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Abstract
Background: Recent advances in high-throughput screening (HTS) techniques and readily
available compound libraries generated using combinatorial chemistry or derived from natural
products enable the testing of millions of compounds in a matter of days. Due to the amount of
information produced by HTS assays, it is a very challenging task to mine the HTS data for potential
interest in drug development research. Computational approaches for the analysis of HTS results
face great challenges due to the large quantity of information and significant amounts of erroneous
data produced.

Results: In this study, Decision Trees (DT) based models were developed to discriminate
compound bioactivities by using their chemical structure fingerprints provided in the PubChem
system http://pubchem.ncbi.nlm.nih.gov. The DT models were examined for filtering biological
activity data contained in four assays deposited in the PubChem Bioassay Database including assays
tested for 5HT1a agonists, antagonists, and HIV-1 RT-RNase H inhibitors. The 10-fold Cross
Validation (CV) sensitivity, specificity and Matthews Correlation Coefficient (MCC) for the models
are 57.2~80.5%, 97.3~99.0%, 0.4~0.5 respectively. A further evaluation was also performed for DT
models built for two independent bioassays, where inhibitors for the same HIV RNase target were
screened using different compound libraries, this experiment yields enrichment factor of 4.4 and
9.7.

Conclusion: Our results suggest that the designed DT models can be used as a virtual screening
technique as well as a complement to traditional approaches for hits selection.

Background
High-throughput screening (HTS) is an automated tech-
nique and has been effectively used for rapidly testing the
activity of large numbers of compounds [1-3]. Advanced
technologies and availability of large-scale chemical
libraries allow for the examination of hundreds of thou-
sands of compounds in a day via HTS. Although the exten-

sive libraries containing several million compounds can
be screened in a matter of days, only a small fraction of
compounds can be selected for confirmatory screenings.
Further examination of verified hits from the secondary
dose-response assay can be eventually winnowed to a few
to proceed to the medicinal chemistry phase for lead opti-
mization [4,5]. The very low success rate from the hits-to-
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lead development presents a great challenge in the earlier
screening phase to select promising hits from the HTS
assay [4]. Thus, the study of HTS assay data and the devel-
opment of a systematic knowledge-driven model is in
demand and useful to facilitate the understanding of the
relationship between a chemical structure and its biologi-
cal activities.

In the past, HTS data has been analyzed by various chem-
informatics methods [6-17], such as cluster analysis[10],
selection of structural homologs[11,12], data partitioning
[13-16] etc. However, most of the available methods for
HTS data analysis are designed for the study of a small, rel-
atively diverse set of compounds in order to derive a
Quantitative Structure Activity Relationship(QSAR) [18-
21] model, which gives direction on how the original col-
lection of compounds could be expanded for the subse-
quent screening. This "smart screening" works in an
iterated way for hits selection, especially for selecting
compounds with a specific structural scaffold [22]. With
the advances in HTS screening, activity data for hundreds
of thousands' compound can be obtained in a single
assay. Altogether, the huge amount of information and
significant erroneous data produced by HTS screening
bring a great challenge to computational analysis of such
biological activity information. The capability and effi-
ciency of analysis of this large volume of information
might hinder many approaches that were primarily
designed for analysis of sequential screening. Thus, in
dealing with large amounts of chemicals and their bioac-
tivity information, it remains an open problem to inter-
pret the drug-target interaction mechanism and to help
the rapid and efficient discovery of drug leads, which is
one of the central topics in computer-aided drug design
[23-30].

Although the (Quantitative) Structure Activity Relation-
ship-(Q)SAR has been successfully applied in the regres-
sion analysis of leads and their activities [18-21], it is
generally used in the analysis of HTS results for com-
pounds with certain structural commonalities. However,
when dealing with hundreds of thousands of compounds
in a HTS screening, the constitution of SAR equations can
be both complicated and impractical to describe explic-
itly.

Molecular docking is another widely used approach to
study the relationship between targets and their inhibitors
by simulating the interactions and binding activities of
receptor-ligand systems or developing a relationship
among their structural profiles and activities[31,32].
However, as it takes the interactions between the com-
pounds and the target into consideration, it has been
widely used for virtual screening other than to extract
knowledge from experimental activities.

