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Abstract
Background: The Gene Ontology is a controlled vocabulary for representing knowledge related
to genes and proteins in a computable form. The current effort of manually annotating proteins
with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in
literature, which urges the development of text mining approaches to facilitate the process by
automatically extracting the Gene Ontology annotation from literature. The task is usually cast as
a text classification problem, and contemporary methods are confronted with unbalanced training
data and the difficulties associated with multi-label classification.

Results: In this research, we investigated the methods of enhancing automatic multi-label
classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We
have studied three graph-based multi-label classification algorithms, including a novel stochastic
algorithm and two top-down hierarchical classification methods for multi-label literature
classification. We systematically evaluated and compared these graph-based classification
algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing
the information from the structure of the Gene Ontology graph, the graph-based multi-label
classification methods can significantly improve predictions of the Gene Ontology terms implied by
the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting
Gene Ontology annotations (to curators) that are closely related to the true annotations even if
they fail to predict the true ones directly. A software package implementing the studied algorithms
is available for the research community.

Conclusion: Through utilizing the information from the structure of the Gene Ontology graph,
the graph-based multi-label classification methods have better potential than the conventional flat
multi-label classification approach to facilitate protein annotation based on the literature.

Background
A thrust in bioinformatics is to acquire and transform con-
temporary knowledge from biomedical literature into
computable forms, so that computers can be used to effi-
ciently organize, retrieve and discover the knowledge. The

Gene Ontology (GO) [1] is a controlled vocabulary used
to represent molecular biology concepts, which is the de
facto standard for annotating genes/proteins. The concepts
in GO, referred to as GO terms, are organized in directed
acyclic graphs (DAGs) to reflect hierarchical relationships
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among concepts. Currently, the process of extracting bio-
logical concepts from biomedical literature to annotate
genes/proteins is manually performed by domain experts,
whose roles are indispensable to ensure the accuracy of
the acquired knowledge. However, the rate of manual
annotation is outpaced by the growth of information in
the biomedical literature [2]. Automatically performing
literature-based GO annotation has drawn wide attention
from the biomedical text mining community [3-8]. In
addition to numerous publications by individual
researchers, a special track was devoted to the task in the
BioCreative conference in the form of a challenge from
the biomedical text mining community [3]. Similar tasks
were also investigated in the genomic track of the Text
REtrieval Conference (TREC) [4].

Generally, the task of GO annotation based on free text of
the literature can be cast as a text classification problem.
Given a protein and the literature associated with it, one
can potentially annotate the protein according to the clas-
sification (labeling) of the literature, for which various
supervised classifiers can be trained, with the GO terms as
target classes and the tokens in the training texts as input
features. Due to the hierarchical nature of the GO con-
cepts, GO annotation is also intrinsically a multi-label
classification problem in that, when a protein is anno-
tated with a GO term t, it is also considered to be anno-
tated with all ancestors of t. A common approach to deal
with multi-label classification in the machine learning
field is to train multiple one-vs-rest binary classifiers, such
that each classifier learns to discriminate cases of one class
from the remaining classes [9]. Given a test case, all clas-
sifiers in such a system are invoked to make calls, and the
case is labeled with the classes which turn out to be posi-
tive. Although such an approach can be adopted to per-
form GO annotation, it ignores the structure of GO and
suffers from the following shortcomings. Firstly, the
unbalanced training cases make learning difficult. This is
because the number of training cases for an individual
class is usually much smaller than the number of cases of
all other classes combined in a multi-label classification
scenario. Secondly, the outputs of such a system might
not be compatible to the existing structure of classes, e.g.,
a case is labeled with a class, c, but not the parents of c.

Hierarchical classification takes into account the relation-
ships among the target classes during training and outputs
multi-labels that comply with the class relations. Hierar-
chical classification has received growing attention in the
machine learning field in recent years [10-13]. In the bio-
informatics domain, the hierarchical structure of GO was
utilized to classify proteins based on various biological
data, e.g., gene sequences and microarray [10,14,15].
With respect to literature-based GO annotation, reports
from text mining workshops have explored hierarchical

text classification for GO annotation, e.g., BioLink [16]
and BioCreative [3,17]. In the study by Kiritchenko et al
[16], a hierarchical classification system was built with
AdaBoost algorithms as base classifiers. On the other
hand, Verspoor et al [17] attempted to classify documents
by utilizing the GO hierarchy structure to identify a set of
candidate GO terms. In our study, we investigated and
evaluated the performance of hierarchical classification
systems built with state-of-the-art text classification meth-
ods, namely the support vector machine (SVM) and naïve
Bayes classifier. In addition to conventional hierarchical
classification, we also introduced a novel stochastic classi-
fication algorithm, referred to as random GO walk
(RGOW), to perform probabilistic, graph-based multi-
label classification. The motivation for RGOW is, by
employing a stochastic mechanism, to alleviate the poten-
tial local maximum problem that results from the greedy
search of top-down hierarchical classification.

