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Abstract
Background: Genomes undergo large structural changes that alter their organisation. The chromosomal
regions affected by these rearrangements are called breakpoints, while those which have not been
rearranged are called synteny blocks. We developed a method to precisely delimit rearrangement
breakpoints on a genome by comparison with the genome of a related species. Contrary to current
methods which search for synteny blocks and simply return what remains in the genome as breakpoints,
we propose to go further and to investigate the breakpoints themselves in order to refine them.

Results: Given some reliable and non overlapping synteny blocks, the core of the method consists in
refining the regions that are not contained in them. By aligning each breakpoint sequence against its specific
orthologous sequences in the other species, we can look for weak similarities inside the breakpoint, thus
extending the synteny blocks and narrowing the breakpoints. The identification of the narrowed
breakpoints relies on a segmentation algorithm and is statistically assessed. Since this method requires as
input synteny blocks with some properties which, though they appear natural, are not verified by current
methods for detecting such blocks, we further give a formal definition and provide an algorithm to
compute them.

The whole method is applied to delimit breakpoints on the human genome when compared to the mouse
and dog genomes. Among the 355 human-mouse and 240 human-dog breakpoints, 168 and 146
respectively span less than 50 Kb. We compared the resulting breakpoints with some publicly available
ones and show that we achieve a better resolution. Furthermore, we suggest that breakpoints are rarely
reduced to a point, and instead consist in often large regions that can be distinguished from the sequences
around in terms of segmental duplications, similarity with related species, and transposable elements.

Conclusion: Our method leads to smaller breakpoints than already published ones and allows for a better
description of their internal structure. In the majority of cases, our refined regions of breakpoint exhibit
specific biological properties (no similarity, presence of segmental duplications and of transposable
elements). We hope that this new result may provide some insight into the mechanism and evolutionary
properties of chromosomal rearrangements.
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Background
Rearrangements are large scale modifications of the
genome, such as inversions or transpositions of DNA seg-
ments, translocations between non homologous chromo-
somes, fusions or fissions of chromosomes, deletions or
duplications of small or large portions. Such modifica-
tions in the organisation of a genome are not without con-
sequences for the cell and the organism. As a matter of
fact, rearrangements have been shown to be responsible
for numerous heritable diseases, called genomic disor-
ders. They are further involved in evolution, speciation,
and also in cancer (for reviews on all these topics see [1-
4]). Although they have been studied for a long time, the
underlying mechanisms of such events remain largely
unknown, in particular understanding (predicting) their
location on the genome. As far as evolutionary rearrange-
ments are concerned, it thus remains an open question to
understand what determines their locations. Whereas
Nadeau and Taylor suggested in 1984 that rearrangements
occur randomly on a genome [5], several observations
tend to refute this model and suggest a more deterministic
scenario. By comparing genomes of related species, it has
thus been suggested that some rearrangements cluster in
specific regions, called hotspots [6,7]. A few rearrange-
ment locations have also been found re-used in independ-
ent lineages in the course of evolution, indicating again
that some regions seem to be more prone to a rearrange-
ment than others [8-10]. In addition, several genomic fea-
tures, such as segmental duplications or fragile sites, seem
to correlate with rearrangement locations [11-13]. How-
ever, the nature of the relationship between such features
and rearrangements, that is, whether one is a cause or a
consequence of the other, remains unknown. To investi-
gate these issues, it is necessary to precisely identify the
genomic regions which underwent a rearrangement. The
latter is the main motivation of this paper. Of the numer-
ous possible sources of structural variation due to a rear-
rangement, we deal only with those involving
chromosomal regions above a certain size in number of
markers (such as genes). The main motivation is that this
decreases the risk of false positives, that is, of identifying
regions as rearranged while they in fact have been detected
as such following a wrong homology assignment. In prac-
tice, this means also that we do not deal with duplication
or deletion events as those are harder to detect or to prop-
erly assign.

One crucial step before analysing the rearrangements and
their possible relation with other genomic features is to
locate these events on a genome. In the case of two
genomes, it is possible to identify conserved regions by
comparing the order and orientation of orthologous
markers along the genomes. Conserved regions corre-
spond to pairs of segments, one in each genome, that are
orthologous and have not been rearranged in either line-

age. These are also called synteny blocks. Breakpoint
regions, or breakpoints for short, are segments that flank
the conserved regions. More precisely, a breakpoint is the
region between two consecutive synteny blocks on one
genome, whose orthologous blocks are rearranged in the
other genome (not consecutive or not in the same relative
orientations).

A terminological clarification is called for here as the use
of the term "breakpoint" to name such rearranged regions
can be confusing for two reasons.

The first reason originates from the prefix "break". This
suggests a physical break of the DNA (such as a double
strand break), and assigns an improper biological mean-
ing to the term. Indeed, the definition of breakpoints is
based only on the method developed to identify it. One
should therefore be aware that the so-called breakpoint
regions have not necessarily been "broken". The region we
call breakpoint is located on one genome, and when com-
paring two genomes, we can usually not decide in which
lineage the rearrangement in fact occurred. Suppose for
instance that we are comparing the genomes of human
and mouse and that the ancestral arrangement of one of
the chromosomes is composed of the consecutive synteny
blocks A, B and C. Suppose now that the human arrange-
ment is the same as the ancestral one, ABC, and that the
mouse arrangement is ACB. Then, by comparing the
human and mouse genomes, the region between A and C
in the mouse genome would appear as a breakpoint, as
would the region between A and B in the human genome.
However, neither of these two regions contain the real
breakpoint (which is between A and B in a mouse ances-
tor), but both are homologous to a broken region.

