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Abstract
Background: Nanopore detection is based on observations of the ionic current threading a single,
highly stable, nanometer-scale channel. The dimensions are such that small biomolecules and
biopolymers (like DNA and peptides) can translocate or be captured in the channel. The identities
of translocating or captured molecules can often be discerned, one from another, based on their
channel blockade "signatures". There is a self-limiting aspect to a translocation-based detection
mechanism: as the channel fits tighter around the translocating molecule the dynamic range of the
ionic current signal is reduced. In this study, a lengthy, highly structure, high dynamic-range,
molecular capture is sought as a key component of a transduction-based nanopore detection
platform.

Results: A specialized role, or device augmentation, involving bifunctional molecules has been
explored. The bifunctional molecule has one function to enter and blockade the channel in an
information-rich self-modulating manner, while the other function is for binding (usually), located
on a non-channel-captured portion of the molecule. Part of the bifunctional molecule is, thus,
external to the channel and is free to bind or rigidly link to a larger molecule of interest. What
results is an event transduction detector: molecular events are directly transduced into discernible
changes in the stationary statistics of the bifunctional molecule's channel blockade. Several results
are presented of nanopore-based event-transduction detection.

Conclusion: It may be possible to directly track the bound versus unbound state of a huge variety
of molecules using nanopore transduction detection.

Introduction
Channel current based nanopore-transduction chem-
informatics provides a new, incredibly versatile, method

for transducing single molecule events into discernable
channel current blockade signals. These discernible block-
ade patterns or statistics (i.e., stationary statistics regions)
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are hypothesized to correlate with molecular states, such
as binding states or conformational states.

Sophisticated machine learning software has been
brought to bear on this type of signal analysis. These soft-
ware tools are web accessible [1], and have also been opti-
mized for speed and integrated into the nanopore
detector for "real-time" pattern-recognition informed
(PRI) feedback [1]. Additional methods have been devel-
oped for distributed HMM and SVM (standard chunking
[2]) to enable the processing speedup needed to perform
real-time PRI-feedback.

A study of an antibody with linkage to a dsDNA molecule
at its carboxy terminus is described. The dsDNA compo-
nent is designed to be an excellent channel blockade mod-
ulator. The antibody component is designed to bind
biotin. A simpler, direct analysis where the antibody is
both blockade modulator and binding molecule is
described in [3]. Similar studies of TF/TFBS (TBP binding
to TATA box) are also performed [4]. Other studies of anti-
body- and aptamer-based biosensing and immunological
screening protocols are being developed [5]. The pros-
pects for single molecule biophysics and biochemistry,
directed molecular design, and rapid immunological
screening look very promising with use of channel current
transduction detection.

The Background for nanopore blockade detection is given
first, then the augmentation is described to make a nano-
pore transduction detector – a molecular "wrench" is quite
literally thrown into the works. The rest of the Background
introduces preliminary nanopore-based event transduc-
tion efforts, to be directly followed by the Results section
with the latest results on nanopore transduction detection
and the latest machine learning based software develop-
ments and results in managing the associated data analy-
sis.

Background
The alpha-Hemolysin nanopore blockade detector
Single biomolecules, and the ends of biopolymers such as
DNA, have been examined in solution with nanometer-
scale precision using nanopore blockade detection [6-11].
In early studies [11], it was found that complete base-pair
dissociations of dsDNA to ssDNA, "melting", could be
observed for sufficiently short DNA hairpins. In later work
[8,10], the nanopore detector attained Angstrom resolu-
tion and was used to "read" the ends of dsDNA molecules,
and was operated as a chemical biosensor. In [6,7,9], the
nanopore detector was used to observe the conforma-
tional kinetics of the end regions of individual DNA hair-
pins.

The notion of using channels as detection devices dates
back to the Coulter counter [12], where pulses in channel
flow were measured in order to count bacterial cells. Cell
transport through the Coulter counter is driven by hydro-
static pressure – and interactions between the cells and the
walls of the channel are ignored. Since its original formu-
lation, channel sizes have reduced from millimeter scale
to nanometer scale, and the detection mechanism has
shifted from measurements of hydrostatically driven fluid
flow to measurements of electrophoretically driven ion
flow. Analytes observed via channel measurements are
likewise reduced in scale, and are now at the scale of single
biomolecules such as DNA and polypeptides. For nano-
scopic channels, interactions between channel wall and
translocating biomolecules can't, usually, be ignored. On
the one hand this complicates analysis of channel block-
ade signals immensely, on the other hand, tell-tale on-off
kinetics are revealed for binding between analyte and
channel, and this is what has allowed the probing of
intramolecular structure on single DNA molecules [6-10].

Biophysicists and medical researchers have performed
measurements of ion flow through single nanopores since
the 1970's [13]. The use of very large (biological) pores as
polymer sensors is a relatively new possibility that dates
from the pioneering experiments of Bezrukov et al.
[14,15]. Their work proved that resistive pulse measure-
ments, familiar from cell counting with the Coulter coun-
ter, could be reduced to the molecular scale and applied
to polymers in solution. A seminal paper, by Kasianowicz
et al., 1996 [16], then showed that individual DNA and
RNA polymers could be detected via their translocation
blockade of a nanoscale pore formed by α-hemolysin
toxin. In such prior nanopore detection work, the data
analysis problems were also of a familiar "Coulter event"
form – where the event was associated with a current
blockade at a certain, fixed, level. A more informative set-
ting is possible with nanometer scale channels, however,
due to non-negligible interaction between analyte and
channel. In this situation the blockading molecule might
not necessarily provide a single, fixed, current reduction in
the channel, but will modulate the ion flow through the
channel by imprinting its binding interactions (with the
channel) and conformational kinetics on the confined
channel flow environment. This is a very brief and limited
synopsis of the Nanopore Detector background relevant
to this paper. For other references on Nanopore Detectors
use is made of a Nanopore Detector review presented in
[17]: early work involving alpha-Hemolysin Nanopore
Detectors can be found in [8-11,16-25]; rapidly growing
research endeavors on Nanopore Detectors based on
solid-state, and other synthetic, platforms can be found in
[26-36].
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The α-hemolysin (α-HL) channel, a protein heptamer
formed by seven identical 33 kD protein molecules
secreted by Staphylococcus aureus, is used as the channel in
the nanopore device due to its stable conformation (in the
strongly favored heptamer formation, which has minimal
gating) and its overall geometry (see Fig. 1): the total
channel length is 10 nm and is comprised of a 5 nm trans-
membrane domain and a 5 nm vestibule that protrudes
into the aqueous cis compartment [37]. The narrowest
segment of the pore is a 1.5 nm-diameter aperture [37]. By
comparison, a single strand of DNA is about 1.3 nm in
diameter. Given that water molecules are 0.15 nm in
diameter, this means that one hydration layer separates
ssDNA from the amino acids in the limiting aperture. This
places the charged phosphodiester backbone, hydrogen
bond donors and acceptors, and apolar rings of the DNA
bases within one Debye length (3 Å in 1 M KCl) of the
pore wall (see Fig. 1). Not surprisingly, DNA and RNA
interaction with the α-hemolysin channel during translo-
cation is non-negligible (but not too strong either, i.e., it
is not such that the molecule "gets stuck"). Although
dsDNA is too large to translocate, about ten base-pairs at
one end can still be drawn into the large cis-side vestibule.
This permits very sensitive experiments since the ends of
"captured" dsDNA molecules can be observed for exten-
sive periods of time to resolve features, allowing highly
accurate classification of the captured end of dsDNA mol-
ecules [6-10].

Channel current feature extraction methods, using Hid-
den Markov Models (HMMs) have also been designed for
tracking individual-molecule conformational changes on
the ends of captured biomolecules (biopolymers) [6,7,9].
The HMM tools were used to help systematically explore
DNA dinucleotide flexibility, with particular focus on
HIV's highly conserved (and highly flexible/reactive) viral
DNA terminus. One of the most critical stages in HIV's
attack is the binding between it's retroviral DNA and the
retroviral integrase, which is influenced by the dynamic-
coupling induced high flexibility of a CA/TG dinucleotide
positioned precisely two base-pairs from the blunt termi-
nus of the duplex viral DNA. The observed state kinetics of
the DNA hairpins containing the CA/TG dinucleotide pro-
vides clear evidence for HIV's selection of a peculiarly flex-
ible/interactive DNA terminus [38,4].

