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Abstract
Background: Tiling arrays are an important tool for the study of transcriptional activity, protein-
DNA interactions and chromatin structure on a genome-wide scale at high resolution. Although
hidden Markov models have been used successfully to analyse tiling array data, parameter
estimation for these models is typically ad hoc. Especially in the context of ChIP-chip experiments,
no standard procedures exist to obtain parameter estimates from the data. Common methods for
the calculation of maximum likelihood estimates such as the Baum-Welch algorithm or Viterbi
training are rarely applied in the context of tiling array analysis.

Results: Here we develop a hidden Markov model for the analysis of chromatin structure ChIP-
chip tiling array data, using t emission distributions to increase robustness towards outliers.
Maximum likelihood estimates are used for all model parameters. Two different approaches to
parameter estimation are investigated and combined into an efficient procedure.

Conclusion: We illustrate an efficient parameter estimation procedure that can be used for HMM
based methods in general and leads to a clear increase in performance when compared to the use
of ad hoc estimates. The resulting hidden Markov model outperforms established methods like
TileMap in the context of histone modification studies.

1 Background
High density oligonucleotide tiling arrays allow the inves-
tigation of transcriptional activity, protein-DNA interac-
tions and chromatin structure across a whole genome.
Tiling arrays have been used in a wide range of studies,
including investigation of transcription factor activity [1]
and of histone modifications in animals [2] and plants
[3], as well as DNA methylation [4]. Analyses of these data
are usually based either on a sliding window [1,5], or on
hidden Markov models (HMMs) [6-8]. Other approaches
have been suggested, e.g., by Huber et al. [9] and Reiss et
al. [10], but are less common.

Parameter estimates for sliding window approaches as
well as hidden Markov models are typically ad hoc.
Although there are some notable exceptions in gene
expression studies [8,11], no established procedures exist
to obtain good parameter estimates from tiling array data,
especially in the context of chromatin immunoprecipita-
tion (ChIP-chip) experiments. Attempts have been made
to obtain parameter estimates by integrating genome
annotations into the analysis [12]. While this may provide
good results when investigating transcriptional activity in
well studied organisms, it is limited by the quality of avail-
able annotations. For ChIP-chip studies the required
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annotation data is unavailable. A method for the localisa-
tion of transcription factors from ChIP-chip experiments
by Keleş [13] does obtain the required parameter esti-
mates from the data and allows for variations in length of
enriched regions.

Methods designed for the analysis of ChIP-chip data focus
almost exclusively on the study of transcription factors
[[6,7,10], and [13]]. While this is an important class of
experiments, ChIP-chip studies are not limited to tran-
scription factors, and the analysis of other ChIP-chip
experiments may require new methods. One other area of
active research that utilises ChIP-chip experiments is the
study of histone modifications and chromatin structure
[3]. Although both types of experiment employ the same
technology, there are several important differences
between them. Most importantly, the 147 bp of DNA
bound by a histone complex are considerably longer than
the typical transcription factor binding site, and the his-
tone modifications of interest are expected to affect sev-
eral neighbouring histones. Consequently the ChIP
fragments derived from a transcription factor binding site
all originate from a small region containing the given
binding site while regions affected by histone modifica-
tions can be much longer than the ChIP fragments used.
As a result of this, the data from histone modification
experiments usually contain long regions of interest
encompassing several non-overlapping ChIP fragments,
rather than the short and relatively isolated peaks pro-
duced by transcription factor studies.

Here we consider the analysis of data from a histone mod-
ification study in Arabidopsis [3]. These data consist of four
ChIP samples for histone H3 with lysine 27 trimethyla-
tion (H3K27me3) and four histone H3 ChIP samples that
act as a control. The aim of this analysis is to identify and
characterise regions throughout the genome that exhibit
enrichment for H3K27me3. It is desirable to use a method
which is specifically designed for the analysis of histone
modifications or flexible enough to accomodate the vary-
ing length of enriched regions. Furthermore, the method
should obtain all parameter estimates from the data with-
out the use of genome annotations and be robust towards
outliers. Amongst the methods discussed above TileMap
[7] comes closest to these requirements. Although it was
developed with transcription factor analysis in mind it is
general enough that it should provide useful results for
other ChIP-chip experiments. This is emphasised by its
application to histone modification [3] and DNA methyl-
ation [4] data as well as transtription factor analysis
[14,15]. TileMap obtains some, but not all, of the required
parameter estimates from the data. To provide a method
which meets the requirements oulined above we develop
a two state HMM with t emission distributions. All param-
eter estimates for the model are obtained by maximum

likelihood estimation using the Baum-Welch algorithm
[16] and Viterbi training [17]. These methods have the
advantage that no prior knowledge about parameter val-
ues is required and one need not rely on frequently una-
vailable genome annotations. To assess the performance
of our model, we apply it to simulated and real data.
Results are compared to those produced by TileMap. The
remainder of this article is structured as follows. In Section
2 the hidden Markov model is developed and MLEs for all
parameters are derived in Section 4. The performance of
the resulting model is assessed in terms of sensitivity and
specificity on simulated data in Sections 2.3.3–2.3.6. In
Section 2.3.7 the model is used to analyse a public ChIP-
chip data set [3] and results are compared to the original
analysis of these data.