The second reason why the term "breakpoint" may be
confusing originates from its suffix "point". Indeed, most
often the location of a breakpoint is not as precise as a
point, that is as the position between two nucleotides on
a genomic sequence. It concerns rather in general a longer
region. This latter is defined as the region between two
successive synteny blocks, implying that we have not
detected any homology (modelled as a statistically signif-
icant enough similarity) for the region to be added to a
neighbouring synteny block, or for it to be considered as
a new block in itself. However, we do not know a priori if
this imprecision is due to some biological features created
by (or explaining) the break (either the rearrangement
itself affects a large region, or many other structural varia-
tions occurred before or after the rearrangement in the
same region), or to the fact that it is computationally dif-
ficult to extend the orthology beyond the extremities of
the synteny blocks.
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Keeping these considerations in mind, we continue call-
ing such regions breakpoints, for short. We are interested
in investigating such breakpoints more in detail. Indeed,
in order to analyse the breakpoint sequence and to deter-
mine whether breakpoints correlate with some other fea-
tures of the genome, it is important to precisely locate
them. As far as we know, current methods for detecting
breakpoints are in fact methods for detecting synteny
blocks: they provide the coordinates of the breakpoints
only as a byproduct, simply by returning regions that are
not found in a conserved synteny. We propose here to go
one step further and to extend the synteny blocks by
focusing on the breakpoints themselves. It has been previ-
ously observed that inside breakpoints, one can often find
some smaller blocks of weak similarity that could have
been included in the original synteny blocks [14]. We
have developed a formal method to precisely locate the
breakpoints on a sequenced genome by a comparative
approach with related species. Given two genomes, one of
which will serve as reference, the core of the method
assumes that some synteny blocks have been correctly
identified. These delimit regions that are breakpoints but
that can be refined in the sense that the blocks could be
extended. Thus the regions between which there is no
detectable orthology, that is the breakpoints, could be far
more precisely and narrowly localised. The method
requires that the synteny blocks given as input do not
overlap and that their extremities correspond to ortholo-
gous sequences between both species. Various methods
exist to construct synteny blocks from homologous mark-
ers between two sequences, but formal descriptions of
these objects are rarer, and no current method can guaran-
tee the simple properties we require. We thus describe our
own method to build reliable and formally well described
synteny blocks, for which we can guarantee the useful
properties.

The method was then applied to mammalian genomic
data. The human genome was chosen as reference and
compared to two other mammalian genomes: those of the
mouse and dog. We end up with a dataset of precise coor-
dinates of mammalian breakpoints on the human
genome, which is made publicly available [see Additional
files 1 and 2]. By comparison with other published data-
sets of breakpoint coordinates, we further show that in
general, one can extend synteny blocks and refine break-
points in an efficient enough manner. Finally, we ana-
lysed the breakpoint sequences in terms of several
genomic features. This identifies some duplications inside
the breakpoints and reveals differences with the flanking
sequences.

Methods
Refining the breakpoints
We start by describing the core of the method, that is the
narrowing down as precisely as possible into the break-
points given a set of synteny blocks.

We are given two sequenced genomes, and the synteny
blocks between them. Since we wish to locate all the
breakpoints in one genome, the method is not symmetric:
one genome is thus the reference and is denoted by Gr,
while the other genome to which it is compared is
denoted by Go. A synteny block is defined by a pair (Ar, Ao)
of coordinates, one (Ar) in genome Gr and the other (Ao)
in genome Go, each indicating a chromosome, a start
point and an end point. A breakpoint on Gr is a region
between two synteny blocks that are consecutive on Gr,
but not on Go. Assuming that the synteny blocks are cor-
rect, it is certain that in this region, or in one of its
orthologs on the other genome, there has been at least
one break due to a rearrangement. The size of the region
can vary from several base pairs to several millions of base
pairs. As mentioned in introduction, we do not know a
priori if this imprecision is due to a biological property of
the region, or to the fact that orthology has not been
detected beyond the extremities of the synteny blocks. We
are interested in refining this region as much as possible
to eliminate the latter possibility. The refinement of the
region is done by aligning the region in-between the two
synteny blocks in Gr with the regions flanking the
orthologs of the blocks in Go. The results of the alignment
are then coded into a numerical sequence which is parti-
tioned to identify the narrowed breakpoint.

Alignment
Given two synteny blocks (Ar, Ao) and (Br, Bo) that are con-
secutive in Gr, three sequences of interest are defined (see
Figure 1): Sr corresponds to the region in Gr between Ar
and Br, SoA and SoB are the sequences flanking Ao and Bo in
Go (respecting the orientation) up to the extremity of the
next synteny blocks on Go. Part at least of the sequences
SoA and SoB is expected to be orthologous to sequence Sr. As
an example, in Figure 1, the prefix of sequence Sr should
be orthologous to the prefix of sequence SoA and its suffix
to the suffix of sequence SoB. Depending on the nature of
the markers, their extremities may be poorly conserved
and the limits of the synteny blocks thus not very clear.
The markers at the extremities of the blocks may then be
added to the sequences Sr, SoA, and SoB. For example, in the
case of genes, when their orthology relationship has been
assigned based on similarity criteria at the aminoacid
level, the orthologous genes may not be alignable on their
whole length at the DNA level and thus the extremities of
the genes on the genomes may not be orthologous. This
can also be due to errors in the prediction of the bounda-
ries of genes. Including the genes at the extremities of the
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blocks in the sequences thus allows to overcome these
problems.

To identify the orthologous relationships between
sequence Sr and the two sequences SoA and SoB, we perform
two local alignments: one of sequence Sr against sequence
SoA and another of sequence Sr against sequence SoB. We
use for this the algorithm Blastz [15], after having masked
the sequences for repeats with RepeatMasker [16]. The
choice of a local aligner like Blastz is motivated by the fact
that the sequences are usually (for the major part) inter-
genic, and therefore in general not well conserved over
their whole length, and Blastz has been shown to be more
sensitive on such sequences [15]. Large indels, small rear-
rangements and duplications are possible. The sequences
are also often long. These two characteristics call for an
algorithm that is both sensitive and fast enough.

Two lists of local alignments, called hits, are obtained and
mapped onto sequence Sr, regardless of their orientations
and locations in the sequences SoA and SoB. We expect to
have significantly more hits from SoA in sequence Sr close
to block Ar, and more hits from sequence SoB close to Br.
In the region in between, in general no clear difference can
be made between the amount of hits from SoA and SoB.
This defines the refined breakpoint.

Segmentation
To detect this region in a quantitative manner, the infor-
mation provided by the hits is coded along the sequence
Sr giving as result a sequence I of discrete values of which
three only are possible: -1, 0 and 1. The value is 1 (resp. -
1) if position i of Sr is covered by at least one hit from
sequence SoA (resp. SoB) and no hit from sequence SoB
(resp. SoA). The value is zero if position i is covered by at

least one hit from each of the sequences SoA and SoB. The
positions covered by no hits are deleted from sequence I.
Thus sequence I has length n, the number of positions
covered by at least one hit.

The problem we solve is then, given the sequence I of -1,
0 and 1's, to find the optimal segmentation of I into three
segments, such that the first presents an orthology rela-
tionship with sequence SoA, the third segment an orthol-
ogy relationship with sequence SoB, and the segment in
between corresponds to the breakpoint. We define two
change points u1 and u2 over the sequence I of length n,
such that 1 ≤ u1 ≤ u2 ≤ n. The sequence is modelled by a
piecewise constant function with the values μ1, μ2 and μ3
respectively in the three segments.