Fig. 2 shows the pattern recognition informed signal
processing architecture [8], with sampling feedback con-
trol [1]. The processing is designed to rapidly extract use-
ful information from noisy blockade signals using feature
extraction protocols, wavelet analysis, Hidden Markov
Models (HMMs) and Support Vector Machines (SVMs).
For blockade signal acquisition and simple, time-domain,
feature-extraction, a Finite State Automaton (FSA)
approach is used [39] that is based on tuning a variety of

threshold parameters. A generic HMM is then used to
characterize current blockades by identifying a sequence
of sub-blockades as a sequence of state emissions [6-
9,11]. The parameters of the generic-HMM can then be
estimated using a method called Expectation/Maximiza-
tion, or 'EM" [40], to effect de-noising. The HMM method
with EM is part of the standard implementation used in
what follows. Classification of feature vectors obtained by
the HMM for each individual blockade event is then done
using SVMs. For the nanopore detector augmented with
auxiliary molecules much more data is usually needed to
properly train the Machine Learning algorithms. The dis-
tributed training of these algorithms (recently established
in [2]) is a critical component in real-time signal process-
ing [1].

The alpha-Hemolysin nanopore transduction detector
The improved detector sensitivity with toggling-type aux-
iliary molecules, or with bifunctional molecules, opens
the door to a new, highly precise, means for examining
the binding affinities between any two molecules, all
while still in solution. The bifunctional molecules that
have been studied on the nanopore detector include anti-
bodies and aptamers [3-5], where the linked-to-modula-
tor method is used (detailed in Methods) to track states on
an individual molecular binding event (see Fig. 3). The
molecular binding events studied were chosen to also
demonstrate the specific utility of this device in drug can-
didate screening. Antibodies that bind strongly to target
antigen can be good, same for aptamers in many situa-
tions. Sometimes a weak-binding is desired, when the
drug is a toxin, for example, where the strategy might be
to deliver the toxin with a weak-binding agent such that
the toxin may eventually be cleared. Antibody-antigen
interaction strength with different adjuvant types/
amounts can be directly examined. Likewise, antibody-
antigen states can be studied insofar as the binding at their
effector region by introducing T-cell receptor binding sites
(see Discussion).

There are important distinctions in how a nanopore detec-
tor can function: direct vs. indirect measurement of the
signal. The channel blockade signals can be static, station-
ary, semi-stationary (phases with different stationary sta-
tistics), or non-stationary. A nanopore-based detector can
directly measure molecular characteristics in terms of the
blockade properties of individual molecules – this is pos-
sible due to the kinetic information that is embedded in
the blockade measurements, where the adsorption-des-
orption history of the molecule to the surrounding chan-
nel, and the configurational changes in the molecule itself
directly, imprint on the ionic flow through the channel [6-
11]. This approach offers prospects for DNA sequencing
and single nucleotide polymorphism (SNP) analysis [11].
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The alpha-Hemolysin nanopore blockade detector with a 9 bp DNA hairpin shown to-scale in the cis-vestibuleFigure 1
The alpha-Hemolysin nanopore blockade detector with a 9 bp DNA hairpin shown to-scale in the cis-vestibule. 
The upper panel shows the electrochemistry setup for the nanopore device. The lower panel shows the crystallographic 
description of the α-hemolysin channel with a nine base pair DNA hairpin superimposed.
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(a) Nanopore cheminformatics & control architectureFigure 2
(a) Nanopore cheminformatics & control architecture. The figure shows the signal processing architecture that was 
used to classify DNA hairpins with this approach: Signal acquisition was performed using a time-domain, thresholding, Finite 
State Automaton. Hidden Markov Model processing with Expectation-Maximization was used for feature extraction on 
acquired channel blockades. Classification was then done by Support Vector Machine – the architecture for resolving the five 
DNA hairpin controls is shown. Four DNA hairpin control molecules have nine base-pair stem lengths that only differed in 
their blunt-ended DNA termini, the fifth control was an eight base-pair DNA hairpin. The accuracy shown is obtained upon 
completing the 15th single molecule sampling/classification (in approx. 6 seconds), where SVM-based rejection on noisy signals 
was employed. In recent augmentations to this architecture, a LabWindows Server is now used. Data is then sent to cluster of 
Linux Clients via TCP/IP channel. Linux clients run expensive HMM analysis as distributed processes (similarly for off-line SVM 
training). The sample classification is used by the Server to provide feedback to the nanopore apparatus to increase the effec-
tive sampling time on the molecules of interest (this can boost nanopore detector productivity by magnitudes). A test case of 
such sampling-control feedback is shown in [1]. (b) DNA hairpin controls and their diagnostic signals. The secondary 
structure of the DNA hairpins studied is shown on the right, with their highest scoring diagnostic signals shown on the left. 
Each signal trace start at approximately 120 pA open channel current and all blockade in a range 40–60 pA upon "capture" of 
the associated DNA hairpin. Even so, the signal traces have discernibly different blockade structure, which can be extracted 
using a Hidden Markov Model (see [8] for further details).

(a)

(b)
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The nanopore-based detector works indirectly if it uses a
reporter molecule that binds to certain molecules, with
subsequent distinctive blockade by the bound-molecule
complex. One example of this, with the established DNA
experimental protocols, is exploration of transcription
factor binding sites via the different dsDNA blockade sig-
nals that occur with and without DNA binding by a
hypothesized transcription factor. Similarly, a channel-
captured dsDNA "gauge" that is already bound to an anti-
body could provide a similar blockade shift upon antigen
binding to its exposed antibody as shown in the Results.
The latter description provides the general mechanism for

directly observing the single molecule antigen-binding
affinities of any antibody.

The modulatory auxiliary molecule represents a new
"wrench in the works", a wrench that happens to rattle
around in a useful fashion, creates a new, much more sen-
sitive, overall mechanism – one where it is possible to
transduce single molecule events (such as intermolecular
binding, intramolecular conformational change, and con-
formationally-mediated binding) into changes in the
ionic current stationary statistics. More than an on/off event
detection, the transduction is analog, with a range of val-

The alpha-Hemolysin nanopore transduction detectorFigure 3
The alpha-Hemolysin nanopore transduction detector. The nanopore-based transduction detector uses a reporter 
molecule that binds to certain molecules, with subsequent distinctive blockade by the bound-molecule complex. An example of 
this is shown – the DNA-hairpin/Antibody complex. The interaction of that antibody with its target antigen is expected to lead 
to a blockade shift upon antigen binding, as shown in the Results. The latter description provides the general mechanism for 
directly observing the single-molecule antigen-binding affinities of any antibody in complex situations, such as those involving 
selection of adjuvants.
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ues, such as binding strength available from binding event
dwell time distributions (where event dwell times corre-
spond exactly with the dwell time in an associated phase
of ionic current stationary statistics).

The "wrench" that rattles in the channel (the auxiliary
molecule) is chosen to provide highly modulatory block-
ades that change the most discernibly upon target bind-
ing. There is thus a molecular engineering task in setting
up the nanopore transduction detector. The sensitivity of
an optimally designed wrench to changes in it's environ-
ment can be several magnitudes greater than most molec-
ular "nanopore-epitope" captures, as such it introduces a
critical gain to the device, enabling a remarkable capabil-
ity. The first step in the new detection process is that the
auxiliary molecule is linked to a molecule external to the
channel, and the externally-linked molecule and its bind-
ing interactions remain a significant part of the auxiliary
molecules sensing "environment" (according to the
design optimization). With the heightened sensitivity, the
nanopore transduction apparatus provides a coupling
mechanism that can transduce single-molecule events/
states into stationary statistics phase changes in the toggle
signal of a linked auxiliary molecule.