Decision Tree (DT) is a popular machine learning algo-
rithm for data mining and pattern recognition. Compared
with many other machine learning approaches, such as
neural networks, support vector machines and instance
centric methods etc., DT is simple and produces readable
and interpretable rules that provide insight into problem-
atic domains. DT has been demonstrated to be useful for
common medical clinical problems where uncertainties
are unlikely [33-37]. It has been applied to some bioinfor-
matics and cheminformatics problems, such as character-
izations of Leiomyomatous tumour[38], prediction of
drug response[39], classification of antagonist of
dopamine and serotonin receptors[40], virtual screening
of natural products[41].

In this study, we propose a DT based model to generalize
feature commonalities from active compounds tested in
HTS screening. We utilized DT as the basis to develop the
model because it has been successfully applied in many
biological problems, and it is able to generate a set of rules
from the active compounds which can then be used for fil-
tering the untested compounds that are likely to be active
in the biological system of interest. Moreover, it has the
capability to handle the arbitrary degree of non-linear
structurally diversified compounds.

Many elegant algorithms for building decision tree mod-
els have been introduced and applied in real life prob-
lems, and C4.5[42] is one of the best known programs for
constructing decision trees. In this work, the DT based
model was developed on the basis of the Decision Tree
C4.5 algorithm[42]. The representation of the molecular
structures is described by the PubChem fingerprint sys-
tem. The DT based model was further examined by four
assays deposited in the PubChem Bioassay Database, the
HTS assay for 5-Hydroxytryptamine Receptor Subtype 1a
(5HT1a) antagonists(PubChem AID:612), HTS assay for
5HT1a agonists(PubChem AID 567), and two other
assays with PubChem AID 565 and 372 for screening the
HIV-1 RT-RNase H inhibitors. The results of 10-fold Cross
Validation (CV) over these HTS assays suggest the self-
consistency of the DT models. Since a model simply pro-
vides the rules based on the profiles of active compounds
in a specific HTS assay, the computationally generated
models were further examined using two HTS assays
which tested the same HIV RNase target, but used differ-
ent compound libraries and were performed independ-
ently by two individual research laboratories. Our results
suggest that these developed models could be used to val-
idate HTS assay data for noise reduction and to identify
hits through virtual screening of additional and larger
compound libraries.
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Results and discussion
Development of DT model
In this study, four DT models were developed for activity
data contained in PubChem bioassay AID 612, 567, 565
and 372 respectively, where compounds were screened for
various activities against several protein targets (Table 1).

Model fitting accuracies are used to examine whether the
proposed data model can handle the complex data and
whether the chemical fingerprint descriptors are sufficient
for model development. As shown in Table 2, the model
fitting accuracies of the four DT models were in the range
of 98.6% to 99.8%. This suggested that the DT based
models are able to fit the majority of the HTS data for the
model generalization. Sensitivity and specificity of each
developed model, which indicate the ratio of the active
and inactive compounds that can be successfully learned
by the DT model, are also reported in Table 2. The sensi-
tivities of the models built for AID 612, AID 567, AID 565
and AID 372 are 86.5%, 98.9%, 90.2% and 83.1% respec-
tively, while the specificities are all greater than 98%. The
model fitting accuracies for both active and inactive com-
pounds suggest strong feature-activity relationship among
compounds tested in the HTS screenings. The small frac-
tion of misrecognized compounds might result from the
HTS data noise, the discrepancy of bioactivities observed
from the compounds with same or similar chemical struc-
tures, or the competition with the overwhelming inactive
compounds

As shown by the comparison of the sensitivity and its cor-
responding specificity for each individual DT model, the
sensitivity is usually lower than the specificity and con-
tributes less to the overall accuracy. One possible explana-
tion is the existence of the data imbalance issue. Among
the HTS data analyzed in this study, the ratio between the
number of active compounds and that of inactives are
ranged from 1:51~1:176. Thus comparing to the active
compounds, the rules could be easily generalized for inac-
tive compounds when the chance of pattern reoccurrence
is higher. Data Imbalance problem is common in the high
throughput screening assay data. One HTS assay could
have tens of thousands of compounds tested and only

yield few dozens of hits. Due to this problem, the specifi-
city becomes less objective in performance evaluation.
Therefore, we also use the Matthews Correlation Coeffi-
cient (MCC) [43] as additional measure to evaluate the
model's performance.