We are looking for the two change points u1 and u2 that
minimise the sum of the squares of the deviations of the
data to the model (called the objective function):

The values of μ1, μ2 and μ3 are defined as follows:
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An example of a breakpointFigure 1
An example of a breakpoint. The synteny blocks (Ar, Ao) and (Br, Bo) are consecutive on genome Gr but not on Go. It defines 
a breakpoint on Gr between the two blocks. The sequence of the breakpoint is called sequence Sr. We define also sequence SoA 
which flanks block (Ar, Ao) on Go and is bordered by the next block (Cr, Co) on Go. The sequence SoB is defined similarly, flanking 
block (Br, Bo) on Go and bordered by the next block (Dr, Do) on Go.
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• 

In the middle segment, μ2 equals zero, thus representing
the breakpoint. In the two extreme segments the value of
the function is the observed mean of I over the segment if
the latter has the "correct sign". In order for the first (resp.
last) segment to represent an orthology relationship with
sequence SoA (resp. SoB), the value of the function must be
positive (resp. negative) meaning that it contains more
hits with SoA than with SoB (resp. with SoB than with SoA). If
the observed mean in the segment has the wrong sign, the
value is infinite; it ensures that this segment will not be
part of the optimal solution since the contributions over
this segment will be infinite.

Observe also that u1 can be equal to 0, or to u2, and u2 can
be equal to n. This provides the possibility for some seg-
ments to be empty, and thus to segment sequence I in less
than 3 segments.

Since the objective function is additive over the contribu-
tions of the positions, a dynamic programming algorithm
efficiently provides the optimal partition [17,18]. Notice
that, since the number of change points is two, a simple
algorithm scanning all possible partitions would be as
efficient: the execution time grows with the square of the
length n of sequence I.

Speed-up
The problem we solve is, however, more constrained than
the classical change-point detection problem. We show
that the two change points u1 and u2 can be found inde-
pendently in linear time with the length of sequence I
instead of using the classical dynamic programming algo-
rithm in O(n2).

Lemma 1. Given the sequence I of size n, such that for all k ∈
{1, n}, Ik ∈ {-1, 0, 1}, the positions u1 and u2, with u1 = u2,
that minimise the function f (u1, u2) (see Formula (1)) are
such that:

• is maximal,

• is minimal.

Proof: First, by developing the square terms of each sum
in function (1), we obtain:

The first term is a constant and the other two are inde-
pendent from each other. Thus f(u1, u2) is minimal when

the two last sums are both maximal, that is when

 is maximal (since it must be posi-

tive), and  is minimal (since it

must be negative). However the solution must respect the
condition u1 = u2. We show next that this condition is

always fulfilled.

Let x1 (resp. x2) be the position on I that maximises S1(u1)
(resp. minimises S2(u2)). Suppose x1 > x2.

Then:

• if , then
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thus S2(x2) is not minimal.

• else

, thus S1(x1) is not maximal.

We therefore have that x1 ≤ x2.  �

Statistical test
Whatever the structure of the signal, the method will out-
put the best segmentation of the data into at most three
segments. It is therefore important to test if the data are
actually structured into three segments, respecting the
constraints mentioned above, or if there is no such struc-
ture in sequence I. In the latter case, the obtained change
points do not make statistical sense and we must conclude
that we are not able to refine the breakpoint based on the
alignments.

The more a given sequence I of length n is structured into
three segments, the lower will be the value of the mini-
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mised objective function (that is the sum of the squares of
the deviations of the data to the model), and thus the bet-
ter will be the quality of the fit. What we need to test is
therefore whether this fit is significantly better than the
one that could be obtained with a non-structured
sequence.

The null model is obtained by shuffling sequence I and
computing for each permutation the value of the objective
function corresponding to an optimal segmentation.
Since I represents the alignment hits, the positions are not
independent from one another and the values of 1 and -1
(corresponding to such hits) appear clustered. To take
into account this structure in the shuffling operation, we
do not shuffle individual positions, but instead blocks of
consecutive identical values, given by the extremities of
the hits. We accept the null hypothesis that I is not struc-
tured if more than five percent of the random permuta-
tions have a value that is lower than the value obtained by
I.

Building the synteny blocks
Motivation
We now describe our own method for finding the synteny
blocks. The general goal of such a method is to detect
unbroken chains of markers which appear in the same
order and same orientation in both genomes. Depending
on the nature of the markers however, the orthologous
relationships can be more or less reliable, and some errors
or misleading relationships may disrupt regions of con-
served order and orientation. This is why in general more
flexible blocks of synteny are constructed.

Methods for identifying orthologous markers and for con-
structing synteny blocks are numerous in the scientific lit-
erature, starting with blocks built from physical or genetic
maps of the chromosomes [19], to conserved segments of
genes or blocks grouping genomic markers from whole
genomic alignments [20-30]. The method to refine break-
points described in the previous section requires two
properties of the synteny blocks. First, they must not over-
lap on one or the other genome because this would lead
to non-existing sequences Sr, SoA or SoB since the latter are
defined as the sequences that stand between two consecu-
tive blocks. Second, the extremities of the synteny blocks
must correspond to an orthology because they are used to
define the sequences that will then be aligned. For exam-
ple, in a block (Ar, Ao), the sequence at one extremity of Ar
should be orthologous to the sequence at the correspond-
ing extremity on Ao.

Few methods for finding blocks available in the literature
satisfy these requirements, and those that do so are either
very computer intensive or are incompletely described
heuristics. For example, GRIMM-synteny [28] builds

blocks by clustering markers that are close together, and
keeps among the maximal clusters thus detected only
those that are bigger than a threshold. The synteny blocks
built by GRIMM-synteny may thus overlap. Furthermore,
since markers are clustered based on a distance criterion
regardless of their order and orientation, the boundaries
of a synteny block on any of the two genomes may be
defined by two markers which are not orthologous. For
instance, in the example of Figure 2, the synteny block
composed of the three markers a, b and c would end,
according to GRIMM-synteny, with marker c in the first
genome and marker b in the second.

The synteny blocks defined by Sankoff et al. in [22] do not
overlap, and orthologous markers inside a block appear in
the same order in both genomes. However, since the
problem they propose to compute synteny blocks is NP-
hard, the authors introduce some constraints in order to
reduce their original dataset of markers and thus to
address the complexity problem. This problem comes
from the fact the authors do try to solve the conflicts that
may appear and from how they do it. Indeed, when two
blocks overlap, the authors attempt to choose which one
is the "best" according to some criterion. The one adopted
corresponds to maximising the overall number of markers
used.