The second step in the new process is the means to tap
into the information-rich toggle of the auxiliary molecule
that links into the system of interest. Changes in the statis-
tical profiles of the blockade data (i.e., different phases of
stationary statistics in the ionic current blockades) are
ascertained with high sensitivity. The sensitivity is due to
use of machine learning (artificial intelligence) methods
to fully differentiate and adaptively track different block-
ade signals under device drift conditions, with strong
methods for feature extraction, classification, and cluster-
ing. Part of this software also enables the device by allow-
ing introduction of pattern recognition informed
feedback sampling (as well as force-ramp analysis, etc.).
The software design, to allow for real-time pattern recogni-
tion informed feedback, was recently applied to discrimi-
nate between two DNA molecules as they were observed
(typically within a few hundred milliseconds of onset of
blockade, [1]). This capability alone can boost a nanopore
detector's productivity by magnitudes, i.e., what if the sig-
nal of interest was one-in-a-thousand, if there were an
active means to reject signals not of interest, and allow
most of the signal acquisition time to focus on the signals
of interest, this could increase acquisition approx. a thou-
sand-fold on signal of interest.

In the experiments described in [3-5] the molecules with
binding of interest (antibodies and aptamers) themselves
produce the very sensitive, rapidly changing, blockade sig-
nal due to their interaction kinetics with the channel envi-
ronment – thus bifunctional in binding and desirable

interaction kinetics (see Fig. 4 and the left-side on Fig 5).
The nanopore transduction results described here, how-
ever, are obtained from measurements of channel current
blockades from a specially selected, partly channel-cap-
tured, auxiliary molecule, that is rigidly/covalently bound
(linked) to the molecule of interest (see Fig. 5, right-side),
and then exposed to a solution containing the other mol-
ecule of interest. The transitions between different station-
ary phases of blockade can then be related to the bound/
unbound configuration between the two molecules of
interest to reveal their binding kinetics (and binding
strength). This is a much more generalizable platform and
demonstrates the general applicability of this mechanism
for observation of single-molecule events.

The blockade signals for a murine IgG1 monoclonal anti-
body, directed against the synthetic polypeptide antigen
(Y,E)-A--K have been examined in prior work [41]. The
antibody preparation was grown in hybridoma superna-
tant and purified by antigen affinity chromatography, and
thus represents a highly purified population of antibody.
Upon introduction into the chamber, the antibody exhib-
its more than one blockade signal (see Fig. 6), suggesting
that the different parts of the molecule can be drawn into
the channel. Fig. 7 shows a very stable channel blockade
signal resulting from this setup, this and further descrip-
tions of the IgG experiments are provided in [3] (this Jour-
nal). (The antibody-antigen system examined for the
linked antibody described in the Results consists of an
inexpensive antibody that binds to biotin.) Since the
immunoglobulin domain fold is an elongated barrel, it is
possible that capture events could occur at the narrow
ends of the domain, as individual chains, or portions of
both chains, within the Fab and Fc, and most likely, the
carboxy terminus of the heavy chain (see Fig. 5). Similar
findings, have been observed with other purified antibod-
ies.

Molecular recognition and Antibody-Antigen interaction,
in particular, depends strongly on buffer and temperature
conditions [42]. The interaction can be affected by small
ions, which can compete for the charge centers on the
active cite surface, attenuating the interaction. In presence
of chaotropic agents a protein molecule makes conforma-
tional changes; similar changes may be caused by a suffi-
cient pH shift or by denaturing agents. A nanopore
detector provides new opportunities to study protein-pro-
tein(ligand) reaction (antibody-antigen reaction, in par-
ticular) [3]. The nanopore formed by alpha-Hemolysin is
quite sensitive to environmental conditions, as well, so
care must be taken to examine the influence of buffer
composition on the nanopore channel properties them-
selves. Preliminary work along these lines is given in the
Results and further work along these lines can be found in
[3].
Page 7 of 29
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 7):S9 http://www.biomedcentral.com/1471-2105/8/S7/S9
The transduction detection method, thus, holds great
promise for detailed study of (i) individual multi-compo-
nent molecular complexes, (ii) conformational change
and folding during the forming of such complexes, and
(iii) enzyme study in general. All cases have immense
potential in the area of drug design, particulary the role of
designing better co-factors and adjuvants.

Machine-Learning based cheminformatics
The entry of computational methods into biology, medi-
cal science, and chemical engineering has grown more sig-
nificant in recent years with advances in practical,
deployable, methods for pattern recognition and knowl-
edge discovery. With use of more sophisticated computa-
tional modeling there is no need to restrict to fully
parameterized, easily managed, mathematical expres-

sions. A computer can now track all data instances directly
with no need to fit to a parametric model. Support Vector
Machines (SVMs), for example, are often used for classifi-
cation due to their highly accurate performance. A grow-
ing trend of many multidisciplinary computational
endeavors is that highly accurate, adaptive, and possibly
unsupervised informatics approaches are critically required
to boost experimental control and sensitivity, such that
the research endeavor or technological method can
become workable in practice. Such informatically lever-
aged research efforts are at a multidisciplinary nexus of
scientific and technological applications.

Hidden Markov Models (HMMs) [40] provide a statistical
framework for sequences of observations obeying Markov
statistics. HMMs are excellent for identifying structure in

DNA/RNA bifunctional transduction moleculesFigure 4
DNA/RNA bifunctional transduction molecules. The molecules shown were designed to help in the examination of 
DNA-DNA binding (left panel, with introduction of 5'-TACCT-3' annealing complement, see [5] for details) and DNA-protein 
binding (right panel, DNA Y-aptamer with TATA binding site, examined upon introduction of TATA Binding Protein, see [4] 
for details). Each molecule is designed to have a length of blunt-ended duplex DNA that is to be captured by the channel, that 
length is "terminated" such that the captured end is perched directly above the limiting aperture of the channel, free to move, 
bind to channel, and un-bind, in the high electrophoretic field strength concentration at the limiting aperture. For the termina-
tion with 3 T mismatch "bulges", a length of 9 base-pairs suffices for good channel blockade modulation; for termination at the 
Y-branching chosen, a length of 10 base-pairs works best.

TATA Box binding sitePseudo-aptamer binding site TATA Box binding sitePseudo-aptamer binding site
Page 8 of 29
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 7):S9 http://www.biomedcentral.com/1471-2105/8/S7/S9
sequential information, such as in channel current block-
ades or gene structure identification. Novel hash-interpo-
lating and gap-interpolating Markov models are
introduced in [43]. The standard HMM implementation
inherits a length distribution on its same-state regions
according to the memoryless probability that it be in
those regions (from stationarity). Thus, a geometric distri-
bution results on length distributions of same-state
regions in the standard HMM (such as for exon or intron
regions in gene finding). The geometric distribution is
often very inadequate to describing the true distribution
on the data, however, particularly for the very short and
very long duration events where the true distribution typ-
ically deviates from the geometric distribution the most.
An HMM that also models true length distribution infor-
mation is known as an HMM-with-Duration. Unfortu-
nately, the algorithms available for an HMM-with-
Duration are very difficult to implement and are compu-
tationally expensive. In recent work [1,43,44], however, a

new form of HMM-with-Duration is described with an
algorithmic solution at the level of the column processing
in the dynamic programming table constructed during the
Viterbi calculation. This has far-reaching application and
will be a powerful tool for research in Nanopore Detector
Cheminformatics and gene structure identification. For
channel current data a key objective is to get kinetic infor-
mation. In nanopore blockade detection this information
can be directly obtained from the dwell-times in the dif-
ferent blockade levels. This is generally a critical feature
extraction regardless. To this end a method has been
developed to filter the blockade pattern such that the
major transitions between blockade levels are strongly pre-
served (EVA projection, see [43]), but such that the minor
(noise) transitions within a blockade level project to the
means of their dominant level. The problem when this
approach is pushed to an extreme, or the noise level is
increased sufficiently, is that spurious transitions between
the major levels begin to occur – which corrupts the

Antibody-based bifunctional transduction moleculesFigure 5
Antibody-based bifunctional transduction molecules. Antibody can generally function alone as bifunctional transducer. 
Drawback – multiple nanopore-epitopes (i.e., capture orientations, see Fig. 6), strength – possibly better signal change w/wo 
binding on a particular capture orientation (see Fig. 7)
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kinetic analysis. The solution is to use an HMM with
Duration formalism in conjunction with the EVA projec-
tion method (see [1], for more Background and Results).

