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Abstract
Background: In real-time quantitative PCR studies using absolute plasmid DNA standards, a
calibration curve is developed to estimate an unknown DNA concentration. However, potential
differences in the amplification performance of plasmid DNA compared to genomic DNA
standards are often ignored in calibration calculations and in some cases impossible to characterize.
A flexible statistical method that can account for uncertainty between plasmid and genomic DNA
targets, replicate testing, and experiment-to-experiment variability is needed to estimate
calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian
approach to generate calibration curves for the enumeration of target DNA from genomic DNA
samples using absolute plasmid DNA standards.

Results: Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov
Chain (MCMC) estimation was used to generate single, master, and modified calibration curves.
The mean and the percentiles of the posterior distribution were used as point and interval
estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The
software WinBUGS was used to perform all simulations and to generate the posterior distributions
of all the unknown parameters of interest.

Conclusion: The Bayesian approach defined in this study allowed for the estimation of DNA
concentrations from environmental samples using absolute standard curves generated by real-time
qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-
experiment variation, variability between replicate measurements, as well as uncertainty
introduced when employing calibration curves generated from absolute plasmid DNA standards.

Background
The goal for many real-time quantitative PCR (qPCR)
assays with clinical, forensic, or environmental applica-
tions is to develop a standardized method that can be

implemented on an inter-laboratory scale. Real-time
qPCR assays are ideal for such applications due to high
levels of precision, specificity, and sensitivity. Real-time
PCR allows for the continuous monitoring of PCR prod-
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uct production as the reaction occurs. Under ideal condi-
tions these products accumulate exponentially in the
reactions, i.e. their quantities double with each thermal
cycle. Thus, real-time qPCR can be applied to determine a
fixed threshold where the accumulation of PCR product is
first significantly detectable over a real-time measurement
background signal [for review see [1]]. The fractional cycle
number where PCR product accumulation passes this
fixed threshold is called the threshold cycle (CT) [2]. qPCR
is based on the theoretical premise that there is a log-lin-
ear relationship between the starting amount of DNA tar-
get in the reaction and the CT value that is obtained. The
CT value can then be used to estimate the initial concen-
tration of a DNA target from an unknown sample.

Relative and Absolute Quantification with Real-Time 
qPCR
Two general strategies are often used to estimate DNA
concentration from CT values including relative and abso-
lute approaches [3]. A relative quantification approach
measures the change in target DNA concentration relative
to another reference sample. This approach is ideal in
gene expression studies where the goal is to measure the
regulation of a gene in response to a particular treatment.
However, a relative approach can be limiting for qPCR
applications designed to quantify DNA targets with no
clear connections to a reference target such as assays where
the DNA target is from an uncharacterized microorgan-
ism. Relative quantification based qPCR methods can also
be difficult to apply on an inter-laboratory scale for the
enumeration of DNA targets from highly variable, com-
plex, and poorly described sample matrices such as gas-
trointestinal and environmental samples [4].

Absolute quantification is another widely used strategy.
Absolute quantification is achieved by using a standard
curve, constructed by amplifying known amounts of tar-
get DNA in a parallel set of reactions [5]. Absolute quan-
tification requires that the exact quantity of a standard is
determined by independent means using spectrophotom-
etry or an intercalating dye such as PicoGreen® [6]. For
bacterial DNA targets, genomic DNA from pure cell cul-
tures is preferred. Cultivated bacterial cells can be isolated
and counted to provide a conversion factor between mass
of genomic DNA, copies of target DNA, and number of
cells. However, this practice imposes a substantial restric-
tion on the development of real-time qPCR methods tar-
geting bacterial genes because an estimated 99% of the
microbial diversity on the planet has not been cultivated
[7-10]. When a DNA target originates from an unculti-
vated microorganism, plasmid DNA standards are often
used. Plasmid preparations are advantageous because
these preparations generate high quality, pure, and con-
centrated standards that can be independently quantified
and converted to number of copies of target DNA. For

absolute quantification approaches, an assumption must
be made that plasmid and genomic DNA amplify with the
same efficiency. Factors such as DNA stability, base com-
position, secondary structure, and presence of complex
mixtures of non-target DNA could significantly alter
amplification performance. A limited number of strate-
gies have been used in an attempt to equilibrate these two
types of DNA for real-time qPCR applications such as
treating genomic DNA with a cocktail of restriction
enzymes and DNA ultrasonication [11]. However, many
studies simply assume that there are no differences.