Various other methods based on chaining techniques pro-
duce synteny blocks that may overlap [21,24,27,29,31].
They are based on the same principle: two markers are

Example of two conflicting arcs of type IFigure 2
Example of two conflicting arcs of type I. On the left 
side is a dotplot representation of the positions of anchors a, 
b and c on the genomes Gr and Go. They are all on the same 
chromosome in the two genomes and d(a, b) = d(a, c) = 2. 
On the right-hand side is the corresponding graph 2 (k = 
2). The arcs ab and ac are conflicting, because the order of 
the markers of a, b and c in Gr is a, b, c, whereas it is a, c, b in 
Go.
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chained if they appear in the same order and orientation
in both genomes, and if they stand close enough to one
another in terms either of a number of intervening (out of
order) markers, or of the physical distance separating
them. Only long enough chains are kept, the length corre-
sponding to the number of markers in the chain or the
number of nucleotides covered by the chain. None of
these methods mentions, and therefore deals with the
problem of overlaps and of conflicts between distinct
chains.

We then describe our own method for finding the synteny
blocks. It is formally well described, and thus it is possible
to prove some properties of the blocks found, in particular
the ones that are necessary for the refinement of the break-
points. It takes as input, as all other methods, pairs of
homologous markers described by their position and ori-
entation on each genome. Though our approach is closely
related to the ones of other published methods (all consist
in chaining markers), working with formal definitions of
the objects we are looking for guarantees that the synteny
blocks we use satisfy the precisely characterised properties
we need.

Description
We take as input an integer number k and a set of anchors
between two genomes Gr and Go. We call anchor a pair of
markers, one in Gr and one in Go, which are orthologous.
We consider only markers that do not overlap in both
genomes and that are part of exactly one anchor (no
marker is in more than one anchor). If chromosomes are
arbitrarily oriented (with a starting point and a reading
direction), a marker can be identified by the chromosome
it lies in, its position on the chromosome and its orienta-
tion (with respect to the starting point of the chromo-
some). Since we are interested in the relative order of
markers on chromosomes, we consider the rank of a
marker on a chromosome rather than its physical position
on it. An anchor is then identified by a pair of chromo-
somes, a pair of ranks (the ranks of both markers on each
chromosome), and a relative orientation. For instance, let
a be an anchor, then a is identified by (cr, co, ar, ao, σa),
with cr and ar the, resp., chromosome and rank of the
marker on Gr, co and ao the, resp., chromosome and rank
of the orthologous marker on Go, and σa equal to +1 if the
two markers have the same orientation, -1 otherwise.

If two distinct anchors a and b are located on the same
chromosome in both species, the distance between a and
b, denoted by d(a, b), is the maximum of the rank differ-
ences between a and b on each genome: if ar, ao (br, bo) are
the ranks of anchor a (b) on the genomes Gr and Go, then
d(a, b) = max(|br- ar|, |bo- ao|).

Thus, if a and b are consecutive on each genome, the dis-
tance between them is one. If two anchors contain mark-
ers that are not in the same chromosome in at least one of
the species, then the distance is ∞.

Let then k be a directed graph, with the anchors as verti-

ces, and an arc between two distinct anchors a and b with

ar <br, if d(a, b) ≤ k, and either (ao <bo and both anchors

have a positive orientation) or (ao > bo and both anchors

have a negative orientation). Arcs are identified by the
labels of their start and end vertices (anchors). Thus the
arc between anchors a and b, if such exists, is denoted by
ab.

At this step, if k is bigger than one, one anchor can be
chained to several other anchors, possibly leading to con-
nected components that overlap regarding genomic posi-
tions, or to boundaries of connected components that are
not defined by a unique anchor. We say in this case that
there is a conflict. We define two types of conflict:

• conflict of type I: two arcs ab and cd belonging to the
same connected component of k are said to be conflict-

ing if the markers of the anchors a, b, c, d do not appear in
the same order in both genomes (an example where a = c
is given in Figure 2);

• conflict of type II: an arc ab in a component C is conflict-
ing if there exists an anchor x whose markers appear
between the markers of a and b in one of the two
genomes, and x belongs to a connected component of at
least k vertices, different from C (see Figure 3).

Let now k be the subgraph of k which contains all the

non-conflicting arcs of k. A k-block is a connected com-

ponent of k containing more than k vertices. The extre-

mal genomic coordinates of the k-blocks define the
synteny blocks.

The absence of conflicting arcs of type II ensures that the
synteny blocks never intersect. Moreover, the absence of
conflicting arcs of type I ensures that in each component,
the markers can be totally ordered in both genomes. This
yields in particular that one anchor is unambiguously
present at each extremity, so we have the required prop-
erty that the extremities of the blocks in each genome are
orthologous.

A polynomial-time computation of the blocks is straight-
forward from the definition: if n is the number of anchors,
the computation of the ranks needs the application of a
sorting procedure over all anchors in both genomes (in





 



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time O(n log n)). Then, the computation of the graph
takes time O(n × k), and produces at most k × n arcs. For
each arc, detecting conflicts requires the comparison to at
most k other arcs or vertices, leading to a total time com-
plexity of O(n × k2 + n log n), where k is a fixed parameter
(we chose k = 2 in all our experiments).

Discussion on the method
Our method for finding synteny blocks is flexible and out-
puts totally ordered and non-intersecting k-blocks, which
is the right entry for the refinement method described in
the previous section. Indeed, we build blocks of synteny
by chaining orthologous markers that appear in the same
order and orientation in the two genomes, but allowing
for a number of intervening markers. The maximum
degree of flexibility allowed is controlled by one parame-
ter k.

This contrasts with most of the other methods which use
two parameters [27-29,31], one (denoted by d) for the
maximum distance allowed between two anchors to be
chained and the other (denoted by S), for the minimum
size of a block to be retained. However, one should fix d ≤
S to prevent a block from lying inside another one. On the
other hand, one should fix d ≥ S, to prevent a block of size

less than S, which we thus consider as irrelevant, from
breaking a bigger one. This is why we fix d = S, and denote
it by k. Actually, these two parameters d and S are often
assigned the same value when the methods are applied
(see for example [6,28,29,31]).

Flexibility is necessary, at least when dealing with orthol-
ogous markers whose orthology has been inferred from
alignment methods. Indeed, false positives are quite com-
mon in this case, particularly in the presence of paralo-
gous sequences. Thus, some false orthology assignments
can generate "false" breakpoints, that is regions which
have not been rearranged in either of the two lineages. The
greater k is, the more reliable are the synteny blocks since
they are supported by more anchors. However, using a
bigger k has the drawback of missing small blocks (in
number of anchors). The outcome is not only less break-
points, but also a decrease in the resolution of the remain-
ing breakpoints. In fact, if a block is missed inside a
breakpoint, we may not be able to refine it efficiently.