2 Results and discussion
Tiling array data consists of a series of measurements
taken along the genome. Typically, microarray probes are
designed to interrogate the genome at regular intervals.
Design constraints such as probe affinity and uniqueness
cause differences in probe density along the genome and
can lead to large gaps between probes. Here we assume
that the probe density is homogeneous except for a
number of large gaps where the distance between adjacent
probes is larger than max_gap. In the following analyses
we use max_gap = 200 bp. This is identical to the value
used by Zhang et al. [3], allowing for a direct comparison
of results. Consider a ChIP-chip tiling array experiment
with two conditions, a ChIP sample X1 targeting the pro-
tein of interest and a control sample X2. Each sample Xl
has ml replicates (l = 1, 2) providing measurements for K
genomic locations. The measurements for each probe are
summarised by the "shrinkage t" statistic [18]:

where  is a James-Stein shrinkage estimate of the probe
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Other moderated t statistics have been suggested and
could be used instead, most notably the empirical Bayes t
statistic used by Ji and Wong [7] and the moderated t of
Smyth [19]. All of these approaches are designed to
increase performance compared to the ordinary t statistic
by incorporating information from all probes on the
microarray into individual probe statistics. Here we
choose the "shrinkage t" because it does not require any
knowledge about the underlying distribution of probe
values while providing similar performance compared to
more complex models [18].

2.1 Hidden Markov Model
To detect enriched regions we use a two state discrete time
hidden Markov model with continuous emission distri-
butions and homogeneous transition probabilities (Fig-
ure 1), i.e., the transition probabilities depend only on the
current state of the model. The use of homogeneous tran-
sition probabilities assumes equally-spaced probes within
each observation sequence as well as a geometric distribu-
tion of the length of enriched regions. As discussed above
there will be some variation in probe distances. Using a
relatively small value for max_gap ensures that the
assumption of homogeneity holds at least approximately.
The two states of the model correspond to enrichment or
no enrichment in the ChIP sample. The model is charac-
terised by the set of states S = {S1, S2}, the initial state dis-
tribution p, the matrix of transition probabilities A and
the state specific emission density functions fi, i = 1, 2. The
emission distribution of state Si is modelled as a t distribu-
tion with location parameter μi, scale parameter σi, and νi
degrees of freedom.

The use of t distributions has the advantage that their sen-
sitivity to outliers can be adjusted via the degrees of free-
dom parameter, making them more robust and versatile

than normal distributions. This is particularly useful when
ν is estimated from the data [20]. It should be noted that
the yk modelled here are from a t-like distribution (Equa-
tion (1)). While this in itself might suggest the use of t dis-
tributions for the fis, they are primarily chosen for their
robustness. In the following we will refer to this model by
its parameter vector θ = (θ1, θ2), where θ1 is the ordered
pair (p, A) and θ2 the ordered triple (μ, σ, ν).

Given a hidden Markov model θ and an observation
sequence Y, it is possible to compute the sequence of
states Q = q1q2...qK that is most likely to produce Y. There
are several approaches to obtaining Q [21]. Usually Q is
computed either by maximising the posterior probabili-
ties P(qk = Si|Y; θ), k = 1, ..., K or by calculating the
sequence that maximises P(Q|Y; θ). The latter provides the
single most likely sequence of states and can be computed
efficiently by the Viterbi algorithm [22]. For the particular
model used here both approaches are equivalent.

2.2 Parameter Estimation
In this section we will discuss two different approaches to
estimate θ for the model described in Section 2.1. The
methods under consideration are the EM algorithm,
which is usually known as the Baum-Welch algorithm in
the context of HMMs, and Viterbi training. While the
Baum-Welch algorithm is guaranteed to converge to a
local maximum of the likelihood function, it is computa-
tionally intensive. Viterbi training provides a faster alter-
native but may not converge to a local maximum.

2.2.1 Initial Estimates
Both optimisation algorithms discussed here require ini-
tial parameter estimates. These are obtained from the data
by first partitioning the vector of observations Y into two
clusters using k-means clustering [23]. From these clusters
the location and scale parameters of the corresponding
states are obtained as the mean and variance of the obser-
vations in the cluster. In the following, ν1 = ν2 = 6 is used
as initial estimate for the degrees of freedom parameters.