In addition to the uncertainty associated with amplifica-
tion of plasmid versus genomic DNA targets, there are a
number of other sources of variability to consider when
generating a calibration curve from absolute standards.
Uncertainty can arise within and between experiments
from numerous sources such as inconsistencies in quality
of reagents, pipet calibration, as well as dilution prepara-
tion and storage of standards. Any of these factors could
significantly alter CT measurements from experiment to
experiment. Therefore, estimation of uncertainty becomes
critical to account for sources of variability and make rea-
sonable estimates of calibration curve parameters.

Estimating DNA Concentrations from CT Values and 
Propagation of Uncertainty
Simple linear regression is commonly used to estimate
DNA concentration from an unknown sample where the
standard calibration model is developed with a DNA con-
centration (ie. plasmid copy number) and associated CT
measurements. Typically four to five known DNA concen-
trations are selected and then triplicate CT measurements
are taken at each DNA concentration to fit a calibration
curve. The fitted curve is then used to estimate the mean
DNA concentrations of unknown samples.

Widely used standard methods for generating calibration
curves from absolute standards and estimating DNA con-
centration include the classical and inverse approaches.
The classical approach assumes DNA concentration as the
independent variable and CT measurement as the depend-
ent variable. Usually each experiment is repeated three to
four times, with three replicates within each experiment.
Even though triplicate CT measurements are taken at each
DNA concentration of each experiment, the average of the
CT measurements is commonly used to fit the calibration
curve [12]. The corresponding regression model is given
by:

where, n is the total number of DNA concentrations, Yi is
the average of the CT measurements at the ith DNA con-
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centration, Xi is the corresponding DNA concentration, α
and β are regression coefficients and σ2 is the random
error variance. For an unknown mean value of log10(X),
say log10(X0), a Y value, say Y0 is observed. The classical
method uses Y0 to estimate log10(X0) by:

where,  and  are least squares estimates of α and β,

respectively. Finding the standard deviation of log10( )

is not a simple statistical problem as it is a non-linear
function of the estimated intercept and slope parameters.

Thus for given X, a 100(1-α)% confidence interval is con-

structed for  first, as it is a linear func-

tion of intercept and slope parameters. The formula for
this interval is given by:

where Zi = log10(Xi). Then the corresponding fiducial
interval is reported as the confidence interval for X (given
Y).

Another approach in practice is to estimate the unknown
DNA concentration using triplicate CT measurements
from one experiment to obtain the calibration curve [13].
The corresponding regression model for replicated data is
then given by:

where, Yij is the jth CT measurement of ith DNA concentra-
tion. Except for more data points, the above regression
model is same as the model given by Equation (1). The
same least squares method is used to estimate the model
parameters and then equation (2) is used to estimate
unknown concentrations.

The inverse method to estimate the unknown DNA con-
centration assumes a simple linear regression of X on Y on
the same replicated data given by equation (4) in the clas-
sical method [14]. The inverse regression model is given
by:

The inverse estimator of X0 is given by:

where,  and  are respectively the least squares esti-

mates of δ0 and δ1. An approximate 100(1-α)% confi-

dence interval is given by :

An alternative approach to the classical and the inverse
approaches is a Bayesian method using a Monte Carlo
Markov Chain (MCMC) simulation technique. A detailed
description of this method to generate a master calibra-
tion curve is discussed in the results and discussion sec-
tion. Bayesian approaches have been employed in many
molecular applications and have been particularly useful
for microarray data analyses to account for multiple
sources of uncertainty arising from experimental varia-
tion, background noise, and the use of multiple hybridi-
zation probes with different lengths and base pair
compositions [15,16]. Bayesian principles have also been
used to model PCR amplification curves [17] and charac-
terize the relationship between fluorescence chemistry
and determination of CT values during real-time detection
[18].