Another outcome of introducing flexibility is that it may
produce conflicts. Conflicting arcs represent several chain-
ing possibilities (conflict of type I) or overlapping ones
(conflict of type II). Instead of introducing constraints
that may not always have an obvious or universal biolog-
ical meaning, we choose not to solve the conflicts, but
instead to discard them. This may seem like a radical solu-
tion and, indeed, it produces blocks that are sometimes
not as long as they could be if we attempted to solve the
conflicts. However, finding the synteny blocks is just one
step towards refining the breakpoints and we find prefer-
able to use reliable blocks. The information lost in this
initial step will in most cases be recovered in the second
step. If removing conflicting arcs implies only the reduc-
tion of a block at one of its extremities, the removed
extremities on the two genomes will be aligned during the
refinement step. On the other hand, if removing conflict-
ing arcs implies missing a whole block, this block will
probably not be recovered.

Results
Application to two mammalian comparisons
We applied the methods of synteny blocks construction
and breakpoint refinement on two pairs of genomes. We
detected and refined the breakpoints on the human
genome (NCBI35, assembly of May 2004) by compari-
son, first, with the mouse genome (NCBI m35, assembly
of Dec 2005), and then with the dog genome (CanFam
2.0, assembly of May 2005).

For each pairwise comparison, we used the one-to-one
orthologous genes available on the Ensembl genome
browser [31] as anchors to build the 2-blocks (2-blocks
satisfy the definition given in Section 2 for k-blocks with k

Example of a conflicting arc of type IIFigure 3
Example of a conflicting arc of type II. On the left-hand 
side is a dotplot representation of the positions of anchors a, 
b, x and y on the Gr and Go. Anchors a and b are on the same 
chromosome in the two genomes and d(a, b) = 2, the same 
for x and y. On the right-hand side is the corresponding 
graph 2 (k = 2). It has two connected components: {a, b} 
and {x, y}. The arc ab is conflicting because ar <xr <br and x 
belongs to another component with at least two anchors.
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= 2) and locate the breakpoints. We applied the refine-
ment method to all the breakpoints, except from those
containing a human centromere. We included the
sequences of orthologous genes at the extremities of the
blocks in the aligned sequences, as suggested in the
Method Section. Finally, we applied the permutation test
to determine if the change points from the segmentation
process are significant. For the human-mouse compari-
son, starting with 12223 non-overlapping one-to-one
human-mouse orthologous gene pairs, we obtained
12018 within a 2-block. We obtained 389 blocks and 366
breakpoints on the human genome, with 355 breakpoints
without a human centromere in it. Table 1 gives some sta-
tistics on the human-mouse blocks.

Out of the 355 refined breakpoints, only one is not signif-
icant for the permutation test of the segmentation. After
further investigation, it appeared that this breakpoint cor-
responds to a mouse duplication, with the entire sequence
Sr aligned with both sequences SoA and SoB. Figure 4 shows
a histogram with the sizes of the breakpoints before and
after refinement. On average, a breakpoint is reduced by
552 Kilobases and we obtained after refinement 171
(48%) breakpoints less than 50 Kb in size [see Additional
file 1].

Concerning now the human-dog comparison, starting
from 12839 non-overlapping one-to-one pairs of orthol-
ogous genes, we obtained 12663 within a 2-block. This
led to 272 blocks and 249 breakpoints, with 240 without
a human centromer in it. Table 2 gives some statitics on
the blocks.

The permutation test of the segmentation was significant
for all the 240 refined breakpoints. On average, a break-
point is reduced by 506 Kilobases, and we obtained after
refinement 145 (60%) breakpoints less than 50 Kb in size
[see Additional file 2].

Comparison with alignment-based methods
We compared the breakpoint sizes obtained by our
method with those of other publicly available datasets of
breakpoints. We used three datasets of breakpoints
between human and mouse, all of them based on whole
genome alignment methods. The first two are obtained

with the algorithm GRIMM-synteny, the first one is a pair-
wise comparison of human and mouse [28] while the sec-
ond is a multiple comparison between human, mouse
and rat [32]. We call them, respectively, GRIMM2 and
GRIMM3. The third one is retrieved from the Ensembl
genome browser, version 34 and we call it ENSEMBL. The
method used in this case is succinctly described on the
Ensembl web page [33]: it consists, starting with Blastz
whole genome alignments retrieved from the UCSC
genome browser [34], in chaining alignments that are dis-
tant by no more than a certain max_gap in number of bp,
and in discarding chained blocks which span less than
min_len in size. It is similar to GRIMM-synteny, and to our
synteny block generation method, except that conflicts are
not taken into account. The breakpoints we have defined
with our own method are referred to as the REFINED
breakpoints, or REFINED for short.

For the three datasets, we computed the breakpoints as the
regions between two consecutive synteny blocks on the
human genome that are not consecutive on the mouse

Size distribution of the 355 breakpoints between human and mouse, before and after refinementFigure 4
Size distribution of the 355 breakpoints between 
human and mouse, before and after refinement. The 
last box at 2 000 Kb represents values bigger than 2 Mb.

Table 1: 2-blocks between human and mouse.

length (in bp) min max median mean

number of orthologous genes inside a 2-block 2 473 13 31
size of the 2-blocks before refinement (in bp) 36,647 79,896,236 2,446,592 6,720,033
size of the breakpoints before refinement (in bp) 1,057 5,311,140 267,891 515,890
size of the breakpoints after refinement (in bp) 21 2,185,434 51,136 128,644

Description of the 2-blocks obtained between human and mouse (before refinement). The 2-blocks satisfy the definition given in Section 2 for k-
blocks with k = 2. Consecutive 2-blocks on both species, with the same relative orientations, have been merged.
Page 9 of 15
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genome. We eliminated breakpoints containing a human
centromere, and when synteny blocks overlap on the
human genome, we considered the intersection as the
breakpoint.

We started by globally comparing the distribution of the
breakpoint sizes between the different datasets. The
REFINED breakpoints are globally smaller than the break-
points from the other datasets, with an average length of
129 Kb versus 364, 454 and 1513 Kb for, respectively,
GRIMM2, GRIMM3 and ENSEMBL (Table 3). We com-
pared each dataset with ours, using the Wilcoxon rank
sum test. The differences are highly significant with the
respective p-values of 2. 085e – 14, < 2. 2e – 16 and 4.
977e – 05, when compared with GRIMM2, GRIMM3 and
ENSEMBL.