MCC took both sensitivity and specificity into account
and it is generally used as a balanced measure in dealing
with data imbalance situation. As shown in Table 2, MCC
values fall in the range of 0.67~0.84 for the four HTS
assays, which again suggests the satisfactory performance
of the model training and indicates that the self recogni-
tion of the model is not random.

Model validation by self-consistency test
The validation of the DT based models and self-consist-
ency test were performed by 10-fold cross validation (CV)
method, in which the compound dataset tested in one
HTS assay was randomly split into 10 folds. These models
were set up using 9 randomly selected folds, and predic-
tion was done on the remaining fold.

The 10-fold CV results are given in Table 3. The overall
validation accuracies of all DT models ranged from 96.9%
to 98.9%. While the sensitivities of the models built for
AID 612, AID 567, AID 565 and AID 372 are 64.5%,
80.5%, 75.2% and 57.2% respectively, where the specifi-
cities were 99.1%, 99.0%, 97.3% and 98.9% respectively.
The more than 96% overall accuracies of the four DT
based models suggest overall good performance and the
CV analysis validates the reliability of the DT based mod-
els.

The sensitivity and specificity values given here represent
the classification accuracies for the active and inactive
compounds respectively. The sensitivity is lower than spe-
cificity to a certain extent. For example, the DT model for
the 4HTa antagonist activity data demonstrates 64.5%
sensitivity but 99.1% specificity. From the evidence given
in the previous section, imbalanced data, data noise and
data discrepancy could again account for the lower sensi-
tivities. Moreover, as about 90% percent of the data used
for training during the cross validations, the generaliza-

Table 1: HTS assays analyzed in this study

Protein Target The role of active 
compounds

PubChem Bioassay AID 
No.

Number of Compounds 
tested

Number of active 
compounds identified

5-Hydroxytryptamine 
Receptor Subtype 1a

agonist 567 64,906 366

antagonist 612 61,606 416
HIV-1 reverse 
transcriptase associated 
ribonuclease H

inhibitor 565 65,216 1,250

372 99,768 770
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Table 2: Recognition rate of Decision Tree models

Active compounds Inactive compounds

Bioassay PubChem 
Assay ID

TP FN Sensitivity TN FP Specificity Overall 
accuracy

MCC Model 
Complexity 
(Number of 
Nodes/
Number of 
Leaves/
Number of 
Features)

5HT1a agonist 567 362 4 98.9% 64,394 146 99.8% 99.8% 0.84 (321/161/149)
5HT1a 
antagonist

612 360 56 86.5% 60,909 281 99.5% 99.5% 0.70 (1135/568/261)

HIV-1 RT RNase 
H inhibitor

565 1,128 122 90.2% 63,070 896 98.6% 98.4% 0.70 (3003/1502/412)

HIV-1 RT RNase 
H inhibitor

372 640 130 83.1% 98,463 535 99.5% 99.3% 0.67 (2511/1256/370)

TP = true positives, the number of correctly recognized active compounds;
FN = false negative, the number of active compounds that the model is unable to recognize;
TN = true negative, the number of inactive compounds that successfully recognized by the model;
FP = false positive, the number of inactive compounds that the model is unable to recognize.

Table 3: Performance evaluation of Decision Tree models by 10 fold Cross Validation.

Active compounds Inactive compounds

Bioassay PubChem Assay ID TP FN Sensitivity TN FP Specificity Overall accuracy MCC

5HT1a agonist 567 295 71 80.5% 63913 627 99.0% 98.9% 0.50
5HT1a antagonist 612 268 148 64.5% 60656 534 99.1% 98.9% 0.46
HIV-1 RT RNase H 
inhibitor

565 940 310 75.2% 62269 1698 97.3% 96.9% 0.50

HIV-1 RT RNase H 
inhibitor

372 441 329 57.2% 97923 1075 98.9% 98.6% 0.40

TP = true positives, the number of correctly recognized active compounds;
FN = false negative, the number of active compounds that the model is unable to recognize;
TN = true negative, the number of inactive compounds that successfully recognized by the model;
FP = false positive, the number of inactive compounds that the model is unable to recognize.
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tion ability of the active compound dataset became easily
affected due to the limited sample size as compared to
that of the inactive compound dataset.