Here we report the use of a Bayesian approach to generate
calibration curves for the enumeration of target DNA from
genomic DNA samples using absolute plasmid DNA
standards. Calibration curves were generated from three
independent real-time qPCR assays (Btheta, Entero1 and
Entero2) using both genomic and plasmid DNA stand-
ards to test the assumption that both DNA types generate
similar calibration curves. Finally, a calibration curve was
generated for an additional real-time qPCR assay (HF183)
where only a plasmid absolute standard was available. To
account for potential differences in amplification per-
formance between the plasmid standards and genomic
DNA target from unknown samples, MCMC simulations
were used to estimate the mean difference in slope and
intercept from fitted curve equations for plasmid and
genomic DNA produced from assays Btheta, Entero1, and
Entero2. Using the same MCMC approach, these differ-
ences were applied to the plasmid DNA derived calibra-
tion curve for HF183. The modified calibration curve was
then used to estimate DNA concentration from several
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unknown samples. The MCMC approach was ideal
because it not only accounted for observed mean differ-
ences in plasmid and genomic DNA standards, but also
propagated intra- and inter-assay variation.

Results and discussion
Bayesian Simulation Method
The Bayesian approach to statistical modeling is based on
the premise that the uncertainty about unknown quanti-
ties, such as the parameters in a model, is described by a
probability distribution; more precisely by a conditional
probability distribution given all that is known, including
the data as it becomes available. Initially, i.e., prior to
obtaining the data, the uncertainty about the parameters
are described by what is known as the prior distribution of
the parameters, which probabilistically summarizes any
available prior information about the parameters. Once
the data is obtained and a suitable model for the observed
data is chosen, the likelihood function of the parameters
summarizing the information in the data can be mathe-
matically expressed. The prior distribution is then com-
bined with the likelihood via Bayes theorem, to obtain
what is known as the posterior distribution of the param-
eters. The posterior distribution is a probabilistic expres-
sion of the (remaining) uncertainty about the parameters,
after incorporating the available prior information and
the information contained in the data. It is therefore the
posterior distribution that forms the basis for Bayesian
inference about the unknown parameters.

Typically, summaries of the posterior distribution such as
the mean and the percentiles are used as point and inter-
val estimates of an unknown parameter. In this paper, we
use the term Bayesian credible interval (BCI) to refer to
the interval with equal tail probability on either side
under the posterior distribution. Closed form solutions
for these quantities are usually not available, but, in most
cases, MCMC methods [19-21] can be used to numerically
compute the desired summaries of the posterior distribu-
tion. MCMC methods first use an iterative algorithm to
generate a sequence of draws from a suitable Markov
chain. Drawing a sufficiently long sequence, referred to as
the burn-in phase, typically ensures convergence. Conver-
gence is needed for the estimates of unknown model
parameters. Examining the trace plots of the sample val-
ues of a model parameter provides evidence of when the
simulation appears to have stabilized. Subsequent draws,
after the burn-in phase, is a (Monte Carlo) sample from
the posterior distribution, which can be used to calculate
desired summaries of the posterior distribution.

The MCMC calculations in this study were done using the
publicly available software WinBUGS [22]. Often, prior
information about an unknown parameter may not be
available. In such cases, standard non-informative prior

distributions, i.e., probability distributions which contain
little or no information about the parameters, are used,
resulting in posterior distributions that are dominated by
the likelihood. Some of the advantages of the Bayesian
approach via MCMC are that it is capable of fitting models
accounting for different sources of variability, and it
allows for the appropriate processing of uncertainty when
inference about complex functions of the model parame-
ters are of interest. In such cases, the traditional methods
tend to use approximations based on the basic summary
values, i.e., estimates of model parameters and their
standard errors, to obtain the inference, whereas the Baye-
sian approach via MCMC accurately evaluates the infer-
ence using the joint posterior distribution of the
parameters. The Bayesian approach, however, also
requires the specification of distributions of additional
quantities in the models, as well as extensive simulation
to fit them.

Developing a Calibration Curve from a single qPCR 
experiment
A Bayesian approach was used to estimate the calibration
curve parameters. To estimate X0, we use all the triplicate
CT measurements from a single experiment to fit the cali-
bration curve. The simple linear regression model given
by the equation (3) was used here to fit the data. As no
prior information is assumed for the model parameters α,
β and σ2, the following diffused prior distributions are
used to estimate these model parameters:

α, β ~ N (0, 106)

σ2 ~ Inv. Gamma(.0001,.0001).