Support Vector Machines (SVMs) are variational-calculus
based methods that are constrained to have structural risk
minimization (SRM), unlike neural net classifiers, such
that they provide noise tolerant solutions for pattern rec-
ognition [45,46]. Simply put, an SVM determines a hyper-
plane that optimally separates one class from another (see
Fig. 8). Once learned, the hyperplane allows data to be
classified according to the region (separated by the hyper-
plane) in which it resides. Currently there are two
approaches to implementing multiclass SVMs. One
arranges several binary classifiers as a decision tree such
that they perform a multi-class decision-making function
(SVM-external classification). The second approach
involves solving a single optimization problem corre-
sponding to the entire data set (with multiple hyper-
planes), with multi-class discriminator optimization
performed internally. The SVM-internal approach, when
it is stable and properly generalizable (an area of ongoing

research), is preferred, since a tuning over Decision tree
topologies and weightings is avoided [47].

Each SVM approach encapsulates a significant amount of
model-fitting information in its choice of kernel. In some
sense, the SVM kernel provides a notion of distance to the
decision hyperplane. In prior work, novel, information-
theoretic, kernels were successfully employed for notably
better performance over standard kernels [8,47]. In situa-
tions where the data isn't clearly separable, making for
poor discrimination, signal clustering is used to provide
robust and useful information – to this end, novel, SVM-
based clustering methods have been introduced as well
[47,48] (as with classification, Internal and External SVM
Clustering algorithms have been explored).

Thus, SVMs are fast, easily trained, discriminators [45,46],
for which strong discrimination is possible without the
over-fitting complications common to neural net discrim-
inators [45]. In application to channel current signal anal-
ysis there is generally an abundance of experimental data
available, if not, the experimenter can usually just take

Multiple antibody blockade signal classesFigure 6
Multiple antibody blockade signal classes. A-D:Examples of the various IgG captures and their associated toggle signals. 
All share the same pA axis, all traces are for 1 second.
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Example that provides a very clear, stable, blockade direct by an AbFigure 7
Example that provides a very clear, stable, blockade direct by an Ab. Top: A toggle signal is generated as a channel-
captured region of the molecule (IgG) wiggles above the limiting aperture of the alpha-hemolysin channel varying the ionic cur-
rent between two transient states. Bottom: Antibody Toggle HMM Signal Profile. The 150 feature vectors obtained from the 
50-state HMM-EM/Viterbi implementation in [6-11] are: the 50 dwell percentage in the different blockade levels (from the 
Viterbi trace-back states), the 50 variances of the emission probability distributions associated with the different states, and the 
50 merged transition probabilities from the primary and secondary blockade occupation levels (fits to two-state dominant 
modulatory blockade signals).
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more samples and make it so. In this situation it is appro-
priate to seek a method good at both classifying data and
evaluating a confidence in the classifications given. In this
way, data that is low confidence can simply be dropped.
The structural risk minimization at the heart of the SVM
method's robustness also provides a strong confidence
measure. For this reason, SVM's are the classification
method of choice for channel current analysis, as they
have excellent performance at 0% data drop, and as weak
data is allowed to be dropped, the SVM-based approaches
far exceed the performance of other methods.

In [8], novel, information-theoretic, kernels were first
introduced for notably better performance over standard
kernels – where discrete probability distributions com-
prised part of the feature vector data. The use of probabil-
ity vectors, and L1-norm feature vectors in general, turns
out to be a very general formulation, wherein feature
extraction makes use of signal decomposition into a com-
plete set of separable states that can be interpreted or rep-
resented as a probability vector (or normalized collection
of such, etc.). A probability vector formulation also pro-
vides a straightforward hand-off to the SVM classifiers
since all feature vectors have the same length with such an
approach. What this means for the SVM, however, is that
geometric notions of distance are no longer the best meas-
ure for comparing feature vectors. For probability vectors
(i.e., discrete distributions), the best measures of similar-
ity are the various information-theoretic divergences:
Kullback-Leibler, Renyi, etc. By symmetrizing over the
arguments of those divergences a rich source of kernels is
obtained that works well with the types of probabilistic
data obtained, as shown in [8,47].

Summary of preliminary binding studies results
Binding analysis with aptamers is much easier than with
antibody-antigen due to the strong charge distributed
along a DNA molecule, leading to a much stronger elec-
trophoretic force interaction. The problem is that this
force can be too strong when the molecule is actually cap-
tured, stifling sensitive blockade transitions. In all the
engineered molecules described here, however, the
pseudo-aptamers have bulges, loops, or Y-branching
geometries to perch the terminal base-pair similar to that
of the DNA control hairpins studied in [8,10,11]. Figures
9 and 10 show results for pseudo-aptamers involving
DNA molecules with single-stranded overhangs (designed
to examine binding with the complement stands to the
overhangs). The goal is to eventually extend to the ssDNA
overhangs to ssDNA links to a SELEX identified ssDNA
aptamer region (for ssDNA/RNA-type aptamers).

Synthetic transcription factors (STFs) promise to offer a
powerful new therapeutic against Cancer, AIDS, and
genetic disease. STFs that can appropriately target (and
release) their transcription factor binding sites (TFBS) on
native genomic DNA provide a means to directly influ-
ence cellular mRNA production (to induce death or dor-
mancy for Cancer and AIDs cells, or restore proper cellular
function in the case of genetic disease). In synthetic TF
drug discovery an effective mechanism for screening
amongst TF candidates would itself be highly valued. Such
may be possible with novel observation and analysis
methods involving channel current observations of single
molecule interactions/blockades. Figures 11 and 12
describe results having to do with such efforts, with a Y-
aptamer encoded with the transcription factor binding
site of interest (a TATA box) and the binding partner TATA
binding protein (TBP).

Antibody-Antigen Binding/Biosensing
It is found that the antibody blockade signal alters shortly
after introduction of antigen, as Fig. 13 shows upon addi-
tion of a moderately high concentration (100 μg/ml) of
200 kD multivalent synthetic polypeptide (Y,E)-A--K. Pre-
sumably, these changes are the result of antibody binding
to antigen. The time before the blockade signal is altered
is also interesting; it ranges from seconds to minutes (not
shown). This presumably is a reflection of antibody affin-
ity.

Results
DNA/biotin-streptavidin binding experiment
A series of nanopore experiments is performed with
blockade signal transduction on the DNA/biotin-strepta-
vidin system described in Fig. 14. In those experiments a
hairpin is used that is a variant of the familiar 9 base-pair
DNA hairpins that are used as controls, via attachment of
a biotin linker via a modified thymine at the top of the

SVM: hyperplane separability, with a marginFigure 8
SVM: hyperplane separability, with a margin.
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hairpin loop (3'-side). The modification introduces a six
carbon spacer arm that extends perpendicularly to the axis
of the DNA. This allows for sterically unhindered biotin
interaction. The binding partner introduced later is
streptavidin to have as control the strongest interaction
known in biology (biotin-streptavidin). Clear indications
of new blockade signal states, only after introduction of
streptavidin, has been obtained. Signal analysis focusing
on these blockades of interest is shown in Figures 15 and
16.

DNA/antibody-biotin binding experiment
The general-case nanopore transduction system, that
involving linking a molecule with binding properties of
interest is studied next. The system consists of biotin-
binding antibody that is linked to a specially designed
DNA-based channel current modulator (see Fig. 17). It
has been hypothesized that binding to the molecule of
interest might then result in a change in the channel mod-
ulator's stationary statistics, and this is shown in Figures
18 and 19. Antigen alone is introduced to the channels, as

well as non-specific binding contaminants, none give rise
to the new classes of lengthy dwell-time blockade events
that are seen. These and other controls strongly indicate
that the on-binding interactions are being seen between
the antibody and its biotin target. What is not being seen
are the off-binding events of the biotin dissociating from
the antibody. This is consistent with the strength of the
binding and the short lifetime (hours) of the experimental
window. What is pursued on bringing these time-scales
into agreement is introduction of MgCl2 to weaken the
antibody-biotin binding strength (where weakening the
DNA-channel interactions isn't so critical, as long as the
modulator exhibits difference between the bound and
unbound cases).