2.2.2 Baum-Welch Algorithm
The Baum-Welch algorithm [16] is a well established iter-
ative method for estimating parameters of HMMs. It rep-
resents the EM algorithm [24] for the specific case of
HMMs. This algorithm can be used to optimise the transi-
tion parameters θ1 as well as the emission parameters θ2.
Each iteration of the algorithm consists of two phases.
During the first phase, the current parameter estimates are
used to determine for each probe statistic in the observa-
tion sequence how likely it is to be produced by the differ-
ent states of the model. In the second phase, parameters
for the emission distributions of each state are estimated
using contributions from all observations, according to
the probability that they were produced by the respective

Hidden Markov model for the analysis of ChIP-chip tiling array dataFigure 1
Hidden Markov model for the analysis of ChIP-chip 
tiling array data.
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state of the model. The state transition parameters are
updated in a similar fashion, accounting for the probabil-
ity of transitions between states based on the observation
sequence and the current model. After each iteration this
procedure results in a model which explains the observed
data better than the previous one, approaching a locally
optimal solution. Using this method parameter estimates
are updated until convergence is achieved. The details of
the resulting algorithm are outlined in Section 4.1.

This method of parameter estimation is computationally
expensive and time-consuming for a typical tiling array
data set. The computing time can be reduced by fixing the
degrees of freedom for the emission distributions in
advance, thus avoiding the root-finding required for the
estimation of these parameters. While this does not pro-
vide the same flexibility as estimating the required degree
of robustness from the data it reduces the complexity of
the optimisation problem. It is noted by Liu and Rubin
[25] that attempts to estimate the degrees of freedom are
more likely to produce results which are of little practical
interest. The impact on classification performance of this
choice is investigated in Section 2.3.

The formulation of the Baum-Welch algorithm used in
this article is based on the description given by Rabiner
[21] and on the EM algorithm derived by Peel and
McLachlan [26] for fitting mixtures of t distributions.

2.2.3 Viterbi Training
While the Baum-Welch algorithm described in Section
2.2.2 is expected to provide good parameter estimates, it
is computationally expensive. A faster model-fitting pro-
cedure can be devised by replacing the first phase of the
Baum-Welch algorithm with a maximisation step. This
method was introduced in [17] as segmental k-means and
is now commonly referred to as Viterbi training. Unlike
the Baum-Welch algorithm which allows each probe sta-
tistic to contribute to the parameter estimates for all states,
Viterbi training assigns each observation to the state that
is most likely to produce the given probe statistic. Thus
each observation contributes to exactly one state of the
model. While each iteration of this method is faster than
one iteration of the Baum-Welch algorithm some itera-
tions may decrease the likelihood of the model, thus fail-
ing to advance it towards a useful solution. See Section 4.2
for further details on the implementation of Viterbi train-
ing used here.

2.3 Testing
2.3.1 Simulated Data
To assess the ability to distinguish between enriched and
non-enriched probes of the models obtained by the differ-
ent parameter estimation methods discussed in Section
2.2, we simulate data with known enriched regions. To

ensure that the simulation study is providing meaningful
results, it is based as closely on real data as possible. To
this end, two independent analyses of the H3K27me3
data published by Zhang et al. [3] are carried out, one
using TileMap [7], the other based on our model. The
result of each analysis is used to generate a new dataset
with known enriched regions. See Section 4 for further
details. In the following these data are referred to as data-
sets I and II respectively. Since the simulation procedure is
likely to bias results towards the model that was used in
the process, we concentrate on the analysis of dataset I,
with some results for dataset II presented for comparison.
The use of data based on both models allows us to con-
sider their performance under advantageous and disad-
vantageous conditions.

2.3.2 Performance Measure
The performance of different models on these data is
determined in terms of false positive and false negative
rates at probe level. While the relative importance of false
positives and false negatives depends on the experiment
under consideration, they are often equally problematic
in the context of ChIP-chip experiments, especially when
considering experiments which investigate differences
between different cell lines or developmental stages,
where all incorrect classifications are of equal concern. In
this context, we define false positives as probes that are
classified as non-enriched by the analysis of the real data
but are called enriched in the subsequent analysis of sim-
ulated data, and vice versa for false negatives.

The output of each model is the estimated posterior prob-
ability of enrichment for each probe. In practice, probe
calls ("enriched" or "non-enriched") are generated from
this posterior probability based on a 0.5 cut-off. For any
given model, classification performance will change with
the chosen threshold. Thus we assess model performance
across a range of cut-offs, reporting the relative number of
false positives and false negatives as well as the error rate.
The latter is also used to determine the cut-off that mini-
mises incorrect classification results, and model perform-
ance is judged on the numbers of incorrect classifications
at this optimal cut-off and at the usual 0.5 cut-off, and on
the distance between the optimal cut-off and 0.5. The
trade-off between sensitivity and specificity provided by
the different models is characterised with ROC curves and
the associated AUC values.

Another measure of interest is the ability to characterise
the length distribution of enriched regions correctly.
When studying chromatin structure the extent of struc-
tural changes is of interest; this is the case for the data
studied in Section 2.3.7. This property of the different
models is investigated in Section 2.3.6.
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2.3.3 Estimating Degrees of Freedom
We now consider the performance of both the Baum-
Welch procedure and Viterbi training when all model
parameters, including the degrees of freedom ν, are esti-
mated from the data. Both parameter estimation methods
are used to fit an HMM to datasets I and II, and the per-
formance of resulting models is assessed in terms of the
achieved error rate (Figure 2), ROC curves (Figure 3) and
their associated AUC (Table 1) for both datasets. To assess
how well these methods perform in comparison to an
established algorithm, we also fit a TileMap model to the
two simulated datasets. The three models are compared to
each other, as well as an ad hoc model which simply uses,
without optimisation, the initial parameter estimates used
by the two parameter optimisation methods. When com-
paring the performance of these models on both simu-
lated datasets, it is important to consider that the

simulation procedure introduces a bias towards the
underlying model.

