between the sec-
ond and the third transmembrane helices (Figure 4A). We
also used PINUP to predict putative interface residues in
the similar region (Figure 4B). Another binding site pre-
diction server Q-SiteFinder also predicted similar binding
site and binding site residues (Figure 4C).

ProFunc also predicted a "nest" near the putative phos-
phorylation site (residues 47–50) which was predicted

Table 3: Consensus topology for the Msa protein including the N-terminal signal peptide prediction

N-terminal TMS 1 TMS 2 TMS 3

TopPred IN 27–47 - 106–126
TMHMM IN 25–47 54–76 108–125
TMpred IN 29–47 55–75 107–123
SPLIT IN 27–47 54–69 107–126
HMMTOP IN 28–47 60–77 108–125
MEMSAT IN 30–47 54–70 108–125
PHDhtm OUT 14–34 55–72 108–125
TSEG No Prediction 24–47 54–75 105–128
DAS No Prediction 27–44 54–67* 110–124
Consensus IN 27–47 54–75 108–125

TMS, Transmembrane segment
* Probability not significant

Consensus secondary structure predictions for the Msa proteinFigure 1
Consensus secondary structure predictions for the Msa protein. Three transmembrane segments (TMS) and a cyto-
plasmic helix are predicted.

TMS 1 TMS 2 TMS 3Cytoplasmic
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outside the membrane [12]. The Msa has all the conserved
residues that make up the predicted "nest". The predicted
"nest" in Msa shows features of an anion-binding site.
Such "nests" are characteristic functional motifs, which
are found in ATP- or GTP binding proteins.

Multiple sequence alignment of the Msa protein sequence
from 11 different strains of S. aureus revealed 12 muta-
tions in strain RF122 and seven mutations in strain
MRSA252 relative to consensus. Mutations at amino acid
positions 111, 131 and 133 were found in both MRSA252
and RF122 strains. None of these mutations were found in
the predicted phosphorylation sites, predicted signal pep-
tide sites or in the predicted anion-binding "nest". But
many of the mutations were found both in the integral
membrane segments as well as in the other parts of the
loop regions. Only one out of the 12 mutations had the
replacement (functionally different amino acid), while

others were substitutions (functionally similar amino
acids), in the strain RF122. In the strain MRSA152, two
out of seven mutations were replacements, while others
were substitutions. MRSA strain had three mutations in
the predicted pre-ATP grasp domain, out of which one
had an amino acid replacement. RF122 strain had only
one amino acid substitution in the pre-ATP grasp domain.
This indicates that the predicted functional sites are con-
strained from mutation.

Conclusion
We predict that Msa is a membrane protein with a cleava-
ble N-terminal signal peptide sequence, followed by three
integral transmembrane regions. The Msa is also predicted
to have an IN-OUT topology with at least two putative
phosphorylation sites, one outside the membrane and
one in the cytoplasmic region. A putative binding site is
also predicted in the cytoplasmic region of Msa. Based on
these predictions we put forward a model for the Msa pro-
tein (Figure 5). This model also prompted us to hypothe-
sise that Msa might function as a novel signal transducer
between the environment and the cytoplasm. This model
will be used to design and execute experiments to confirm
the functions and topology of Msa and further our under-
standing of its role in the pathogenesis of S. aureus.

Methods
For a complete list of online tools used, see additional file
1.

Primary sequence analysis
We used the protein sequence (Accession ID:
NP_374514) obtained by conceptual translation of the
msa open reading frame from the S. aureus N315 genome
(NCBI database). The primary sequence analysis was per-
formed using ProtParam, ProtScale [13] and SAPS [14].
ProtScale was used to predict the Msa profile based on sev-
eral amino acid scales. ProtParam computes properties
like molecular weight, theoretical pI, instability index and
grand average of hydropathicity (GRAVY). SAPS predicts
significant features of protein sequences like charge-clus-
ters, hydrophobic regions, compositional domains etc.

Predicted tertiary structure of the Msa protein showing the three transmembrane helicesFigure 2
Predicted tertiary structure of the Msa protein show-
ing the three transmembrane helices. Arrow indicates 
the predicted cleavage site for the putative signal peptide. N, 
N-terminus; C, C-terminus

N

C

Table 4: Prosite patterns predicted in the Msa protein

Protein Kinase C Casein Kinase II Tyrosine Kinase

PPSearch 99 49, 99 -
PSITE 99 49, 99 48
ScanProsite 99 49, 99 48
Consensus 99 49, 99 48

Numbers denote residue position in the Msa protein sequence
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Similarity searching
Similarity searching was done using different programs at
NCBI like BLASTP, PSI-BLAST [15] and CDART [16]
against several different databases like NR, SWISSPROT
and PDB. Multiple sequence alignment and phylogenetic
analysis were done using Accelrys Gene v2.5 (Accelrys
Inc., San Diego, CA).

Sub-cellular localization
The Sub-cellular localization and the functional categori-
zation of Msa were predicted using ProtFun 2.2 [17],
PSORT [18], ProtCompB V-3 [19], PRED-CLASS [20] and
SVMProt [21].