These are essentially flat priors (i.e the prior essentially
assigns equal weights to all possible values of the param-
eters), and hence would lead to posteriors dominated by
likelihood. According to Bayes theorem, the posterior dis-
tribution of the model parameters, α, β and σ2, given the
data y1, ..., yn, is proportional to the likelihood, and the
probability density of the prior distribution of α, β and σ2.
The MCMC method is employed using the WinBUGS soft-
ware to obtain the required summaries of the posterior
distributions of α, β and σ2. For given Y0, the posterior dis-
tribution of

can be easily used to obtain summary statistics, such as
mean, median and 95% BCI, for the unknown DNA con-
centration log10 (X0).
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Developing a Master Calibration Curve from Multiple 
qPCR Experiments
Calibration curves from several independent runs are
pooled together to obtain a master calibration curve. A
hierarchical Bayesian model is used to allow for run to run
variability in estimating a master calibration curve. As sev-
eral calibration curves are produced in this study, the
slope and intercept parameters of the calibration curves
are allowed to vary from run to run in developing a master
calibration curve. Equation (4) is modified to allow for
run to run variability in the intercept and slope parame-
ters. The general form of the regression model is given by:

where, Yijk is the kth Ct measurement of jth copy number

and ith run, Xij is the jth copy number for ith run, αi and

βi are regression coefficients for ith run,  is the random

error variance of the ith calibration curve,  and  are

the overall regression coefficients, combining informa-
tion from all runs. The following diffused prior distribu-
tions are used to estimate the model parameters:

We also used the prior distribution recommended by
DuMouchel for σa and σb, which is based on the harmonic
mean of the estimated variances of the intercepts and
slopes of individual calibration curves [23]. DuMouchel
priors for σa and σb are given by:

where, U stands for the standard Uniform distribution

U(0,1) and var( ) and var( ) are respectively the esti-

mated variances of the least squares estimates of αi and βi.

The results obtained using the DuMouchel and Gamma

priors for σa and σb are very similar. A MCMC simulation

method was used to estimate the model parameters via

WinBUGS software. Convergence diagnostics of Markov
Chain draws from the posterior distributions of the
parameters were checked using trace plots, auto-correla-
tion plots, and Gelman and Rubin diagnostics [24,25],
and found to be satisfactory (data not shown).

For given Y0, by requesting the posterior distribution of

from the WinBUGS program, one can easily obtain sum-
mary statistics, such as mean, median and 95% credible

interval for the mean of log10 (X0). Replacing  by αi and

 by βi in equation (10), we get the posterior distribution

for the ith run (see Additional file 1). The estimated mean
copy number corresponding to different CT measurements

are plotted in Figure 1 for Entero2 genomic type (seven
independent runs). Notice that the 95% upper and lower
credible bounds and the fitted curve are for the copy
number (in log base 10) in Figure 1. For comparison pur-
poses, the averaged concentration data is used to obtain a
fitted master curve and 95% BCI, for mean DNA concen-
tration, and these are given in Figure 2 along with the cor-
responding 95% BCI using the raw data. It is better to use
the raw data (than the averaged data) as it allows account-
ing for the within and between run variations in con-
structing credible interval for DNA concentration.
Allowing for these (additional) variations would lead to
more realistic and wider confidence intervals. Conse-
quently, the 95% BCI is wider for the raw data than for the
averaged data.

Fitting a Genomic DNA Calibration Curve using Three 
Independent qPCR Assays
In real time qPCR studies using absolute standards, usu-
ally a calibration curve is developed to estimate an
unknown DNA concentration. Typically, either plasmid
or genome type calibration curves can be developed for a
given assay. But, there are instances where PCR assays
designed to target genomic DNA sequences must rely on
plasmid derived absolute DNA standards to generate cali-
bration curves such as PCR assays targeting genes from
uncultivated microorganisms. qPCR assays that rely on
plasmid absolute DNA standards to estimate genomic
DNA concentrations from unknown samples must either
assume that there is no difference in the amplification effi-
ciencies between these two DNA types or estimate differ-
ences and account for this uncertainty in respective
calibration curve statistics. A simulation method to esti-
mate the genomic DNA type calibration curve for the
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assay HF183 using both plasmid and genomic DNA type
curves of Btheta, Entero1 and Entero2 assays is discussed
in this section.