Since all datasets do not contain the same number of
breakpoints (the REFINED breakpoints set contains 354
breakpoints, whereas GRIMM2, GRIMM3 and the
ENSEMBL datasets contain 246, 306 and 200 respec-
tively), one could argue that we do not compare the same
breakpoints, and that the length difference observed is
only due to dataset-specific breakpoints. In order to test
this hypothesis, we compared the length of the break-
points which are common to both the REFINED and the
GRIMM3 sets. The coordinates of the GRIMM3 break-
points lie on a different assembly version of the human
genome (NCBI33 assembly). Using the Ensembl identi-
fier of the orthologous genes bordering our breakpoints
(as landmarks), we could unambigously identify 186
common breakpoints. For each breakpoint, we calculated
the length difference between GRIMM3 and the REFINED
breakpoints. The distribution of the length differences is
plotted in Figure 5. On average, the GRIMM3 breakpoints

are 276 Kb bigger than the REFINED ones, which is signif-
icant to a paired Wilcoxon test (pvalue of < 2. 2e – 16).

Observe that the REFINED breakpoints are computed on
a more complete human genome assembly, and some
gaps in the former assemblies could have prevented the
detection of some synteny blocks and led to their absence
from the GRIMM3 dataset.

We made a similar pairwise comparison with the
ENSEMBL dataset, for which the breakpoints lie on the
same assembly version as ours. We thus eliminated this
potential assembly effect. We identified 108 common
breakpoints and for each one, we calculated the length
difference between the ENSEMBL and the REFINED
breakpoints. The average length difference remains posi-
tive, meaning that the REFINED breakpoints are smaller
than the ENSEMBL ones (mean difference of 143 Kb). The

Distribution of the differences in breakpoint sizes pairwisely computed between GRIMM3 and our dataset (186 common breakpoints)Figure 5
Distribution of the differences in breakpoint sizes 
pairwisely computed between GRIMM3 and our 
dataset (186 common breakpoints). A positive value 
means that the breakpoint size is bigger in GRIMM3 than in 
our dataset. The last box at 2 000 Kb represents values big-
ger than 2 Mb.

Table 2: 2-blocks between human and dog. 

length (in bp) min max median mean

number of orthologous genes inside a 2-block 2 443 20 46.5
size of the 2-blocks before refinement (in bp) 8,382 154,604,141 3,212,701 9,945,063
size of the breakpoints before refinement (in bp) 5,963 3,108,685 241,505 437,558
size of the breakpoints after refinement (in bp) 66 1,224,273 33,140 86,074

Description of the 2-blocks obtained between human and dog (before refinement).

Table 3: Comparison of the distributions of breakpoint sizes 
between the four datasets. 

length min max median mean

REFINED 21 2,185,434 51,136 128,644
GRIMM2 313 5,418,383 155,816 364,199
GRIMM3 2,490 4,953,520 267,609 454,490
ENSEMBL 2 82,331,123 106,534 1,513,770

The numbers are expressed in base pairs.
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differences are less marked, as one third of the compared
breakpoints differ by less than 1 Kb (see the distribution
of the length differences in Figure 6).

We should however be careful with the latter results, as
the ENSEMBL dataset appeared not reliable in general.
First, it contains less breakpoints than the other datasets
(only 200), although it was obtained with less stringent
parameters than GRIMM2 (for example, the minimum
size of a synteny block is 100 Kb for ENSEMBL and 1 Mb
for GRIMM2) which should give more breakpoints. More-
over, the distribution of their length is unusual with some
breakpoints very small and some very large. In particular,
the biggest breakpoints (bigger than 20 Mb) make us
believe that some synteny blocks may have been missed
inside. Finally, if we compute the genomic coverage of the
synteny blocks, we obtain that only 76.8% (2.317 Gb) of
the genome is covered by the ENSEMBL blocks, whereas
the coverage is much larger for the other datasets (89.6%,
89.5% and 86.7% for GRIMM2, GRIMM3 and the 2-
blocks before refinement respectively).

Genomic features in the breakpoints
Interestingly, even after refinement, the majority of the
breakpoints are still big regions and are not reduced to a
point. We wanted to test whether these regions have par-
ticular characteristics with respect to those inside the
sequences newly appended to the synteny blocks by the

refinement method. We thus compared the sequences of
the breakpoints bigger than 10 Kb detected in the human-
mouse comparison with their flanking sequences, defined
as the regions outside the refined breakpoints which are
not in the original synteny blocks (see Figure 7). We meas-
ured the coverage of each sequence in whole genome local
alignments, human segmental duplications and transpos-
able elements.

The motivation for measuring the presence (and amount)
of whole genome (human-mouse) local alignments in a
human sequence is that this is indicative of the similarity
between the latter sequence and any part of the mouse
genome. The whole genome local alignments were taken
from the chain-net alignments files available on the UCSC
genome browser [34]. The method is described in [26]. It
appeared that breakpoints are depleted in local align-
ments (average coverage of 14%) with respect to their
flanking sequences (28%) and the overall coverage of the
genome (36%) (see the average distributions in Figure 8).
This is statistically significant using a paired Wilcoxon test
(pvalue of 2. 2e – 16). Notably, 42% of the breakpoint
sequences (114 breakpoints) have less than 5% of their
length covered by a local alignment. Observe that these
alignments are obtained from whole genome compari-
sons and are not necessarily part of a synteny block. It sug-
gests that a number of breakpoints, spanning sometimes
several hundreds of kilobases, do not show any similarity
with any part of the other genome. Either they are very fast
evolving sequences, or they correspond to insertions of
new sequences in the human genome or to deletions in
the mouse one. While some breakpoints show no similar-
ity with any part of the genome, others show similarity
with several parts, either in the human or in the mouse
genomes, sometimes preventing us from being able to
refine them. This is the case, for instance, of segmental
duplications.

Segmental duplications, also called Low Copy Repeats,
are large duplications (typically greater than 1 Kb), with a
high percentage of identity (typically more than 90%),
that are found in a small number of copies (as opposed to
transposable elements) and often clustered in mamma-
lian genomes. Recently [10-12], it has been shown that
breakpoints and duplications tend to co-localise. Two dif-
ferent hypotheses have been suggested to explain this
trend: either the duplications caused the rearrangements
by similarity-dependent mechanisms, such as non allelic
homologous recombination (NAHR); or the duplications
accumulated at the same places because of an inherent fra-
gility of these genomic regions. We observed here a simi-
lar trend. Breakpoints are overall more covered by
segmental duplications (average coverage of 27%) than
their flanking sequences (average coverage of 15%). This
is again statistically significant using a paired Wilcoxon

Distribution of the differences in breakpoint sizes pairwisely computed between ENSEMBL and our dataset (108 common breakpoints)Figure 6
Distribution of the differences in breakpoint sizes 
pairwisely computed between ENSEMBL and our 
dataset (108 common breakpoints). A positive value 
means that the breakpoint size is larger in the ENSEMBL than 
in our dataset. The last box at 2 000 Kb represents values 
bigger than 2 Mb.
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test (pvalue of 2. 22e – 9). Notably, 34 breakpoint
sequences are almost entirely covered by segmental dupli-
cations (coverage greater than 90%).