The learning capability of the DT model could also be
affected by the way the model was trained, such as the
minimum count of compound instances required for a
decision node. However, it primarily depends on the data-
sets used for training. Although the imbalanced active and
inactive compound datasets have an effect on the per-
formance of the 10-fold CV, our results still show that the
models are self-consistent. In addition, compounds and
their activity data in HTS screens are able to converge
toward a discrimination model with encouraging accura-
cies. In addition, the MCC values ranged from 0.4 to 0.5,
again indicating the potential of the models to identify
potential hits.

Application of DT models to select potential active 
compounds
In this study, independent evaluation of the DT based
models was attempted by using two HTS assays,
PubChem AID 565 and 372, which were aimed at identi-
fying HIV-1 RT RNase H inhibitors.

Comparison of the compound libraries of these two HTS
assays were first performed, demonstrating the extent of
similarity of the active compounds between the two
assays. By using Tanimoto coefficient[11,12] as a meas-
urement for the compound similarities, there are only six
active compounds that were found to be similar with Tan-
imoto coefficient threshold of 95%. This suggested the
overlap of the active compounds in these two assays was
very limited. It maybe of interest to investigate whether
the DT model built with one compound set can be used
to filter out hits identified with another assay where a dif-
ferent compound library was screened. To this end, DT
models of these two HTS assays were first developed inde-
pendently and then each model was applied to classify the
compounds screened by the other assay. An enrichment
factor, which simply describes the proportion of active
compounds from any given collection compared with
randomly picked compounds [44], was calculated as
assessment for the classification performance of each
model.

Assume N compounds are tested in a HTS assay sample
where A compounds have been experimentally verified as
bioactive. By virtual screening, which is the activity classi-
fication using DT model in this study, Ns compounds are
predicted as active and among these Na belongs to the
group of known bioactive compounds. A randomly
picked sample will on average contain ANs/N active mol-
ecules. Therefore, the formula for calculating the enrich-
ment factor is NaN/NsA.

The enrichment factors for cross dataset prediction of HIV
RNase H inhibitors of AID 372 and 565 are 4.4 and 9.7
respectively. From the virtual screening point of view,
which is focusing on selecting the true hits while exclud-
ing the false positives as much as possible, the results sug-
gest that the model derived from these two bioassays have
certain generalization abilities to increase the odds of
selecting true hits.

On the other hand, the sensitivities of the DT models
based on data sets AID 372 and 565 are 0.4% and 6.9%,
and the specificities are 98.5% and 99.9% respectively,
which yield corresponding MCC value of 0.03 and 0.04,
apparently the sensitivities and MCC values in this exper-
iment are "poor" comparing to the cross validation study.
This is not surprising, and indeed is well expected as the
dramatic chemical structural differences between the two
data sets (AID 372 and AID 565), and the models derived
from the individual datasets may carry overwhelming
localization features that might not be largely applicable
to each other. This also leaves the gap to be filled in for a
robust statistical model, better representation of physical
chemical properties, enlarged and diversified dataset, and
enhanced quality of the experimental accuracy in the
future.

Nevertheless, this preliminary test using DT model as vir-
tual screening technique yields encouraging enrichment
for selection of active compounds when applied to
another HTS activity dataset. It suggests that, despite of the
very low similarities between the active compounds from
the two HTS assays, certain common profiles of the active
compounds can be extracted using the DT model, which
can ultimately be very useful for virtual screening tasks.

Conclusion
In this study, we use derived DT models based on struc-
tural fingerprints of compounds to select biologically
interesting compounds from HTS assay dataset. Four HTS
assays were analyzed to determine to what extent the
designed models can be applied to the compound librar-
ies of an unknown domain. Our results suggest that the
DT based models can be successfully used to derive com-
mon characteristics from HTS data, and the models can
serve as filters to facilitate the selection of compounds
against the same target. These DT models could also be
used to eliminate HTS hits arising from data noise or
those lacking statistical significance.

The development of the model is a learning process. Thus,
the potential of the developed model is limited to the
known active compounds and the properties used for
training, and limited to the distribution of the compound
collection to which the model is applied. With the growth
in the number of compounds to be screened and the
Page 5 of 8
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improvement over data quality produced with HTS assay,
a more robust model could be developed with increased
ability for selecting biologically interesting small mole-
cules from a diverse compound library.