α-Hemolysin channel stability with different buffer 
conditions
The channel proved to be stable to high salt concentra-
tions (MgCl2 above 2 M and KCl up to 4 M) and presence
of some other additives (urea 2 M, glycerol 5%) at pH
around 8.0. Typical pattern of current rise with increase in

Pseudo-aptamer study with DNA overhang binding complement – background blockadesFigure 9
Pseudo-aptamer study with DNA overhang binding complement – background blockades. Top: Un-annealed 
ssDNA translocation blockades. Bottom: Possible instance of reverse-oriented capture/melting.
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background electrolyte, KCl is shown in the figure in
Additional File 1. Specifically, the current versus KCL con-
centration is shown in running buffer with composition 1
M KCl, 20 mM HEPES (pH 8.0), with HEPES concentra-
tion maintained constant as content of KCl is increased.
The total resistance vs. MgCl2 is shown in the figure in
Additional File 2. Titration with 4 M MgCl2 is shown, and
current through the α-HL channel increases as electrolyte
concentration rises. Initial concentration of background
electrolyte, MgCl2, is 1 Mol/L.

The curves in those figures demonstrate the appropriate
current increase with further tendency of its stabilization
at high salt concentration as it is expected for conductivity
behavior of electrolyte solution. We observed considera-
ble asymmetry in conductance for the cases when the pos-
itive and negative potential applied, and results for this
are shown in the figure in Additional File 3, which pro-
vides the total resistance vs. MgCl2, with MgCl2 concentra-
tion increase. The titration is performed with 2 M MgCl2
dissolved in background electrolyte, 1 M KCl. The upper

Pseudo-aptamer: DNA overhang binding complement – signal blockadesFigure 10
Pseudo-aptamer: DNA overhang binding complement – signal blockades. Top: Before introduction of 5-base 
ssDNA complement.Bottom: After introduction of complement.
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and lower curves correspond to the negative and positive
applied potentials, accordingly.

One possible explanation is presence of the charged
amino acid residues on the inner surface of the protein
channel that may contribute such an asymmetry by differ-
ent mechanisms, although we have to emphasize that
experimental data are to be related to the integral resist-
ance of the system rather than a single channel. Therefore,
the value for channel resistance, obtained by the ratio of
the applied potential to the measured current, may be
overestimated. The conductance asymmetry decrease with
increasing ionic strength could relate to surface charge
shielding, or to possible electroosmotic transport effects.

DNA-hairpin blockade signal stability with different buffer 
conditions
An increase in concentration of background electrolyte,
KCL, generally provides only moderate influence on the
current blockade signal. This is shown in the figure in
Additional File 4, where current blockade signal change is
examined with KCl increase. In that figure a nine base-pair
DNA hairpin (ULT-HP) with a distinctive upper level tog-
gle is shown in the top panel. The middle and bottom
panels show the blockade patterns at 1.9 and 2.5 M KCl,
correspondingly. As the concentration of background
electrolyte increases, the signal keeps its highly structured
profile, although becoming noisy at KCL concentrations
above 2 M (panels 2 and 3 in the figure). In the figure in
Additional File 5, the 150 feature profile [2] of the data is
shown at 1.0, 1.9 and 2.5 M KCl (corresponding to the sig-
nal shown in the previous image). Each blockade signa-
ture is de-noised by 5 rounds of Expectation-

Maximization (EM) training on the parameters of the
HMM. After the EM iterations, 150 parameters are
extracted from the HMM. The 150 feature vectors
obtained from the 50-state HMM-EM/Viterbi implemen-
tation in are: the 50 dwell percentage in the different
blockade levels (from the Viterbi trace-back states), the 50
variances of the emission probability distributions associ-
ated with the different states, and the 50 merged transi-
tion probabilities from the primary and secondary
blockade occupation levels (fits to two-state dominant
modulatory blockade signals). Other preliminary work
with introduction of chaotropic agents is described in [3].

Discussion/conclusion
Nanopore detection
What is shown here is initial verification of a general form
of a new event transduction mechanism. Single-molecule
biochemical analysis using channel current transduction
cheminformatics appears to be a viable technology. To
maintain the existing biologically-based channel, how-
ever, there are salt and pH restrictions on the analyte solu-
tions. More versatility is clearly needed here, but the
significant strengths of this approach, with informatics
methods leveraging the useful sensitivity of the detector,
suggest great potential utility in this approach.

The examination of transcription factor binding to target
transcription factor binding site (TF/TFBS interactions)
affords the possibility to understand, quantitatively,
much of the Transcriptome. This same information, cou-
pled with new interaction information upon introduction
of synthetic TFs (possible medicines), provides a very
powerful, directed, approach to drug discovery.

Upon binding to antigen, a series of events are initiated by
the interaction of the antibody carboxy-terminal region
with serum proteins and cellular receptors. Biological
effects resulting from the carboxy-terminal interactions
include activation of the complement cascade, binding of
immune complexes by carboxy-terminal receptors on var-
ious cells, and the induction of inflammation. Nanopore
Detection provides a new way to study the binding/con-
formational histories of individual antibodies. Many crit-
ical questions regarding antibody function are still
unresolved, questions that can be approached in a new
way with the nanopore detector. The different antibody
binding strengths to target antigen, for example, can be
ranked according to the observed lifetimes of their bound
states. Questions of great interest include: are allosteric
changes transmitted through the molecule upon antigen
binding? Can effector function activation be observed and
used to accelerate drug discovery efforts?

Thus, real-time analysis of antibody IgG binding affinity
might be possible using a nanopore detector to better

Y-aptamer, with TATA Box, that binds TBPFigure 11
Y-aptamer, with TATA Box, that binds TBP. Red 
curve: Profile of Y-aptamer signal blockades before introduc-
tion of TBP. Blue curve: Y-aptamer signal blockade after 
introduction of TBP. A drastically different signal profile, pos-
sibly indicative of significant conformational change in the Y-
aptamer upon TBP binding.
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Y-aptamer with DNA overhang that binds complementFigure 12
Y-aptamer with DNA overhang that binds complement. Top: signal profiles before and after binding. Bottom: the 
dwell-time distributions on the three dominant levels indicated in the unbound blockade signal. The profiles are surprisingly dif-
ferent, the bound case, with annealed complement, appears to be more "stable", with only two dominant blockade levels. This 
is consistent with it being a molecule with fewer degrees of freedom (with 6 T overhang now annealed to 6 A complement).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150
HMM Feature Vectors

P
ro

b
a
b
il
it

y T6-Y10T1-GC with T6

T6-Y10T1-GC

Emission Variance Level TransitionsLevel Occupation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150
HMM Feature Vectors

P
ro

b
a
b
il
it

y T6-Y10T1-GC with T6

T6-Y10T1-GC

Emission Variance Level TransitionsLevel Occupation Emission Variance Level TransitionsLevel Occupation

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

0 . 4 0

0 0 . 5 1 1 . 5 2 2 . 5

T i m e  ( m s )

P
ro

b
a

b
il

it
y

L e v e l  1

L e v e l  2

L e v e l  3



BMC Bioinformatics 2007, 8(Suppl 7):S9 http://www.biomedcentral.com/1471-2105/8/S7/S9
understand antibody-antigen binding affinities and the
conformational changes that initiate signal pathways.

In the figure in Additional File 6 is shown the automati-
cally generated plot of spike characteristics for blockade
data when DNA hairpins were examined, one radiated
and one not. Spike count plots are generated to show
increasing counts as cut-off thresholds are relaxed (to
where eventually any downward deflection will be
counted as a spike). The plots are automatically generated
and automatically fit with extrapolations of their linear
phases (exponential phases occur when cut-offs begin to
probe the noise band of a blockade state – typically gaus-
sian noise "tails"). The extrapolations provide a stable,
"robust", estimate of anomalous spike counts. By this
method, the non-radiated DNA exhibited a full-blockade
"spike" from its lower-level blockade with a frequency of
5 spikes per second (indicating a fraying of the blunt
ended terminus of the molecule at that rate). For the radi-
ated molecule the frequency of spikes was 15 spikes per
second, indicating a much greater fraying rate (dissocia-
tion of the terminal base-pair), consistent with that mole-

cule being weakened by radiation such that it's terminal
base-pair frays more frequently.