Other duplicated sequences, that do not have necessarily
the same properties as segmental duplications (in terms of
length or similarity level) have been found associated
with rearrangements. The duplicated sequences were
found at each extremity of an inverted segment, in the
opposite orientation [35-37]. An alternative mechanism
to NAHR was suggested, which is that the duplication may
have appeared as a consequence of the rearrangement, as
a fill-in of the gaps resulting from staggered break ends.
Thanks to our refinement step, we can suggest candidates
for this situation: this is the case when the human break-
point sequence coincides with the mouse duplicates

located in the two corresponding breakpoints on the
mouse genome, namely in sequences SoA and SoB (Figure
1). Indeed, when a breakpoint aligns with both sequence
SoA and sequence SoB, it corresponds to the middle seg-
ment of the numerical sequence I which contains many
zeros. We can thus easily detect these special cases. For the
human-mouse comparison, we obtain 41 breakpoints
which present such characteristic (more than half of the
middle segments of the numerical sequence I correspond
to a zero, meaning these positions are covered by hits
from both sequence SoA and SoB). In 36 cases, the break-
points are absent from the human-dog comparison, sug-
gesting that the involved rearrangements occurred in the
mouse lineage, and further arguing for a relation between
duplication and rearrangement events.

Finally, we observe a similar trend for transposable ele-
ments as for whole genome local alignments and segmen-
tal duplications. Overall, breakpoints are richer in
transposable elements than their flanking sequences
(average coverage of 53% against 48% respectively),
paired Student test significant (pvalue of 6. 15e – 8).
When we distinguish for the different types of transposa-
ble elements (SINEs, LINEs, LTR elements and DNA trans-
posons), no significant difference is observed, except for
LTR elements (average coverage of 11.4% in breakpoints
versus 8.6% in the flanking sequences, pvalue of 2. 21e –
5 for a paired Wilcoxon test).

Discussion and conclusion
With the availability of whole genome sequences, one
would have hoped to be able to compare genomes at the
nucleotide level and thus to locate evolutionary events,
such as rearrangements, up to a base pair. Such precision
is required, for instance, in order to identify potential
footprints left on the sequence by a rearrangement. How-
ever, current available breakpoint data lack such preci-
sion. The goal of the method we presented in this paper is
to obtain breakpoints as precise as possible. Our strategy
to achieve this is divided in two steps: the first one identi-

Comparison of the distributions of sequence coverage by local alignmentsFigure 8
Comparison of the distributions of sequence cover-
age by local alignments. Breakpoint sequences are repre-
sented in blue, whereas the flanking sequences are in orange.

Schematic representation of a breakpoint and its flanking sequencesFigure 7
Schematic representation of a breakpoint and its flanking sequences. The original breakpoint (before refinement) lies 
between synteny blocks Ar and Br on genome Gr, its sequence is called Sr. The breakpoint sequence after refinement, is repre-
sented in red. The flanking sequences (showed in green) are defined as the sequences of sequence Sr that are not part of the 
breakpoint region. We consider in this analysis breakpoints whose sequence (in red) spans more than 10 Kb, and for which at 
least one flanking sequence spans more than 10 Kb.
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fies reliable blocks and the second refines the breakpoint
regions in between using the information (corresponding
to the orthologous sequences to align) obtained in the
previous step.

Having reliable synteny blocks is a requirement to the
refinement method, and is the reason why we chose to
deal with markers that are genes. Since they are functional
elements, they are usually more conserved (and so more
reliable) than intergenic DNA. Moreover, orthology
assignments for genes are computed at the aminoacid
level, which is even more conserved. The genomic cover-
age of orthologous genes is less extensive than the cover-
age of the alignments obtained by a whole genome
comparison method which may detect similarity even in
the non coding parts of the genome. It thus leads to syn-
teny blocks which present also a low genomic coverage.
However, the synteny blocks can be extended beyond the
genes, and eventually we may reach a better coverage than
with whole genome alignments. Nevertheless, we wish to
emphasise that the method described here is not restricted
to this kind of synteny blocks, and that it can also be
applied on synteny blocks originally obtained from whole
genome alignments for instance.

The advantage of proceeding in two steps is that by reduc-
ing the search space for homology in the first step, we can
look for weaker similarity inside the breakpoint regions in
the second step. This is one of the reasons why our
method gives more precise breakpoints than whole
genome alignment methods. Indeed, the latter operate in
a single step, and require the use of stringent enough
parameters to avoid obtaining blocks which are not
orthologous. However, one drawback is then that they
miss weak similarity inside the breakpoints.

We have shown here that this similarity does exist inside
breakpoints and synteny blocks may indeed be refined, as
was already pointed out by [14], and we propose a quan-
titative method to this end.

The second argument accounting for the gain in precision
of our method is based on the number of genomes com-
pared. With the availability of an increasing number of
fully sequenced genomes, methods using more than two
genomes to identify synteny blocks are often privileged.
However, we chose to develop a pairwise method. The
motivation is to gain even further precision. Comparison
of the breakpoint sizes show that 3-way blocks (such as
obtained by GRIMM3) give bigger breakpoints than those
obtained with a pairwise comparison (such as in
GRIMM2) using the same method, even when adopting
less stringent parameters. This comes from the fact that
the GRIMM3 anchors are three-way, meaning that one
anchor represents an orthologous marker in each of the

three species. This leads to more confident anchors than
pairwise ones, but it also reduces the set of anchors and
thus the size of the synteny blocks.

Although multiple comparisons could be useful to com-
pute the synteny blocks, we argue that to refine break-
points, a pairwise method is preferable. Indeed, this
enables to be more sensitive in the detection of homol-
ogy. Moreover, it also allows to discriminate between one
or several rearrangement events in a seemingly common
region. For example, suppose two breakpoints are very
close to each other on the human genome, one being
observed by comparison with the mouse genome, and the
other with the dog genome. Investigating the two break-
points by pairwise (independent) comparisons allows to
determine whether they overlap position-wise as in Figure
9. Using a multiple comparison, if the two breakpoints are
too close to each other (the distance between them is less
than the minimum size of a synteny block), only one
breakpoint may be identified. An example of this is given
in Figure 10 where two distinct breakpoints are perceived
as fused when doing a multiple comparison while pair-
wise comparisons enable to separately identify the two. It
thus seems preferable to, first, identify precisely break-
points between two genomes, and then to compare them
with the breakpoints obtained in other species compari-
sons while trying to infer their evolutionary relationship.
This strategy could be useful to estimate the amount of
rearrangement re-use in independent lineages. As an
example, we obtained five cases where a mouse break-
point and a dog breakpoint do not overlap and are less
than 50 Kb apart on the human genome (10 cases when
the threshold is set to 100 Kb, 39 cases for 300 Kb).