Methods
Datasets
There are over 500 assays deposited in the PubChem Bio-
assay database as of May 1st, 2007. About 200 of them
have protein targets. In this study, four HTS assays were
selected from the PubChem bioassay database. The crite-
ria for the selection were that a substantial number of
compounds have been tested in one assay and that the
number of active compounds is in the hundreds to dem-
onstrate statistical significance. These HTS assays are 5-
Hydroxytryptamine Receptor Subtype 1a (5HT1a) antag-
onists with PubChem BioAssay AID 612, HTS assay for
screening 5HT1a agonists with AID 567, and PubChem
bioassays AID 565, AID 372 for screening HIV-1 RT-
RNase H inhibitors. The number of structurally distinct
compounds for these four bioassays and the number of
active and inactive compounds are summarized in Table
1. Compound bioactivities outcomes have been described
in a binary form, active and inactive, as specified by the
assay depositor, and were retrieved from PubChem Bio-
Assay database.

PubChem Fingerprint System
The numerical understanding of chemical structures is
described by a binary substructure fingerprint generated
by the PubChem Fingerprint System.

A substructure is a fragment of a chemical structure, such
as a type of ring system, atom pairing, or atom environ-
ment (nearest neighbours). A fingerprint is an ordered list
of binary (1/0) bits. Each bit represents a Boolean deter-
mination of the presence of a fragment of a chemical
structure. The PubChem fingerprint has a total of 881 bits
and is composed of 7 sections such as Hierarchic Element
Counts, chemical rings, and simple atom pairs, simple
atom nearest neighbours, detailed atom information and
two sections of SMARTS patterns. A detailed description
and the full list of fingerprint bits can be accessed at ftp://
ftp.ncbi.nlm.nih.gov/pubchem/specifications/
pubchem_fingerprints.txt.

The 2D structure of each compound was used to generate
a binary substructure fingerprint.

Decision Tree based Filtering Method
DT is an acyclic graph in which its interior vertices specify
testing of a single attribute of a feature vector and its leaves
indicate the class of the decision [45-47]. It was con-
structed by recursively splitting the sample set, with each
subset giving rise to one new vertex connected with an

edge to its parent. This procedure continues until all sam-
ples at each leaf belong to the same class. The working
flow of DT is similar to a logical tree structure that starts
from the topmost node, and every decision of the node
determines the direction of next node movement until the
end of the tree branch node is reached. In this study, we
performed DT analysis by utilizing the C4.5 core library
[42].

As the filtering system is designed to choose the com-
pounds of interest with certain features' commonalities to
those compounds considered as active in the HTS assay,
the binary representation of the activity outcomes were
used to categorize these compounds. The structural finger-
print of every compound was processed by the PubChem
fingerprints system subsequently for numerical descrip-
tion of the dataset for model training. To derive the mod-
els, the logical decision tree is then examined for error
pruning, which is the removal of branches that are
deemed to provide little or no gain in statistical accuracy
of the model.

Model Self-consistency evaluation
The model self-consistency evaluation is performed using
the 10 fold CV approach. As the HTS data are usually
diversely distributed and not error free, the CV evaluation
of the DT model is subjected to representatives from both
the compounds used for training and for testing. Thus, for
the balance between the computation cost and the evalu-
ation of the model generalization ability, the 10 fold CV
approach is chosen to assess the self-consistency of the
model [48].

Under the assumption that the distribution of different
subsets from one HTS assay is approximately equal, the
quality of the model can be proven if the model built on
the top of a portion of the data can be generalized to oth-
ers during the self-consistency evaluation.

Measurement of accuracies
Model accuracy is measured by sensitivity, specificity, and
a combined parameter called "overall accuracy." The sen-
sitivity and specificity are defined as the following:

where the true positive (TP) is the number of compounds
correctly predicted as active, false negative (FN) is the
number of compounds incorrectly predicted as inactive,
true negative (TN) is the number of compounds correctly
predicted as inactive, and false positive (FP) is the number
of compounds incorrectly predicted as active. Thus, the
overall accuracy is defined as

.