Estimating all parameters from the data with either the
Baum-Welch algorithm or Viterbi training leads to models
with high sensitivity, producing fewer false negatives than
TileMap for any given cut-off [see Additional file 1]. At the
same time they lead to an increased number of false posi-
tives [see Additional file 2] compared to TileMap, indicat-
ing a slight reduction of specificity. When considering the
error rate it becomes apparent that both Baum-Welch and
Viterbi training provide a favourable trade-off between
sensitivity and specificity. These models reduce the
number of incorrect classifications compared to TileMap
both at the usual 0.5 cut-off and at the optimal cut-off.
Moreover, while the Baum-Welch algorithm and Viterbi
training both lead to models with an optimal cut-off close
to 0.5 (0.51 and 0.42 respectively), TileMap provides an
optimal cut-off of 0.19, indicating that it underestimates
the posterior probability of enrichment. This becomes
even more apparent when considering the result for data-
set II where the optimal cut-off for TileMap is at 0.002

Error rate for different models on datasets I and IIFigure 2
Error rate for different models on datasets I and II. 
Error rate resulting from the different models on dataset I 
(left) and II (right). When the total number of incorrect 
probe calls is considered, both parameter estimation proce-
dures outperform TileMap on dataset I for cut-offs larger 
than 0.2. Both Baum-Welch and Viterbi training provide 
models with an optimal cut-off close to 0.5, while TileMap 
significantly underestimates the posterior probability result-
ing in an optimal cut-off of 0.19. The models with optimised 
parameters show similar performance on both datasets. On 
dataset II TileMap's performance is reduced in comparison to 
the results on dataset I. The main differences between the 
models considered here occur at error rates of 0–0.08. The 
relevant area of the figures in the top row is magnified in the 
plots below.

ROC curves for different models on datasets I and IIFigure 3
ROC curves for different models on datasets I and II. 
TileMap and the models with Baum-Welch and Viterbi train-
ing parameter estimates show similar performance on data-
set I (left) with a small advantage for the models with 
optimised parameters. Comparison with a model using ad 
hoc parameter estimates highlights the performance increase 
achieved by optimising model parameters. On dataset II 
(right) TileMap performs similarly to the model with ad hoc 
parameter estimates. Figures on the bottom provide a close-
up view of the plots above.
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compared to 0.5 for Baum-Welch and 0.41 for Viterbi
training. This result suggests that TileMap is more tuned
towards avoiding false positives than false negatives. From
the above results we estimate that the weight given to false
positives by TileMap is approximately 3.2 and 26 times
larger than the weight for false negatives on datasets I and
II respectively. The ROC curves (Figure 3) provide further
evidence that the models with MLEs outperform TileMap.
Although all three models perform well on dataset I, both
parameter optimisation methods lead to better results
than TileMap. The benefits of optimising parameter esti-
mates are further highlighted by the performance of the
model with ad hoc estimates that is used as starting point
for the optimisation procedures. On both datasets, opti-
mised parameters provide a notable increase in perform-
ance, with TileMap performing only slightly better than
the ad hoc model on dataset II.

2.3.4 Fixed Degrees of Freedom
Estimating ν, the degrees of freedom, for t distributions
from the data is time-consuming and may not be very
accurate, especially for relatively large values of ν. In this
section we investigate the effect of fixing ν a priori for both
states of the model. Only the case ν1 = ν2 is considered
here. The remaining parameters are estimated from the
training data using the Baum-Welch algorithm and Viterbi
training with ν = 3, 4, ..., 50. For each value of ν, we report
the error rate (Figure 4) as well as the AUC (Figure 5) on
the simulated data.

For the best combination of ν and cut-off, both parameter
estimation methods result in models with a classification
performance comparable to the case of variable degrees of
freedom (Figure 2). While the Baum-Welch algorithm
tends to produce models with an optimal cut-off close to
0.5, Viterbi training only achieves this for large values of
ν. Notably, the best classification performance of the
Viterbi trained model is achieved with 14 degrees of free-
dom and a 0.37 cut-off compared to 7 degrees of freedom
and a 0.49 cut-off from Baum-Welch. This results in a
decreased performance of the Viterbi model relative to the
Baum-Welch model at the 0.5 cut-off.