The model described in equation (9) was applied to all
four assays with an additional suffix. In the following
model, this suffix is set to 1 (for Btheta, plasmid type), 2
(for Btheta, genome type), 3 (for Entero1, plasmid type),
4 (for Entero1, genome type), 5 (for Entero2, plasmid
type), 6 (for Entero2, genome type) and 7 (HF183, plas-
mid type).

The following priors are used to estimate the model
parameters:

where the DuMouchel priors for σa1 and σb1 are based on
the least square estimates of αil and βil, respectively (see
equation (10)).

To test for potential differences between genomic and
plasmid DNA standard curves, overall fitted curves repre-
senting seven to eight independent runs for genomic DNA
standards with a 6FAM labeled probe and plasmid DNA
standards with a TET labeled probe for three FIB assays
(Btheta, Entero1 and Entero2) were compared using anal-
ysis of covariance (ANCOVA) test. A significant difference
between genomic and plasmid DNA type approaches was
observed in slopes for Btheta (p = .0088) and Entero2 (p
= .0393, see Figure 3) assays. Thus the assumption that
there are no differences between respective genomic and
plasmid DNA types held for only one of the three assays.
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Developing a master calibration curveFigure 1
Developing a master calibration curve. Seven independent calibration data sets from Entero2 (genomic type) are used to 
obtain a single master calibration curve and the corresponding 95% BCI.
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For Btheta, Entero1, and Entero2, the difference between
the genomic DNA type calibration curve intercept and the
plasmid DNA type calibration curve intercept are respec-

tively  and . The respective differ-

ences between the slopes are  and

. The fitted genomic and plasmid DNA calibra-

tion curves indicated the least variability in posterior
mean slope and intercept differences for Entero1 and the
most for Entero2 (see Additional file 2, output) suggesting
that differences between plasmid and genomic DNA
curves can vary from one PCR assay to another. As the
genomic DNA calibration curve is not available for
HF183, we used all three FIB assays to modify the plasmid
DNA curve of HF183 to estimate variation between the
known plasmid DNA curve and the uncharacterized
genomic DNA curve. The intercept and slope of HF183
genome type calibration curve was estimated by adding
the corresponding mean differences from the plasmid and
genome type calibration curves of Btheta, Entero1, and
Entero2 to the plasmid type curve of HF183. Thus, the

intercept  and slope  of HF183 genome type cali-

bration curve are given by:

By utilizing the posterior distributions of  and 

from the WinBUGS program, one can estimate the slope
and intercept parameters of the genomic type calibration
curve for Entero2 (See Additional file 2). Figure 4 gives the
fitted plasmid and simulated genome master calibration
curves for HF183 with a 95% BCI.

Estimating DNA Concentration from a Modified Master 
Calibration Curve

The modified master calibration curve for HF183 with

intercept and slope parameters  and  was used to

obtain estimate DNA concentrations from recreational
water samples (see Additional file 2). For given Y, the pos-
terior distribution of log10(X0), where

α α α α2 1 4 3− −, α α6 5−

β β β β2 1 4 3− −,

β β6 5−

α8 β 8

α α α α α α α α
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Comparing 95% Bayesian credible intervalsFigure 2
Comparing 95% Bayesian credible intervals. The mean data (plotted) from seven independent runs for Entero2 assay 
(genomic type) is used to generate the fitted curve and the 95% BCI. The corresponding 95% BCI for the row data is also 
included for comparison purposes.
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was used to estimate the mean, standard deviation and
95% credible intervals for unknown DNA concentration.
Estimates for four unknown samples are given in the out-
put section of Appendix B (see Additional file 2). Even
though log10(X0) is a non-linear function of the parame-

ters , the Bayesian MCMC simulation

method can be easily applied to estimate X0. To evaluate

the impact of prior distributions, Uniform prior was used

for each of σa1and σb1 (l = 1...7). No apparent difference

was seen in the resulting mean, median or 95% BCI of the
two posterior distributions of any of the model parame-
ters (data not shown).