Sensitivity TP
TP FN Specificity= + = +( ) , ,TN

(TN FP)

Overall Accuracy TP TN
TP FN TN FP_ %= ×+

+ + + 100
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In addition to compute sensitivity and specificity, to fur-
ther evaluate the classification performance on a dataset
containing imbalanced active and inactive compounds,
Matthews correlation coefficient (MCC)[49] is also calcu-
lated as given by the following equation

MCC ranges from -1 to 1, and suggests the randomness of
the model.

Use of DT models to select compounds of interest
The best model is optimized by pruning the decision tree
to minimize the classification errors. With the knowledge
learned from the tested compounds and their bioactivi-
ties, one can apply these trained rules to filter new com-
pounds that are likely to be active. In addition to the
validation of the DT models with CV approach, applica-
tion of models for the prediction of bioactivity classifica-
tion have been attempted by using two HTS assays for
identifying HIV-1 RT RNase inhibitors. Both of these two
HTS assays are designed for the screening of the HIV-1 RT
RNase H target. In spite of the differences in the design of
HTS assays and in the selection of compound libraries, the
underlying knowledge of those inhibition compounds
was assumed to be similar or interpretable from one
another. To this end, the optimized DT models of these
two HTS assays were developed independently and were
applied to examine the other compound collection as vir-
tual experiments for identifying potential inhibitors.

Computation Software
The implementation of the Decision Tree-based models
was based on PubChem Fingerprint System, OpenEye
OEChem C++ library, NCBI C++ toolkit library, and the
C4.5 core library.

Authors' contributions
All authors participated in development of the methods,
discussions and preparation of the manuscript.

Acknowledgements
This research was supported by the Intramural Research Program of the 
NIH, National Library of Medicine. We acknowledge the editorial assist-
ance of the NIH Fellows Editorial Board.

References
1. Burbaum JJ, Sigal NH: New technologies for high-throughput

screening.  Curr Opin Chem Biol 1997, 1(1):72-78.
2. Hann MM, Oprea TI: Pursuing the leadlikeness concept in phar-

maceutical research.  Curr Opin Chem Biol 2004, 8(3):255-263.
3. Cox B, Denyer JC, Binnie A, Donnelly MC, Evans B, Green DV, Lewis

JA, Mander TH, Merritt AT, Valler MJ, et al.: Application of high-
throughput screening techniques to drug discovery.  Prog Med
Chem 2000, 37:83-133.

4. Walters WP, Namchuk M: Designing screens: how to make your
hits a hit.  Nat Rev Drug Discov 2003, 2(4):259-266.

5. Kevorkov D, Makarenkov V: Statistical analysis of systematic
errors in high-throughput screening.  J Biomol Screen 2005,
10(6):557-567.

6. Parker CN, Schreyer SK: Application of chemoinformatics to
high-throughput screening: practical considerations.  Methods
Mol Biol 2004, 275:85-110.

7. Lipinski CA: Drug-like properties and the causes of poor solu-
bility and poor permeability.  J Pharmacol Toxicol Methods 2000,
44(1):235-249.

8. Joseph-McCarthy D: Computational approaches to structure-
based ligand design.  Pharmacol Ther 1999, 84(2):179-191.

9. Brown N, Zehender H, Azzaoui K, Schuffenhauer A, Mayr LM, Jacoby
E: A chemoinformatics analysis of hit lists obtained from
high-throughput affinity-selection screening.  J Biomol Screen
2006, 11(2):123-130.

10. Tamura SY, Bacha PA, Gruver HS, Nutt RF: Data analysis of high-
throughput screening results: application of multidomain
clustering to the NCI anti-HIV data set.  J Med Chem 2002,
45(14):3082-3093.

11. Martin YC, Kofron JL, Traphagen LM: Do structurally similar mol-
ecules have similar biological activity?  J Med Chem 2002,
45(19):4350-4358.

12. Willett P, Barnard JM, Downs GM: Chemical Similarity Search-
ing.  J Chem Inf Comput Sci 1998, 38:983-996.

13. Rusinko A 3rd, Farmen MW, Lambert CG, Brown PL, Young SS:
Analysis of a large structure/biological activity data set using
recursive partitioning.  J Chem Inf Comput Sci 1999,
39(6):1017-1026.