2.3.5 Convergence
To reduce the time required for parameter estimation it is
useful to limit the number of iterations. While each itera-

tion of the Baum-Welch algorithm is guaranteed to
improve the likelihood of the model, small changes to the
parameter values do not necessarily lead to significant
changes in the classification result. Furthermore, Viterbi
training is not guaranteed to converge to a local maximum
of the likelihood function and a likelihood based conver-
gence criterion may not be appropriate for this method.
Here we investigate the convergence of both algorithms
based on the error rate and AUC to gauge the number of
iterations required to achieve good classification results.
Parameter estimation is performed with 60 iterations for
both algorithms. Current estimates are used to classify the
test data at every 5th iteration and AUC (Figure 5) and
error rate (Figure 6) are determined.

The most striking difference in the convergence behaviour
of the two methods is that Viterbi training appears to
obtain good parameter estimates within a small number
of iterations. Further iterations of the algorithm do not
improve results substantially, whereas the Baum-Welch
procedure provides parameter estimates that are better

Table 1: AUC for different models on both simulated datasets.

TileMap Baum-Welch Viterbi-Training Viterbi-EM ad hoc

dataset I 0.9986 0.9998 0.9997 0.9998 0.9869
dataset II 0.9749 0.9995 0.9994 0.9995 0.9728

All models with optimised parameters outperform TileMap on both simulated datasets. While TileMap performs well on dataset I it is only slightly 
better than the model with ad hoc parameter estimates.

Model performance for different choices of νFigure 4
Model performance for different choices of ν. The 
Baum-Welch model (red) performs better for relatively small 
values of ν while Viterbi training (blue) favours larger ν. For 
the optimal choice of ν the Baum-Welch parameter esti-
mates lead to an optimal cut-off close to 0.5.
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than the ones obtained by Viterbi training, both in terms
of likelihood and classification performance, but takes
substantially longer to obtain these estimates. The Baum-
Welch algorithm not only requires more iterations than
Viterbi training, but the time required for each iteration is
also longer.

2.3.6 Length Distribution of Enriched Regions
When studying histone modifications one possible char-
acteristic of interest is the length of enriched regions. To
assess how accurately the different methods reflect the
length distribution of enriched regions, we compare the
length of regions predicted by TileMap and by the model
(using Baum-Welch parameter estimates) to the length
distribution of enriched regions in the simulated data (the
"true length distribution"). Note that this length distribu-
tion may vary from the one found in real data. Neverthe-
less this comparison highlights some of the differences
between the two models. Quantile-quantile plots of the
respective length distributions show that TileMap system-
atically underestimates the length of enriched regions
(Figure 7 (bottom left) and Figure 8 (bottom left)). While
this effect is relatively small on dataset I there is some
indication that it increases with region length and long
regions may not be characterised appropriately by
TileMap (Figure 7 (top left)). This observation is further
supported by the length distribution of enriched regions
produced by TileMap on dataset II (Figure 8 (left)).
Enriched regions in dataset II are generally longer than
regions in dataset I. This difference is not captured by

AUC for different choices of ν and increasing numberof iter-ationsFigure 5
AUC for different choices of ν and increasing num-
berof iterations. Change in AUC for different choices of ν 
(left). The Baum-Welch model performs better for relatively 
small values of ν while Viterbi training favours larger ν. 
Improvements in AUC with increasing number of iterations 
(right). The performance of the Viterbi trained model 
improves substantially during the first five iterations. Further 
iterations only produce small changes in the AUC. The 
Baum-Welch method requires more iterations to obtain the 
same AUC as as the Viterbi model. After 20 iterations the 
Baum-Welch model starts to outperform the Viterbi model.

Error rate at optimal and 0.5 cutoff for increasing number of iterationsFigure 6
Error rate at optimal and 0.5 cutoff for increasing 
number of iterations. Parameter estimates obtained by 
the Baum-Welch algorithm (filled symbols) and Viterbi train-
ing (open symbols) improve model performance with 
increasing nuber of iterations. Viterbi training quickly 
approaches its optimal solution and initially outperforms 
Baum-Welch. The final model produced by the Baum-Welch 
algorithm provides a lower error rate than Viterbi training.

Length distribution of enriched regions from dataset IFigure 7
Length distribution of enriched regions from dataset 
I. Quantile-quantile plots comparing length distributions of 
enriched regions found with TileMap (left) and with the 
model based on maximum likelihood estimates (right) to the 
true length distribution of enriched regions in dataset I. Fig-
ures on the bottom provide a close-up view of the plots 
above. Each dot represents a percentile of the length distri-
butions.
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TileMap. Both TileMap and the Baum-Welch trained
model produce several regions that are shorter than the
shortest enriched region in the simulated data (Figure 7
(bottom)). There are two possible explanations for these
short regions. They may be caused by underestimating the
length of enriched regions, possibly splitting one enriched
region into several predicted regions, or they may repre-
sent spurious enriched results produced by the model. In
each case there is the possibility that the occurrence of
extremely short regions is caused either by an intrinsic
shortcoming of the model or by artifacts introduced dur-
ing the simulation process. Since the simulation relies on
TileMap to identify enriched and non-enriched probes it
is inevitable that some probes will be misclassified. Sub-
sequently these probes may be included in the simulated
data, causing short disruptions of enriched and non-
enriched regions. A sufficiently sensitive model could
detect these unintended changes between enriched and
non-enriched states.