Conclusion
We employed a Bayesian approach for the estimation of
DNA concentrations from environmental samples using
absolute standard curves generated by real-time qPCR.
Our approach allowed us to account for uncertainty from
multiple sources such as experiment-to-experiment varia-

tion, variability between replicate measurements, as well
as uncertainty introduced when employing calibration
curves generated from absolute plasmid DNA standards.
The Bayesian approach also allowed for the estimation of
model parameters from multiple models simultaneously
unlike stepwise progression of estimates typically used in
real-time PCR calibration calculations. The flexible mode-
ling capability of the Bayesian approach was ideal for real-
time qPCR assays that rely on absolute plasmid DNA
standards for quantification and this method should be
applicable over a wide range of study designs.

Methods
Sample collection and DNA extraction
Select individual fecal and recreational water samples
were collected as previously described [26]. All DNA
extractions were performed with the FastDNA Kit for Soils
(Q-Biogene; Carlsbad, CA) [26].

Genomic DNA standard preparations from pure bacterial 
cultures
American Type Culture Collection (ATCC) bacterial
strains were used to prepare genomic DNA calibration
standards. E. faecalis (ATCC #29212) was cultured as pre-
viously described [27]. B. thetaiotaomicron (ATCC #
29741) cells were grown in chopped meat carbohydrate
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(14)

α α β β1 7 1 7,... ; , ...

Genomic versus plasmid DNA standard curvesFigure 3
Genomic versus plasmid DNA standard curves. Fitted curves derived from seven independent runs for both genomic 
and IAC plasmid DNA standards for the Entero2 qPCR assay. ANCOVA indicated a significant difference in slope (p < .05).
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broth (Remel, Lenexa, KS) according to manufacturer's
instructions. Both cultures were harvested by centrifuga-
tion at 8,000 × g for 5 min, washed twice using sterile
phosphate buffered saline (Sigma, St. Louis, MO) and
stored in aliquots at -40°C. Cell concentrations of each
organism in the final washed suspensions were deter-
mined by bright field microscopy at 40× magnification in
disposable hemocytometer chambers (Nexcelom Bio-
science, #CP2-002, Lawrence, MA). DNA was isolated
from the cell suspensions using a bead beating extraction
approach [27] and incubated for one hour at 37°C with
0.017 µg/µl RNase A (Gentra Systems, USA). DNA purifi-
cation was performed using a silica column adsorption kit
(DNA-EZ, GeneRite, Kendall Park, NJ.). DNA concentra-
tions of cell extracts were determined by spectrophoto-
metric absorbance readings at 260 nm (A260) and purity of
the DNA preparations was determined by A260/A280 ratios.

Plasmid DNA standard preparation
A single plasmid containing a single site for hybridization
of a unique TaqMan® TET labeled probe sequence flanked
by PCR primer binding sites for all four qPCR assays was
developed using overlap extension PCR [Figure 5, [28]].
To build the plasmid construct, long oligonucleotides (>
100 bp, Table 1) containing multiple primer sequences

[29] were designed such that their 3' ends overlapped.
Overlapping fragments were then combined into a single
DNA molecule using a two step overlap extension PCR,
i.e. the partially overlapping products of two initial over-
lap extension PCR experiments were combined by a sec-
ond overlap extension PCR. The plasmid construct was
then inserted into a pCR4® TOPO plasmid vector (Invitro-
gen) and the resulting recombinant plasmid was purified
from transformed E. coli cell cultures using a Qiagen Plas-
mid Purification Kit (Qiagen, Valencia, CA). Plasmid
DNA was linearized by a Not1 restriction digestion (New
England BioLabs, Beverly, MA), quantified with a Nano-
Drop ND-1000 UV spectrophotometer (NanoDrop Tech-
nologies), and diluted in 10 mM Tris, 0.1 mM EDTA, pH
8.0 to generate samples ranging from approximately 100
to 4 × 104 molecules. Dilutions were stored in TE buffer
(10 mM Tris, 0.1 mM EDTA, pH 8.0) in single use aliq-
uots.