Channel current cheminformatics
Web-accessible tools for HMM-based feature extraction
and SVM classification are accessible at http://
logos.cs.uno.edu/~nano/ (see [1], for latest web-interface
discussion). The web tools can help in identification of
blockade levels, the level transition and lifetime character-
istics, and the fast blockade "spike" characteristics. The
SVM classification is of general use for any kind of classi-
fication problem, and a number of novel kernels and
novel implementation are employed. SVM-based cluster-
ing is also implemented in a novel way to yield a non-par-
ametric clustering approach, which is used to cluster
signals into multiple classes (particularly important for
complex multi-orientation data-sampling situations such
as with an antibody). The Web interface also provides
access to several SVM variants that show significantly
improved performance over the standard Platt-SMO
implementation with a Gaussian kernel. The methods
involve novel kernels designed to measure "distance" not
in a geometric sense but in a probability measure sense.

Antibody-Antigen binding – clear example from specific capture orientationFigure 13
Antibody-Antigen binding – clear example from specific capture orientation. A region of antibody molecule has 
inserted into the Alpha-hemolysin channel to produce a constant toggle signal. Antigen is introduced in frame (A). Sub-sequen-
tial data files containing toggle signals of three minute intervals are recorded and displayed as B, C, and D. Changes to the tog-
gle signal are detected in frames C and D indicating the binding event between the antibody and antigen has taken place.
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Biotinylated DNA hairpin binding streptavidinFigure 14
Biotinylated DNA hairpin binding streptavidin. A DNA hairpin "gauge" is designed to offer a clear multi-level modulated 
blockade signal. The DNA gauge has it's hairpin loop section altered from the 4 dT loop used in the controls, the loop has a 
linkage to biotin placed in the middle of it's 4 dT loop (see Methods). One of these DNA hairpins with attached biotin is cap-
tured in the channel, an excess of Streptavidin is introduced. Transition to a new blockade state is quickly seen, one only seen 
after introduction of streptavidin.
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An expert-mode interface with up-loadable Perl modules
for kernels and alpha-selection heuristics is in develop-
ment. The interface to this and all other software
described is available via the webpage: http://
logos.cs.uno.edu/~nano/. As with the multiclass SVM dis-
criminator implementations, the strong performance of
the binary SVM enables SVM-External as well as SVM-
Internal approaches to clustering. The external-SVM clus-

tering algorithm introduced in [47] clusters data vectors
with no a priori knowledge of each vector's class. The algo-
rithm works by first running a Binary SVM against a data
set, with each vector in the set randomly labeled, until the
SVM converges. In order to obtain convergence, an accept-
able number of KKT violators must be found. This is done
through running the SVM on the randomly labeled data
with different numbers of allowed violators until the

Biotinylated DNA hairpin blockade signal and profileFigure 15
Biotinylated DNA hairpin blockade signal and profile. (See Fig. 7 or Methods for description of HMM profile.)
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Biotinylated DNA hairpin capture after introduction of an excess of streptavidin – significantly altered blockade signal and pro-fileFigure 16
Biotinylated DNA hairpin capture after introduction of an excess of streptavidin – significantly altered block-
ade signal and profile. (See Fig. 7 or Methods for description of HMM profile.)
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DNA hairpin bound to antibody via an EDC-linkerFigure 17
DNA hairpin bound to antibody via an EDC-linker. Approximately shown to scale. Arrow points to the Internal Amino 
Thymine Modification with Primary Amine on a six carbon spacer arm. Primary amine can be crosslinked using 1-Ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride (EDC) to the peptide carboxyl terminus of the antibody heavy chain. This 
crosslinkage results in a covalent bond between the primary amine and the carboxyl.
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Antibody linked to DNA-hairpin blockade signal and HMM profileFigure 18
Antibody linked to DNA-hairpin blockade signal and HMM profile. (See Fig. 7 or Methods for description of HMM 
profile.)
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number of violators allowed is near the lower bound of
violators needed for the SVM to converge on the particular
data set. Choice of an appropriate kernel and an accepta-
ble sigma value also will affect convergence. After the ini-

tial convergence is achieved, the (sensitivity+specificity)
will be low, likely near 1. The algorithm now improves
this result by iteratively re-labeling the worst misclassified
vectors, which have confidence factor values beyond some

Antibody linked to DNA-hairpin, now bound to its target antigen (biotin) – new blockade signal, and associated HMM profileFigure 19
Antibody linked to DNA-hairpin, now bound to its target antigen (biotin) – new blockade signal, and associated 
HMM profile. Antigen binding to an EDC-linked Antibody/DNA-Hairpin, where stem of the hairpin is captured in the Nano-
pore Detector. (See Fig. 7 or Methods for description of HMM profile.)

p
A

100

50

0

-50

150

200

Time (ms)
100005000

p
A

100

50

0

-50

150

200

Time (ms)
100005000

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

0 20 40 60 80 100 120 140
Page 23 of 29
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 7):S9 http://www.biomedcentral.com/1471-2105/8/S7/S9
threshold, followed by rerunning the SVM on the newly
relabeled data set. This continues until no more progress
can be made. Progress is determined by an increasing
value of (sensitivity+specificity), hopefully nearly reach-
ing 2. This method provides a way to cluster data sets
without prior knowledge of the data's clustering character-
istics, or the number of clusters.

An exciting area of machine learning research is being
brought to bear on the kinetic signal decomposition of
channel currents. The external-SVM approach described in
the Background and [47] offers to provide one of the most
powerful, unsupervised, methods for clustering. Part of
the strength of the method is that it is non-parametric.
Part of the weakness is in obtaining an initial clustering.
To improve on this, attempts have been made to graft the
external-SVM onto an initial clustering using bisect-K-
means (that is seeded by principle direction divisive parti-
tioning, or principle component analysis, when random
seeding does poorly). Other grafts have been tried as well,
what is commonly seen is that such grafting inherits the
local minima traps of the grafting parent. For this reason,
the delay on initial convergence of the non-parametric
method may be a mixed blessing in that it truly stands to
offer something new. External-SVM clustering, along the
lines of [47], may allow precise cluster re-growth by its
ability to operate on a shifting, optimally-defined bound-
ary region (via retraining of support vector structure)
using direct label operations (binary "flipping" – see
recent Results and Discussion in [48]).

Methods
Nanopore experiments
Each experiment is conducted using one α-hemolysin
channel inserted into a diphytanoyl-phosphatidylcho-
line/hexadecane bilayer across a 25-micron-diameter hor-
izontal Teflon aperture, as described previously [8,11]
(Fig. 1). Seventy microliter chambers on either side of the
bilayer contains 1.0 M KCl buffered at pH 8.0 (10 mM
HEPES/KOH) except in the case of buffer experiments
where the salt concentration, pH, or identity may be var-
ied. Voltage is applied across the bilayer between Ag-AgCl
electrodes. DNA control probes are added to the cis cham-
ber at 10 or 20 μM final concentration. All experiments
are maintained at room temperature (23 ± 0.1°C), using
a Peltier device.