To investigate further which of these is the case, we first
examine the number of enriched probes contained in the

short regions found by the Baum-Welch model and by
TileMap respectively. The model with Baum-Welch
parameter estimates found 126 regions with less than 10
probes. These regions contain a total of 866 probes of
which 717 are in enriched regions. While this indicates
that the majority of short regions is due to underestimat-
ing the length of enriched regions, several spurious probe
calls remain. TileMap produced 249 regions with less than
10 probes, containing a total of 1781 probes, of which
1753 are in enriched regions. This is strong evidence that
almost all of these short regions are caused by underesti-
mating the length of enriched regions, and is consistent
with the above observation that TileMap systematically
underestimates the length of enriched regions.

To investigate whether the spurious short regions pro-
duced by the Baum-Welch model are due to an intrinsic
shortcoming of the model or are artifacts introduced by
the simulation procedure, we turn to real data. Here we
focus on enriched regions containing only a single probe,
which are most likely to be false positives. On dataset I the
Baum-Welch model produced six of these extremely short
regions. One of these probes is a true positive from an
enriched region containing ten probes, i.e., the length of
this region is underestimated by the Baum-Welch model.
Of the remaining five probes three are identical, leaving
three unique probes to be investigated further. For each of
these three probes, we determine its position in the real
data and its distance from enriched regions identified by
TileMap and by our model (Section 2.3.7). Two of the
probes are found to be located close to enriched regions
identified by TileMap (142 and 391 bp) and all three
probes are contained within enriched regions identified
by our model [see Additional file 3]. This suggests that
these probes may have been misclassified by TileMap dur-
ing the original analysis, leading to an overestimation of
the number of false positives produced by the Baum-
Welch model on dataset I.

2.3.7 Application to ChIP-Chip Data
To investigate the performance of our model further, we
apply it to the data of [3] and compare the result to the
original analysis. Based on the results of the simulation
study (Sections 2.3.3–2.3.6) we use the following proce-
dure:

1. Quantile normalise and log transform data;

2. Calculate probe statistics (Equation (2));

3. Obtain initial estimates (Section 2.2.1);

4. Use 5 iterations of Viterbi training to improve initial
estimates;

Length distribution of enriched regions from dataset IIFigure 8
Length distribution of enriched regions from dataset 
II. Quantile-quantile plots comparing length distributions of 
enriched regions found with TileMap (left) and with the 
model based on maximum likelihood estimates (right) to the 
true length distribution of enriched regions in dataset II. Fig-
ures on the bottom provide a close-up view of the plots 
above. Each dot represents a percentile of the length distri-
butions.
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5. Use 15 iterations of Baum-Welch algorithm to obtain
maximum likelihood estimates;

6. Apply resulting model to data to identify enriched
regions.

This results in the detection of 5285 H3K27me3 regions
covering 12.9 Mb of genomic sequence. Of these enriched
regions, 3962 (~75%) are overlapping at least one anno-
tated transcript. A total of 4982 or about 18.9% of all
annotated genes are found to be enriched for H3K27me3.
While most of the enriched regions cover a single gene,
some regions are found to contain up to seven genes (Fig-
ure 9(b)). Enriched regions are predominantly longer
than 1 kb with some extending over more than 20 kb (Fig-
ure 9(c)).

To assess whether there is a difference between regions of
the genome that show H3K27me3 enrichment and the
rest of the genome, we investigate the density of genes in
the neighbourhood of genes that appear to be regulated
by H3K27me3, and compare this to the gene density in
other regions of the genome. For this purpose we obtain
the gene density for the 50 kb upstream and downstream
of each gene as (bp annotated as genes)/100 kb. The
resulting gene densities for genes with and without
enriched regions are summarised in Figure 9(a). There are
visible differences between the two distributions which
we test for significance with a two sided Kolmogorov-
Smirnov test; this results in an approximate p-value of 2 ×
10-15. The significance of this result is further confirmed
by a resampling experiment: the smallest p-value obtained
from a series of 10000 resampled datasets is 1 × 10-6.

3 Conclusion
With the use of MLEs for all model parameters, our model
clearly improves classification performance on simulated

data compared to ad hoc estimates, and outperforms
TileMap. While our model produced some short regions
that appear to be false positives, they are readily explained
as a result of the simulation process. Comparison of
results on simulated and real data suggests that TileMap
produced a large number of false negatives in the original
analysis used as the basis for the simulation. Inevitably,
these false negatives were selected as part of non-enriched
regions during the simulation process. The fact that the
model with Baum-Welch parameter estimates was able to
identify these isolated enriched probes despite the non-
enriched contexts where they appeared emphasises the
high sensitivity of the model.

TileMap's apparent tendency to penalise false positives
more than false negatives clearly contributes to its rela-
tively low performance in our comparisons which are
based on the assumption that both types of error are
equally problematic. While this is the case for the applica-
tion considered here, one may argue that false positives
are indeed of greater concern in some cases. When this is
the case, TileMap's trade-off between sensitivity and spe-
cificity may lead to better results. However, it should be
noted that the relative weights given to false positives and
false negatives by TileMap can vary substantially between
datasets. The parameter estimation procedure used for our
model on the other hand provides consistent perform-
ance at the chosen cut-off.