ProtFun uses ab initio methods to predict the cellular role
category. PSORT uses a rule-based method to predict pro-
tein localization sites. ProtCompB combines several
methods such as linear discriminant function-based pre-
dictions, direct comparison with homologous proteins of
known localization, prediction of functional peptide
sequences etc., to identify the sub-cellular localization of
proteins. PRED-CLASS uses cascading neural networks to
classify proteins in to different classes like membrane,
globular, fibrous and mixed. SVMProt uses a support vec-
tor machine based approach to functionally classify pro-
tein sequences.

Signal peptide prediction
Signal peptide prediction was done using SignalP [22],
PrediSi [23], sigcleave [24], PSORT [18], Phobius [25],
SIG-Pred [26], SOSUIsignal [27] and iPSORT [28].

SignalP 3.0 uses artificial neural networks and hidden
Markov models to predict signal peptides and their cleav-
age sites. PrediSi predicts signal peptide sequences and
their cleavage sites based on a position weight matrix that
also takes into consideration the amino acid bias present
in the proteins. Sigcleave is one of the early tools to pre-
dict the signal cleavage sites based on weight matrices. Sig-
cleave is distributed as part of the EMBOSS package.
Phobius is a combined transmembrane protein topology
and signal peptide predictor that uses a well trained hid-
den Markov model. SIG-Pred predicts signal peptides and
their cleavage position based on weight matrices. SOSU-
Isignal uses a high performance system to predict signal
peptides, using a three module software system that recog-
nises the three-domain structure of signal peptides.
iPSORT predicts the signal peptides based on a rule based
system.

Topology prediction
The Topology of Msa protein was predicted using TopPred
[29], TMpred [30], PHDhtm [31], TMHMM [32], SPLIT

Ramachandran plot for the predicted tertiary structure of the Msa protein pre (A) and post (B) refinementFigure 3
Ramachandran plot for the predicted tertiary structure of the Msa protein pre (A) and post (B) refinement.
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[33], HMMTOP [34], MEMSAT [35], DAS [36] and TSEG
[37]. We also computed the charge bias of the generated
models, based on the positive-inside rule [9].

TopPred II predicts the topology of a protein based on its
hydrophobicity profile and positive-inside rule. TMpred

algorithm is based on the statistical analysis of TMbase, a
database of naturally occurring transmembrane proteins,
using a combination of several weight-matrices for scor-
ing. PHDhtm uses a neural network based approach with
the evolutionary information to predict the locations of
the transmembrane helices. TMHMM predicts transmem-

Binding site predictions for the Msa proteinFigure 4
Binding site predictions for the Msa protein. (A) ProFunc predicted binding site (red); (B) PINUP predicted binding site 
(interface in green); (C) Q-SiteFinder predicted binding site and binding residues (pink)

A B C

Predicted model for the Msa protein showing structural and functional featuresFigure 5
Predicted model for the Msa protein showing structural and functional features.
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brane regions based on the hidden Markov model. SPLIT
4.0 predicts location of transmembrane helices by per-
forming an automatic selection of optimal amino acid
attribute and corresponding preference functions.
HMMTOP 2.0 prediction is based on the hypothesis that
the difference in the amino acid distributions in various
structural parts determines the localization of the trans-
membrane segments. MEMSAT applies a novel dynamic
programming algorithm to recognize membrane topol-
ogy models by expectation maximization. DAS uses dense
alignment surface method to predict transmembrane
regions. TSEG uses a discriminant function to predict the
transmembrane segments.

Secondary structure prediction
We used the NPS (Network Protein Sequence Analysis)
consensus secondary structure server [38]. This server runs
the input sequence against several different secondary
structure prediction tools and generates a consensus sec-
ondary structure out of them.

Domains/patterns/motifs prediction
SMART (Simple Modular Architecture Research Tool) [39]
was used to identify the presence of any domains in the
Msa protein. We used different pattern searching applica-
tions (PPSearch [40], PSITE [41] and ScanProsite [42]),
that use PROSITE [43] database, to predict functionally
relevant patterns in Msa protein.

3-D Structure prediction and analysis
Initial attempts to predict the tertiary structure of Msa
were done using different approaches like homology
modelling, threading and ab initio. Automated homology
modelling servers Swiss-Model [44] and ModWeb [45]
were used for homology modelling. Predictions described
in this study were done using fold recognition tools
123D+ [46], GenThreader [47], a new version of 3-D
PSSM (Phyre) [48].

The quality of the predicted structure was examined using
an online version of the WHATIF [49] program. Structure
refinement was done using both WHATIF and Swiss-PDB
Viewer [50]. Structure visualization was done using Swiss-
PDB Viewer.

The 3-D structure of the Msa protein was analysed for
clefts and binding surfaces using ProFunc [51], Q-Site-
Finder [52], PINUP [53] and SuMo [54].

Meta servers
We also used meta servers like SCRATCH [55], ProSAL
[56] and MetaPP [57] for predicting structure and func-
tional properties of the Msa protein.
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