Control probe design
Since the five DNA hairpins studied in the prototype
experiment have been carefully characterized [8], they are
used in the antibody (and other) experiments as highly
sensitive controls. Use of the controls entails testing a
channel, especially an oddly behaving channel, with a
known nine base-pair DNA hairpin control. If the famil-
iar, visibly discernible, control blockade signals doesn't

occur, the channels viability is then looked into further.
The nine base-pair hairpin molecules examined in the
prototype experiment share an eight base-pair hairpin
core sequence, with addition of one of the four permuta-
tions of Watson-Crick base-pairs that may exist at the
blunt end terminus, i.e., 5'-G•C-3', 5'-C•G-3', 5'-T•A-3',
and 5'-A•T-3'. Denoted 9GC, 9CG, 9TA, and 9AT, respec-
tively. The full sequence for the 9CG hairpin is 5' CTTC-
GAACGTTTTCGTTCGAAG 3', where the base-pairing
region is underlined. The eight base-pair DNA hairpin is
identical to the core nine base-pair subsequence, except
the terminal base-pair is 5'-G•C-3'. The prediction that
each hairpin would adopt one base-paired structure was
tested and confirmed using the DNA mfold server http://
bioweb.pasteur.fr/seqanal/interfaces/mfold.html. A
standardized aliquot of antibody is used as the control for
antibody experiments once the kinetics of antibody cap-
ture and antigen-binding events are established and
shown to be highly reproducible.

Anti-biotin antibody, used w/wo linkage to a DNA hairpin 
nanopore-probe
Experimental setup is described in detail in [3]. Anti-
biotin monoclonal antibodies obtained from Stressgen
(San Diego, California) were used for binding studies. The
antibodies, stored at -20 C as supplied, were brought to a
final dilution 1–4 μg/mL in the electrolyte chamber. Ab-
DNA conjugation was performed with 1-Ethyl-3-(3-
Dimethylaminopropyl) carbodiimine Hydrochloride
(EDC), in accordance with the instructions of Manufac-
turer (Pierce, Rockford, IL). Potassium chloride, HEPES
and magnesium chloride were purchased from Sigma, St.
Louis, MO. Other chemicals were from Fisher Scientific,
Atlanta, GA.

Data acquisition
Data is acquired and processed in two ways depending on
the experimental objectives: (i) using commercial soft-
ware from Axon Instruments (Redwood City, CA) to
acquire data, where current was typically be filtered at 50
kHz bandwidth using an analog low pass Bessel filter and
recorded at 20 μs intervals using an Axopatch 200B ampli-
fier (Axon Instruments, Foster City, CA) coupled to an
Axon Digidata 1200 digitizer. Applied potential was 120
mV (trans side positive) unless otherwise noted. In some
experiments, semi-automated analysis of transition level
blockades, current, and duration were performed using
Clampex (Axon Instruments, Foster City, CA). (ii) using
LabView-based experimental automation. In this case,
ionic current was also acquired using an Axopatch 200B
patch clamp amplifier (Axon Instruments, Foster City,
CA), but it was then recorded using a NI-MIO-16E-4
National Instruments data acquisition card (National
Instruments, Austin TX). In the LabView format, data was
low-pass filtered by the amplifier unit at 50 kHz, and
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recorded at 20 μs intervals. In both fixed duty cycle (i.e.,
not feedback controlled) data acquisition approaches, the
solution sampling protocol used periodic reversal of the
applied potential to accomplish the capture and ejection
of single biomolecules. The biomolecules captured con-
sisted of antibodies and antigen, bound together or not,
and in various orientations, and DNA control probes with
stem-capture orientation and were added to the cis cham-
ber typically in 20 μM concentrations.

Nanopore detector augmentation using bifunctional 
molecules
Nanopore Detector augmentation with bifunctional mol-
ecules brings a novel modification to the nanopore detec-
tion methodology. Now the idea is that the bifunctional
auxiliary molecules produce a "toggling" blockade
between several different levels (with two usually domi-
nating). In other words, the resulting blockade signal for
the auxiliary molecule by itself is no longer at approxi-
mately a fixed blockade level, but now consists of a tele-
graph-like blockade signal with stationary statistics. Upon
binding of analyte to the auxiliary molecule (a binding
site, or moiety, being its other functionality) the toggling
channel blockade signal is greatly altered, to one with dif-
ferent transition timing and different blockade residence
levels. Building on this as a binding affinity testing and
biosensing platform requires sophisticated computa-
tional tools, such as Hidden Markov Models and Support
Vector Machines, but offers at least a hundred-fold
improvement to the sensitivity of the device. Given the
noise in the system and the limited dynamic range for
blockades of the open channel current, the device is
greatly restricted if not endowed with the sensitive timing
information. It has even been found that minor environ-
mental alterations to temperature, pH, etc., results in the
toggle signal produced by "toggling" type auxiliary mole-
cule being modified significantly – in essence the channel
with toggling-type auxiliary molecules can provide sensi-
tive biosensing on the solution environment itself.

Channel current signal analysis & pattern recognition
A Channel Current Spike Detector algorithm was devel-
oped in [8] to characterize the brief, very strong, blockade
"spike" behavior observed for molecules that occasionally
break in the region exposed to the limiting aperture's
strong electrophoretic force region. (In [6-11], where nine
base-pair hairpins were studied, the spike events were
attributed to a fray/extension event on the terminal base-
pair.) Together, the formulation of HMM-EM, FSAs and
Spike Detector provide a robust method for analysis of
channel current data. The spike detector software is
designed to count "anomalous" spikes, i.e., spike noise
not attributable to the gaussian fluctuations about the
mean of the dominant blockade-level. Spike count plots
are generated to show increasing counts as cut-off thresh-

olds are relaxed (to where eventually any downward
deflection will be counted as a spike). The plots are auto-
matically generated and automatically fit with extrapola-
tions of their linear phases (exponential phases occur
when cut-offs begin to probe the noise band of a blockade
state – typically gaussian noise "tails"). The extrapolations
provide an estimate of "true" anomalous spike counts (see
figure in Additional file 6).

The signal processing architecture (Fig. 2) is designed to
rapidly extract useful information from noisy blockade
signals using feature extraction protocols, wavelet analy-
sis, Hidden Markov Models (HMMs) and Support Vector
Machines (SVMs). For blockade signal acquisition and
simple, time-domain, feature-extraction, a Finite State
Automaton (FSA) approach is used [19] that is based on
tuning a variety of threshold parameters. A generic HMM
can be used to characterize current blockades by identify-
ing a sequence of sub-blockades as a sequence of state
emissions [6-9,11]. The parameters of the generic-HMM
can then be estimated using a method called Expectation/
Maximization, or 'EM" [40], to effect de-noising. The
HMM method with EM, denoted HMM/EM, is used in
what follows (further Background on these methods can
be found in [6-11]). Classification of feature vectors
obtained by the HMM for each individual blockade event
is then done using SVMs, an approach which automati-
cally provides a confidence measure on each classifica-
tion.

The Nanopore Detector is operated such that a stream of
100 ms samplings are obtained. Each 100 ms signal
acquired by the time-domain FSA consists of a sequence
of 5000 sub-blockade levels (with the 20 μs analog-to-dig-
ital sampling). Signal preprocessing is then used for adap-
tive low-pass filtering. For the data sets examined, the
preprocessing is expected to permit compression on the
sample sequence from 5000 to 625 samples (later HMM
processing then only required construction of a dynamic
programming table with 625 columns). The signal pre-
processing makes use of an off-line wavelet stationarity
analysis (Off-line Wavelet Stationarity Analysis, Figure 2)
to determine the amount of sample compression (effec-
tive low-pass filtering) that can be sustained and still have
good structure resolution.

With completion of preprocessing, an HMM is used to
remove noise from the acquired signals, and to extract fea-
tures from them (Feature Extraction Stage, Fig. 2). The
HMM is, initially, implemented with fifty states, corre-
sponding to current blockades in 1% increments ranging
from 20% residual current to 69% residual current. The
HMM states, numbered 0 to 49, corresponded to the 50
different current blockade levels in the sequences that are
processed. The state emission parameters of the HMM are
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initially set so that the state j, 0 <= j <= 49 corresponding
to level L = j + 20, can emit all possible levels, with the
probability distribution over emitted levels set to a discre-
tized Gaussian with mean L and unit variance. All transi-
tions between states are possible, and initially are equally
likely. Each blockade signature is de-noised by 5 rounds of
Expectation-Maximization (EM) training on the parame-
ters of the HMM. After the EM iterations, 150 parameters
are extracted from the HMM. The 150 feature vectors
obtained from the 50-state HMM-EM/Viterbi implemen-
tation in [6-11] are: the 50 dwell percentage in the differ-
ent blockade levels (from the Viterbi trace-back states),
the 50 variances of the emission probability distributions
associated with the different states, and the 50 merged
transition probabilities from the primary and secondary
blockade occupation levels (fits to two-state dominant
modulatory blockade signals). Plots of the class-averaged
150-component feature vector profiles are shown in Fig.'s
7, 11, 12, 15, 16, 18, and 19.