Quantitative real-time PCR
Four qPCR assays were used in this study including
HF183, Btheta, Entero1, and Entero2 (Table 1) [30-33].
Amplification was performed in a 7900 HT Fast Real Time
Sequence Detector (Applied Biosystems) with default
thermal cycle conditions. Reaction mixtures (25 µl) con-

Estimating a genomic master calibration curveFigure 4
Estimating a genomic master calibration curve. Mean differences of intercepts and slopes between genome type and 
plasmid type master calibration curves of three assays(Btheta, Entero1& Entero2) are added to the plasmid master calibration 
curve (five runs) to generate a simulated genomic master calibration curve for HF183.
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tained 1X TaqMan® Universal PCR Master Mix with
AmpErase® uracil-N-glycosylase (UNG, Applied Biosys-
tems), 0.2 mg/ml bovine serum albumin (Sigma), 1 µM of
each primer, 80 nM FAM™ or TET™ labeled TaqMan®

probe (Applied Biosystems), and either 2 ng genomic
DNA (unknown samples) or 100 to 4 × 104 target gene
copies (plasmid or purified genomic DNA). All reactions
were performed in triplicate. Data was initially analyzed

with Sequence Detector Software (Version 2.2.2) at a
threshold determination of 0.03. Threshold cycle (CT) val-
ues were exported to Microsoft Excel for further statistical
analysis.

Data analysis
An analysis of Covariance (ANCOVA) model was used to
compare the overall mean intercept and slope of genome

Table 1: Oligonucleotides and probe used in study.

Sequence 5' → 3' Reference

Btheta F-CGTTCCATTAGGCAGTTGGT [30]
R-ACACGGTCCAAACTCCTACG

Entero1 F-AGAAATTCCAAACGAACTTG [31]
R-AATGATGGAGGTAGAGCACTGA

Entero2 F-GAGGACCGAACCCACGTA [32]
R-CAGTGCTCTACCTCCATCATT

HF183 F-ATCATGAGTTCACATGTCCG [32,33]
R-CCGTCATCCTTCACGCTACT

UC1F1 CCGTCATCCTTCACGCTACTGAGGACCGAACCCACGTACCCTTC This Study
AGTGCCGCAGTCGTTCCATTAGGCAGTTGGTGAGAAA

UC1R1 CCTGCCGTCTCGTGCTCCTCAAACGCTTCTTAGTCAGGTACCGT
CAAGTTCGTTTGGAATTTCTCACCAACTGCCTAATG

UC1F2 TGAGGAGCACGAGACGGCAGGAACCTTCCTCTCAGAACCCCAATG
ATGGAGGTAGAGCACTGACACGGTCCAAACTCCTA

UC1R2 GATCATGAGTTCACATGTCCGCGTCGCAGGATGTCAAGACAGTA
AATCCGGATAACGCTCGTAGGAGTTTGGACCGTGTCA

UC1 [TET] CCTGCCGTCTCGTGCTCCTCA [TAMRA]* [35]

An * indicates that the TaqMan® probe was modified from the previously reported UT Probe [35].

To build the plasmid absolute standard construct, long oligonucleotides (~80 bp, Table 1) containing multiple primer binding sequences were designed such that their 3' ends overlappedFigure 5
To build the plasmid absolute standard construct, long oligonucleotides (~80 bp, Table 1) containing multiple primer binding 
sequences were designed such that their 3' ends overlapped. The two overlapping fragments were then combined into a single 
DNA molecule using overlap extension PCR [29]. Each partially overlapping fragment generated from the initial overlap exten-
sion was combined by a second overlap extension into a single full-length DNA construct.

�
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standard curves with the corresponding overall mean
intercept and slope of the corresponding plasmid stand-
ard curves. ANCOVA tests were performed using SAS pro-
grams (Cary, North Carolina) with the following
procedure "PROC MIXED" [34]. Markov Chain Monte
Carlo (MCMC) simulation method was used to obtain
single, master, and modified calibration curves. Summa-
ries of the posterior distribution such as the mean and the
percentiles were used as point and interval estimates of
unknown parameters of interest. The software WinBUGS
versions 1.4.1 [22] was used to perform all simulations.
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