14. Xue L, Stahura FL, Bajorath J: Cell-based partitioning.  Methods
Mol Biol 2004, 275:279-290.

15. van Rhee AM, Stocker J, Printzenhoff D, Creech C, Wagoner PK,
Spear KL: Retrospective analysis of an experimental high-
throughput screening data set by recursive partitioning.  J
Med Chem 2001, 3(3):267-277.

16. van Rhee AM: Use of recursion forests in the sequential
screening process: consensus selection by multiple recursion
trees.  J Chem Inf Comput Sci 2003, 43(3):941-948.

17. Traeger M, Eberhart A, Geldner G, Morin AM, Putzke C, Wulf H,
Eberhart LH: [Artificial neural networks. Theory and applica-
tions in anesthesia, intensive care and emergency medicine].
Anaesthesist 2003, 52(11):1055-1061.

18. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L,
Vlietinck AJ, Berghe D Vanden: Structure-activity relationship
and classification of flavonoids as inhibitors of xanthine oxi-
dase and superoxide scavengers.  J Nat Prod 1998, 61(1):71-76.

19. Kauffman GW, Jurs PC: QSAR and k-nearest neighbor classifi-
cation analysis of selective cyclooxygenase-2 inhibitors using
topologically-based numerical descriptors.  J Chem Inf Comput
Sci 2001, 41(6):1553-1560.

20. Mattioni BE, Jurs PC: Development of quantitative structure-
activity relationship and classification models for a set of car-
bonic anhydrase inhibitors.  J Chem Inf Comput Sci 2002,
42(1):94-102.

21. Pirard B, Pickett SD: Classification of kinase inhibitors using
BCUT descriptors.  J Chem Inf Comput Sci 2000, 40(6):1431-1440.

22. Yan SF, Asatryan H, Li J, Zhou Y: Novel statistical approach for
primary high-throughput screening hit selection.  J Chem Inf
Model 2005, 45(6):1784-1790.

23. Hibert MF, Gittos MW, Middlemiss DN, Mir AK, Fozard JR: Graph-
ics computer-aided receptor mapping as a predictive tool for
drug design: development of potent, selective, and stere-
ospecific ligands for the 5-HT1A receptor.  J Med Chem 1988,
31(6):1087-1093.

24. Loew GH, Villar HO, Jung W, Davies MF: Computer-aided drug
design for the benzodiazepine receptor site.  NIDA Res Monogr
1991, 112:43-61.

25. Marshall GR: Computer-aided drug design.  Annu Rev Pharmacol
Toxicol 1987, 27:193-213.

26. Ooms F: Molecular modeling and computer aided drug
design. Examples of their applications in medicinal chemis-
try.  Curr Med Chem 2000, 7(2):141-158.

27. Reddy MR, Erion MD: Computer-aided drug design strategies
used in the discovery of fructose 1, 6-bisphosphatase inhibi-
tors.  Curr Pharm Des 2005, 11(3):283-294.

28. Struthers RS, Rivier J, Hagler AT: Molecular dynamics and mini-
mum energy conformations of GnRH and analogs. A meth-

MCC
TP TN FN FP

TP FN TP FP TN FN TN FP
= ⋅ − ⋅

+ + + +( )( )( )( )
Page 7 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9667842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9667842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15183323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15183323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10845248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10845248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12669025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12669025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16103415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16103415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15141111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15141111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10596905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10596905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10614024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10614024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10614024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15141116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12767153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12767153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12767153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14992094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14992094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11749582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11749582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11749582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11855972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11855972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11855972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11128102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11128102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16309285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16309285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3373482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3373482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3373482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1661381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1661381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3555315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10637360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10637360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10637360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3890664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3890664


BMC Bioinformatics 2008, 9:401 http://www.biomedcentral.com/1471-2105/9/401
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

odology for computer-aided drug design.  Ann N Y Acad Sci
1985, 439:81-96.

29. Vedani A: [Computer-Aided Drug Design: An Alternative to
Animal Testing in the Pharmacological Screening].  Altex
1991, 8(1):39-60.

30. Veselovsky AV, Ivanov AS: Strategy of computer-aided drug
design.  Curr Drug Targets Infect Disord 2003, 3(1):33-40.

31. Jenwitheesuk E, Samudrala R: Prediction of HIV-1 protease
inhibitor resistance using a protein-inhibitor flexible docking
approach.  Antivir Ther 2005, 10(1):157-166.