The HMM-with-Duration implementation, described in
[1,43,44], has been tested in terms of its performance at
parsing synthetic blockade signals. The synthetic data
used in [1,43,44] was designed to have two levels, with
lifetime in each level determined by a governing distribu-
tion (Poisson and Gaussian distributions with a range of
mean values were considered). The results clearly demon-
strate the superior performance of the HMM-with-dura-
tion over its simpler, HMM without Duration,
formulation. With use of the EVA-projection method this
affords a robust means to obtain kinetic feature extrac-
tion. The HMM with duration is critical for accurate
kinetic feature extraction, and the results in [1,43,44] sug-
gest that this problem can be elegantly solved with a pair-
ing of the HMM-with-Duration stabilization with EVA-
projection.

In the implementation of the HMM-with-duration in
[43], the transition probabilities for state 's' to remain in
state 's', a "ss" transition can be computed as: Prob(ss | slen-

gth = L) = Prob(slength ≥ L + 1)/Prob(slength ≥ L). The transi-
tion probabilities out of state 's' can have some subtleties,
as shown in the following where the states are exon (e),
intron (i), and junk (j). In this case, the transition proba-
bilities governing the following transitions, (jj) -> (je),
(ee) -> (ej), (ee) -> (ei), (ii) -> (ie) are computed as:
Prob(ei | elength = L) = Prob(elength = L)/Prob(elength ≥ L) ×
40/(40 + 60) and Prob(ej | elength = L) = Prob(elength = L)/
Prob(elength ≥ L) × 60/(40 + 60), where the total number of
(ej) transitions is 60 and the total number of (ei) transi-
tions is 40. Further details, and recent results are described
in [1].

The conventional HMM method is based on a stationary
set of emission and transition probabilities. Emission

broadening, via amplification of the emission state vari-
ances, is a filtering heuristic that leads to level-projection
that strongly preserves transition times between major
levels (see [43] for further details). This approach does not
require the user to define the number of levels (classes).
This is a major advantage compared to existing tools that
require the user to determine the levels (classes) and per-
form a state projection. This allows kinetic features to be
extracted with a "simple" FSA (Finite State Automaton)
that requires minimal tuning. One important application
of the HMM-with-duration method used in [43] includes
kinetic feature extraction from EVA projected channel cur-
rent data (the HMM-with-Duration is shown to offer a
critical stabilizing capability in an example in [43]). The
EVA-projected/HMMwDur processing offers a hands-off
(minimal tuning) method for extracting the mean dwell
times for various blockade states (the core kinetic infor-
mation).

Binary Support Vector Machines (SVMs) are based on a
decision-hyperplane heuristic that incorporates structural
risk management by attempting to impose a training-
instance void, or "margin," around the decision hyper-
plane [45,46]. Feature vectors are denoted by xik, where
index i labels the M feature vectors (1 ≤ i ≤ M) and index
k labels the N feature vector components (1 ≤ i ≤ N). For
the binary SVM, labeling of training data is done using
label variable yi = ±1 (with sign according to whether the
training instance was from the positive or negative class).
For hyperplane separability, elements of the training set
must satisfy the following conditions: wβxiβ - b ≥ +1 for i
such that yi = +1, and wβxiβ - b ≤ -1 for yi = -1, for some val-
ues of the coefficients w1,...,wN, and b (using the conven-
tion of implied sum on repeated Greek indices). This can
be written more concisely as: yi(wβxiβ - b) - 1 ≥ 0. Data
points that satisfy the equality in the above are known as
"support vectors" (or "active constraints").

Once training is complete, discrimination is based solely
on position relative to the discriminating hyperplane:
wβxiβ - b = 0. The boundary hyperplanes on the two classes
of data are separated by a distance 2/w, known as the
"margin," where w2 = wβwβ. By increasing the margin
between the separated data as much as possible the opti-
mal separating hyperplane is obtained. In the usual SVM
formulation, the goal to maximize w-1 is restated as the
goal to minimize w2. The Lagrangian variational formula-
tion then selects an optimum defined at a saddle point of
L(w, b; α) = (wβwβ)/2 - αγyγ(wβxγβ - b) - α0, where α0 =
Σγαγ, αγ ≥ 0 (1 ≤ γ ≤ M). The saddle point is obtained by
minimizing with respect to {w1,...,wN, b} and maximizing
with respect to {α1,...,αM}. If yi(wβxiβ - b) - 1 ≥ 0, then
maximization on αi is achieved for αi = 0. If yi(wβxiβ - b) -
1 = 0, then there is no constraint on αi. If yi(wβxiβ - b) - 1
< 0, there is a constraint violation, and αi → ∞. If absolute
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separability is possible the last case will eventually be
eliminated for all αi, otherwise it's natural to limit the size
of αi by some constant upper bound, i.e., max(αi) = C, for
all i. This is equivalent to another set of inequality con-
straints with αi ≤ C. Introducing sets of Lagrange multipli-
ers, ξγ and μγ (1 ≤ γ ≤ M), to achieve this, the Lagrangian
becomes:

L(w, b; α, ξ, μ) = (wβwβ)/2 - αγ[yγ (wβxγβ - b) + ξγ ] + α0 + 
ξ0C - μγξγ, where ξ0 = Σγξγ, α0 = Σγαγ, and αγ ≥ 0 and ξγ ≥ 0 

(1 ≤ γ ≤ M).

At the variational minimum on the {w1,...,wN, b} varia-
bles, wβ = αγyγxγβ, and the Lagrangian simplifies to: L(α) =
α0 - (αδyδxδβαγyγxγβ)/2, with 0 ≤ αγ ≤ C (1 ≤ γ ≤ M) and αγyγ
= 0, where only the variations that maximize in terms of
the αγ remain (known as the Wolfe Transformation). In
this form the computational task can be greatly simpli-
fied. By introducing an expression for the discriminating
hyperplane: fi = wβxiβ - b = αγyγxγβxiβ - b, the variational
solution for L(α) reduces to the following set of relations
(known as the Karush-Kuhn-Tucker, or KKT, relations): (i)
αi = 0 ⇔ yifi ≥ 1, (ii) 0 < αi < C ⇔ yifi = 1, and (iii) αi = C
⇔ yifi ≤ 1. When the KKT relations are satisfied for all of
the αγ (with αγyγ = 0 maintained) the solution is achieved.
(The constraint αγyγ = 0 is satisfied for the initial choice of
multipliers by setting the α's associated with the positive
training instances to 1/N(+) and the α's associated with the
negatives to 1/N(-), where N(+) is the number of positives
and N(-) is the number of negatives.) Once the Wolfe
transformation is performed it is apparent that the train-
ing data (support vectors in particular, KKT class (ii)
above) enter into the Lagrangian solely via the inner prod-
uct xiβxjβ. Likewise, the discriminator fi, and KKT relations,
are also dependent on the data solely via the xiβxjβ inner
product.

Generalization of the SVM formulation to data-depend-
ent inner products other than xiβxjβ are possible and are
usually formulated in terms of the family of symmetric
positive definite functions (reproducing kernels) satisfy-
ing Mercer's conditions [45,46].

The SVM Kernels that are used are based on "regularized"
distances or divergences like those used in [8,47], where
regularization is achieved by exponentiating the negative
of a distance-measure squared (d2(x, y)) or a symmetrized
divergence measure (D(x, y)), the former if using a geo-
metric heuristic for comparison of feature vectors, the lat-
ter if using a distributional heuristic. For the Gaussian
Kernel: d2(x, y) = Σk(xk - yk)2; for the Absdiff Kernel d2(x,
y) = (Σk|xk - yk|)1/2; and for the Symmetrized Relative
Entropy Kernel D(x, y) = D(x||y) + D(y||x), where D(x||y)
is the standard relative entropy.
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