Finally, comparison of the breakpoints with their flanking
sequences confirms previous studies of rearrangement
breakpoints where loss of similarity, enrichment in seg-
mental duplications and in transposable elements were
revealed [9-12,14,26]. Moreover, it shows that break-
points are actually regions which can be distinguished

Example of two closely located breakpoints that overlap position-wiseFigure 9
Example of two closely located breakpoints that 
overlap position-wise.
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from the remaining of the genome, and reinforces the
belief that breakpoints are indeed regions, and not single
points.

Authors' contributions
CL developped and implemented the method. All authors
participated in discussions and writting of the paper.

Additional material

Acknowledgements
The work presented in this paper was funded in part by the ACI Nouvelles 
Interfaces des Mathematiques (project π-vert) of the French Ministry of 

Research, by the ARC (projects IBN and ChromoNet) from the INRIA and 
by the ANR (project REGLIS No NT05-3_45205 REGLIS).

References
1. Albertson DG, Collins C, McCormick F, Gray JW: Chromosome

aberrations in solid tumors.  Nat Genet 2003, 34(4):369-376.
2. Eichler EE, Sankoff D: Structural dynamics of eukaryotic chro-

mosome evolution.  Science 2003, 301(5634):793-797.
3. Rieseberg L: Chromosomal rearrangements and speciation.

Trends Ecol Evol 2001, 16(7):351-358.
4. Stankiewicz P, Lupski JR: Genome architecture, rearrange-

ments and genomic disorders.  Trends Genet 2002, 18(2):74-82.
5. Nadeau JH, Taylor BA: Lengths of chromosomal segments con-

served since divergence of man and mouse.  Proc Natl Acad Sci
USA 1984, 81(3):814-818.

6. Bourque G, Zdobnov EM, Bork P, Pevzner PA, Tesler G: Compara-
tive architectures of mammalian and chicken genomes
reveal highly variable rates of genomic rearrangements
across different lineages.  Genome Res 2005, 15:98-110.

7. Pevzner P, Tesler G: Human and mouse genomic sequences
reveal extensive breakpoint reuse in mammalian evolution.
Proc Natl Acad Sci U S A 2003, 13:7672-7.

8. Hinsch H, Hannenhalli S: Recurring genomic breaks in inde-
pendent lineages support genomic fragility.  BMC Evol Biol 2006,
6:90.

9. Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC, Kent WJ, Blanchette M,
Haussler D, Miller W: Reconstructing contiguous regions of an
ancestral genome.  Genome Res 2006, 16:1557-1565.

10. Murphy WJ, Larkin DM, Wind AE van der, Bourque G, Tesler G, Auvil
L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers
SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T,
Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'brien
SJ, Pevzner PA, Lewin HA: Dynamics of mammalian chromo-
some evolution inferred from multispecies comparative
maps.  Science 2005, 309(5734):613-617.

11. Armengol L, Pujana MA, Cheung J, Scherer SW, Estivill X: Enrich-
ment of segmental duplications in regions of breaks of syn-
teny between the human and mouse genomes suggest their
involvement in evolutionary rearrangements.  Hum Mol Genet
2003, 12(17):2201-2208.

12. Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE: Hotspots of
mammalian chromosomal evolution.  Genome Biol 2004,
5(4):R23.

13. Ruiz-Herrera A, Garcìa F, Giulotto E, Attolini C, Egozcue J, Ponsá M,
Garcia M: Evolutionary breakpoints are co-localized with frag-
ile sites and intrachromosomal telomeric sequences in pri-
mates.  Cytogenet Genome Res 2005, 108(1–3):234-247.

14. Trinh P, McLysaght A, Sankoff D: Genomic features in the break-
point regions between syntenic blocks.  Bioinformatics 2004,
20(Suppl 1):I318-I325.

15. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC,
Haussler D, Miller W: Human-mouse alignments with
BLASTZ.  Genome Res 2003, 13:103-107.

16. Smit A, Hubley R, Green P: RepeatMasker.   [http://repeatmas
ker.org].

17. Auger I, Lawrence C: Algorithms for the optimal identification
of segments neighborhoods.  Bull Math Biol 1989, 51:39-54.

18. Bellman R, Dreyfus S: Applied dynamic programming Princeton Univer-
sity Press; 1962. 

19. DeBry RW, Seldin MF: Human/Mouse Homology Relationships.
Genomics 1996, 33:337-351.

20. Bhutkar A, Russo S, Smith TF, Gelbart WM: Techniques for multi-
genome synteny analysis to overcome assembly limitations.
Genome Inform 2006, 17(2):152-161.

21. Calabrese PP, Chakravarty S, Vision TJ: Fast identification and sta-
tistical evaluation of segmental homologies in comparative
maps.  Bioinformatics 2003, 19:i74-i80.

22. Choi V, Zheng C, Zhu Q, Sankoff D: Algorithms for the Extrac-
tion of Synteny Blocks from Comparative Maps.  In WABI,
LCNS Volume 4645. Springer Berlin/Heidelberg; 2007:277-288. 

23. Darling ACE, Mau B, Blattner FR, Perna NT: Mauve: multiple align-
ment of conserved genomic sequence with rearrangements.
Genome Res 2004, 14(7):1394-1403.

Additional file 1
Dataset of the breakpoints between human and mouse. The file con-
tains the coordinates of the breakpoints obtained with the method 
described in the paper, with the human genome as reference, compared 
with the mouse genome. The breakpoints lie on the human genome 
(assembly version NCBI35). The file format is plain text, each line corre-
sponds to one breakpoint, and there are three columns (chromosome, 
beginning and end positions of the breakpoint) separated by a space.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-286-S1.tab]

Additional file 2
Dataset of the breakpoints between human and dog. The file contains 
the coordinates of the breakpoints obtained with the method described in 
the paper, with the human genome as reference, compared with the dog 
genome. The breakpoints lie on the human genome (assembly version 
NCBI35). The file format is plain text, each line corresponds to one break-
point, and there are three columns (chromosome, beginning and end posi-
tions of the breakpoint) separated by a space.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-286-S2.tab]

Example of two closely located breakpoints that do not over-lap position-wiseFigure 10
Example of two closely located breakpoints that do 
not overlap position-wise. The two breakpoints appear 
fused when using a multiple comparison and which pairwise 
comparisons enable to clearly identify as two distinct break-
points.
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