32. Lybrand TP: Ligand-protein docking and rational drug design.
Curr Opin Struct Biol 1995, 5(2):224-228.

33. Kokol P, Zorman M, Stiglic MM, Maleiae I: The limitations of deci-
sion trees and automatic learning in real world medical deci-
sion making.  Medinfo 1998, 9(Pt 1):529-533.

34. Aspinall P, Hill AR: Clinical inferences and decisions – II. Deci-
sion trees, receiver operator curves and subjective probabil-
ity.  Ophthalmic Physiol Opt 1984, 4(1):31-38.

35. Sprogar M, Kokol P, Zorman M, Podgorelec V, Yamamoto R, Masuda
G, Sakamoto N: Supporting medical decisions with vector
decision trees.  Medinfo 2001, 10(Pt 1):552-556.

36. Kuo WJ, Chang RF, Chen DR, Lee CC: Data mining with decision
trees for diagnosis of breast tumor in medical ultrasonic
images.  Breast Cancer Res Treat 2001, 66(1):51-57.

37. Wellman MP, Eckman MH, Fleming C, Marshall SL, Sonnenberg FA,
Pauker SG: Automated critiquing of medical decision trees.
Med Decis Making 1989, 9(4):272-284.

38. Decaestecker C, Remmelink M, Salmon I, Camby I, Goldschmidt D,
Petein M, Van Ham P, Pasteels JL, Kiss R: Methodological aspects
of using decision trees to characterise leiomyomatous
tumors.  Cytometry 1996, 24(1):83-92.

39. Sabbagh A, Darlu P: Data-mining methods as useful tools for
predicting individual drug response: application to CYP2D6
data.  Hum Hered 2006, 62(3):119-134.

40. Kim HJ, Choo H, Cho YS, Koh HY, No KT, Pae AN: Classification
of dopamine, serotonin, and dual antagonists by decision
trees.  Bioorg Med Chem 2006, 14(8):2763-2770.

41. Ehrman TM, Barlow DJ, Hylands PJ: Virtual screening of Chinese
herbs with random forest.  J Chem Inf Model 2007, 47(2):264-278.

42. Quinlan JR: C4.5: programs for machine learning.  San Mateo,
Calif.: Morgan Kaufmann Publishers; 1993. 

43. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H: Assessing
the accuracy of prediction algorithms for classification: an
overview.  Bioinformatics 2000, 16(5):412-424.

44. Xu H: Retrospect and prospect of virtual screening in drug
discovery.  Curr Top Med Chem 2002, 2(12):1305-1320.

45. Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoff-
mann D, Korn K, Selbig J: Diversity and complexity of HIV-1
drug resistance: a bioinformatics approach to predicting
phenotype from genotype.  Proc Natl Acad Sci USA 2002,
99(12):8271-8276.

46. Russell Stuart J, Norvig P: Artificial intelligence: a modern
approach.  Upper Saddle River, N.J.; [Great Britain]: Prentice Hall;
2003. 

47. Quinlan JR: Induction of Decision Trees.  Machine Learning 1986,
1(1):81-106.

48. Cyril G: Note on Free Lunches and Cross-Validation.  Neural
Computation 1997, 9(6):1245-1249.

49. Matthews BW: Comparison of the predicted and observed sec-
ondary structure of T4 phage lysozyme.  Biochim Biophys Acta
1975, 405(2):442-451.
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3890664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11182904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11182904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12570731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12570731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15751773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15751773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15751773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7648325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6709368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6709368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6709368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11368410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11368410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11368410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2796635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8723906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8723906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8723906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17057402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17057402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17057402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16387502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16387502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16387502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17381165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17381165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10871264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10871264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10871264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12470282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12470282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12060770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12060770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12060770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1180967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1180967
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Development of DT model
	Model validation by self-consistency test
	Application of DT models to select potential active compounds

	Conclusion
	Methods
	Datasets
	PubChem Fingerprint System
	Decision Tree based Filtering Method
	Model Self-consistency evaluation
	Measurement of accuracies
	Use of DT models to select compounds of interest
	Computation Software

	Authors' contributions
	Acknowledgements
	References