The model-fitting procedure derived from the results of
the simulation study (Sections 2.3.3–2.3.6) provides a fast
and reliable approach to parameter estimation. This
method retains all the favourable properties of the Baum-
Welch algorithm while utilising the reduced computing
time provided by Viterbi training. The use of MLEs ensures
that model parameters are appropriate for the data.
Results from the simulation study show that estimating

Analysis of ChIP-chip dataFigure 9
Analysis of ChIP-chip data. (a) Gene density in areas surrounding genes that contain H3K27me3 enriched regions and 
genes that do not contain enriched regions. (b) Number of genes found in H3K27me3 regions. While most enriched regions 
cover a single gene, there is a substantial number of H3K27me3 regions that cover several genes and enriched regions are 
found to contain up to seven genes. (c) Length distribution of H3K27me3 regions.
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model parameters from the data improves the model's
ability to recognise enriched regions of varying length and
generally improves classification performance.

3.1 Future Work
The analysis of the H3K27me3 data (Section 2.3.7) largely
confirms the analysis of [3] although there are some nota-
ble differences. Most importantly, the H3K27me3 regions
detected by our analysis are longer than the ones deter-
mined by TileMap (Figure 10). While Zhang et al. [3]
found few regions longer than 1 kb, our analysis indicates
that over 70% of enriched regions have a length of at least
1 kb, with the longest region spanning over 20 kb. Accord-
ingly we find more regions that extend over several genes
(Figure 9(b)). This may have implications for conclusions
about the spreading of H3K27me3 regions in Arabidopsis.

At this stage, the biological significance of the observed
difference in gene density in the neighbourhood of
enriched and non-enriched genes is unclear. However, it
indicates that the two groups of genes differ in a signifi-
cant way. This suggests that the partition into enriched
and non-enriched genes produced by our analysis is
indeed meaningful.

The hidden Markov model presented in this article uses
homogeneous transition probabilities, assuming that all
probes are spaced out equally along the genome. To sat-
isfy this assumption at least approximately, we use a fixed
cut-off of 200 bp to partition the sequence of probe statis-
tics such that there are no large gaps between probes. This
arbitrary cut-off could be avoided by using a continuous
time hidden Markov model.

4 Methods
4.1 Baum-Welch Algorithm
The Baum-Welch algorithm [16] used to estimate param-
eters for our model is outlined in Section 2.2.2; further
details are given below. Computing the likelihood of the
long observation sequences produced by tiling arrays
involves products of many small contributions. This typi-
cally results in likelihoods below machine precision. To
avoid this effect computations are carried out in log-space,
using the identity

ln(x + y) = ln(x) + ln (1 + eln(y)-ln(x)). (4)

In the following we use ln∑ to denote summations which
should be computed via Equation (4). The sequence of
probe statistics Y is split into D observation sequences Y
(d) such that the distance between probes within each
observation sequence is at most max_gap and the distance
between the end points of different observation sequences
is greater than max_gap.

The emission distribution of state Si is given as

For a given parameter set θ we can obtain new parameter
estimates for transition probabilities by calculating

Here αk and βk are known as forward and backward varia-
bles. For observation sequence d, d = 1, ..., D, they are
defined as
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Length distribution of enriched regions from real dataFigure 10
Length distribution of enriched regions from real 
data. Length distribution of enriched regions as determined 
by TileMap (blue) and Baum-Welch (red). Region length is 
determined in terms of probes per region. Both distributions 
were truncated at 10 for the simulation, ensuring that all 
regions in the simulated data contain at least ten probes.
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where 1 ≤ i ≤ N, 1 ≤ i ≤ N, k = Kd - 1, ..., 1. Note that ln [P(Y

(d); θ)] is given by  We then calculate

Combining the estimates from all observation sequences
we obtain new parameter estimates for the transition
probabilities:

Calculations for the re-estimation of θ2 may involve nega-
tive values and cannot be carried out in log-space.

To obtain the required parameter estimates we first define

 and then compute

There is no closed form estimate for νi. To obtain  one

has to find a solution to the equation

where ψ is the digamma function. Standard root-finding
techniques are employed to find a solution to (20).

4.2 Viterbi Training
Viterbi training provides a faster alternative to the Baum-
Welch algorithm. See Section 2.2.3 for a high level
description of the algorithm. Details of the parameter esti-
mation procedure are given below. Instead of calculating
the conditional expectation of the complete data log like-
lihood, this algorithm first computes the most likely state
sequence Q given the observation sequence Y and the cur-
rent model θ. The sequence Y is partitioned according to
Q, assigning each observation to the state that it most
likely originated from. New estimates for θ1 are then
obtained by calculating

Updates for μ and σ are obtained as in Section 2.2.1. The

degrees of freedom ν can be either fixed in advance or esti-
mated from the data using Equation (20) by setting

 if  and  otherwise.

4.3 Simulated Data
In a first step following the original analysis by [3],
TileMap [7] is used with the HMM option to define
enriched and non-enriched probes. Note that, although
this classification of probes is not perfect, it can be
assumed that most probes are assigned to the correct
group. The length distribution of enriched and non-
enriched regions detected by TileMap is used to determine
the length distributions for the simulated data after
removing all regions that contain less than 10 probes (Fig-
ure 10). Data are generated by first determining the length
of enriched and non-enriched regions from the empirical
length distributions and then sampling data points from
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the respective TileMap generated clusters. Following this
procedure, 600 sequences with one to ten enriched
regions in each sequence are generated. A second dataset
is generated by applying the model described in Section 2.
Note that, although this procedure relies on the classifica-
tions produced by the respective models, the resampling
procedure will place individual probe values in a new con-
text of surrounding probes, which may lead to different
probe calls in the analysis of the simulated data. Prior to
analysis all data are quantile normalised.

5 Availability
The parameter estimation methods used in this article are
available as part of the R package tileHMM from the
authors' webpage http://www.bioinformatics.csiro.au/
TileHMM/ and from CRAN. The simulated data used in
this study is available from the authors' web page.

6 Authors' contributions
PH conducted the research and wrote the manuscript. DB
critically revised the manuscript. GS conceived the project.
DB and GS provided supervision to PH. All authors have
read and approved the final manuscript.

Additional material

Acknowledgements
PH is supported by an MQRES scholarship from Macquarie University and 
a top-up scholarship from CSIRO. The authors would like to thank Michael 
Buckley for his helpful suggestions.

References
1. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D,

Piccolboni A, Sementchenko V, Cheng J, Williams AJ, Wheeler R,
Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H,
Helt G, Struhl K, Gingeras TR: Unbiased Mapping of Transcrip-
tion Factor Binding Sites along Human Chromosomes 21
and 22 Points to Widespread Regulation of Noncoding
RNAs.  Cell 2004, 116:499-509.

2. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Hue-
bert DJ, McMahon S, Karlsson EK, III EJK, Gingeras TR, Schreiber SL,
Lander ES: Genomic Maps and Comparative Analysis of His-
tone Modifications in Human and Mouse.  Cell 2005,
120:169-181.

3. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Goodrich J, Jacob-
sen SE: Whole-Genome Analysis of Histone H3 Lysine 27 Tri-
methylation in Arabidopsis.  PLoS Biol 2007, 5(5):e129.

4. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Hend-
erson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR: Genome-wide
High-Resolution Mapping and Functional Analysis of DNA
Methylation in Arabidopsis.  Cell 2006, 126:1189-1201.

5. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn
JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M:
Global Identification of Human Transcribed Sequences with
Genome Tiling Arrays.  Science 2004, 306(5705):2242-2246.

6. Li W, Meyer CA, Liu XS: A hidden Markov model for analyzing
ChIP-chip experiments on genome tiling arrays and its appli-
cation to p53 binding sequences.  Bioinformatics 2005, 21(Suppl
1):i274-i282.

7. Ji H, Wong WH: TileMap: create chromosomal map of tiling
array hybridisations.  Bioinformatics 2005, 21(18):3629-3636.

8. Munch K, Gardner PP, Arctander P, Krogh A: A hidden Markov
model approach for determining expression from genomic
tiling micro arrays.  BMC Bioinformatics 2006, 7:239.

9. Huber W, Toedling J, Steinmetz LM: Transcript mapping with
high-density oligonucleotide tiling arrays.  Bioinformatics 2006,
22(16):1963-1970.

10. Reiss DJ, Facciotti MT, Baliga NS: Model-based deconvolution of
genome-wide DNA binding.  Bioinformatics 2008, 24(3):396-403.

11. Toyoda T, Shinozaki K: Tiling array-driven elucidation of tran-
scriptional structures based on maximum-likelihood and
Markov models.  The Plant Journal 2005, 43:611-621.

12. Du J, Rozowsky J, Korbel JO, Zhang ZD, Royce TE, Schultz MH, Sny-
der M, Gerstein M: A supervised hidden Markov model frame-
work for efficiently segmenting tiling array data in
transcriptional an ChIP-chip experiments: systematically
incorporating validated biological knowledge.  Bioinformatics
2006, 22(24):3016-3024.
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Additional file 1
False negative probe calls resulting from different models. For any 
given cut-off TileMap produces more false negatives than the Baum-
Welch and Viterbi trained models.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-343-S1.png]

Additional file 2
False positive probe calls resulting from different models. For any given 
cut-off TileMap produces fewer false positives than the Baum-Welch and 
Viterbi trained models.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-343-S2.png]

Additional file 3
Origin of isolated enriched probes in dataset I. The isolated enriched 
probes identified in dataset I by the Baum-Welch model originate from 
enriched regions identified by the Baum-Welch model in the real data. 
Two out of three probes are located close to enriched regions identified by 
TileMap.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-343-S3.png]
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