The main goal of this study is to systematically investigate
and evaluate the advantage, or lack of it, of a general class
of graph-based multi-label classification methods (based
on directed or undirected graphs). More specifically, we
have studied the conventional non-hierarchical multi-
label classification for GO annotation, the RGOW algo-
rithm, and two top-down hierarchical classification algo-
rithms. Our results show that graph-based multi-label
classification methods significantly enhance the classifica-
tion performance evaluated with metrics that measure
exact matches. In addition, our methods are also capable
of suggesting GO annotations closely related to the origi-
nal annotations on the GO graph, even when they fail to
predict them directly.

Results
PubMed augmented GO graph
In this study, the task of literature-based gene/protein
annotation was cast as a graph-based classification prob-
lem. We constructed a PubMed augmented GO graph (see
the Methods section) using the Biological Process branch
of the GO combined with the Gene Ontology Annotation
(GOA) [18] corpus. In this graph, a node represents a GO
term, an edge represents the semantic relationship
between a pair of GO term, and the structure of the graph
follows the definition of the Biological Process ontology
from the Gene Ontology Consortium. In addition, we fur-
ther augmented the information of the graph by adding
sets of PubMed identification numbers to each GO node
as attributes of the object. This enables us to further asso-
ciate each GO node with a text classifier to perform graph-
based classification. Although we only studied the per-
formance of graph-based classification on the Biological
Process domain of the GO, the results would likely gener-
alize to the Molecular Function and Cellular Component
domains because the tasks are essentially the same.
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Figure 1 shows a subgraph of the PubMed augmented GO
graph, illustrating hierarchical relationships between GO
terms (nodes) organized as a DAG. Each node is associ-
ated with two sets of PMIDs: a set of PMIDs explicitly
associated with the node, referred to as nodeUniqPMIDs;
and a set consisting of all PMIDs associated with the node
and its descendants, referred to as nodeTotalPMIDs. The
cardinalities (sizes) of the nodeUniqPMIDs and nodeTotal-
PMIDs sets are shown (in Figure 1) as numbers within the
parentheses next to the GO terms; the definitions of nodes
are shown in the text boxes below the nodes.

We further investigated the distribution of PubMed docu-
ments over the GO graph, which provides information on
the state of current manual GO annotation processes, the
degree of difficulty of training a literature-based GO anno-
tation algorithm, and the motivation for graph-based clas-
sification. In Figure 2, Panel A shows the histogram of the

unique GO terms grouped according to the number of
training documents associated with each term (the cardi-
nality of the unique GO terms' nodeTotalPMIDs). It can be
seen that many GO terms are associated with fewer than
10 training documents. One may reason that it is very dif-
ficult (if possible at all) to train accurate and generalizable
text classifiers for the GO terms with so few training doc-
uments. Therefore, a more effective approach is to pool
the training cases from these nodes to their ancestors and
train more reliable classifiers at the ancestor nodes, which
naturally leads to the graph-based multi-label classifica-
tion approach. Panel B of Figure 2 shows the count of
annotation instances of the GO terms, grouped according
to the number of training documents associated with
them. It can be seen that, although a relatively small
number of GO terms have more than 20 training cases,
the instances of observing these GO terms constitute a
fairly large portion of all observed GO annotations. Thus,

A subgraph of the PubMed augmented GO graph constructed using the GOA data setFigure 1
A subgraph of the PubMed augmented GO graph constructed using the GOA data set.
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Summaries of GO terms with respect to the number of training documentsFigure 2
Summaries of GO terms with respect to the number of training documents. Panel A. The histogram of the unique 
GO terms grouped according to the number of training documents associated with each GO term. Panel B. The count of 
annotation instances of the GO terms grouped according to the number of training documents associated with them.
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enhancing the capability of correctly predicting these GO
terms will have a great impact on the overall performance
of the classification systems.

Performance evaluation
Evaluation of multi-label classification
Since the Gene Ontology Consortium adopts a principle
of annotating proteins with GO terms that are as specific
as possible, the observed GO terms in the GOA docu-
ments are usually the leaves of multi-label subgraphs. In
order to evaluate multi-label classification, we recon-
structed a multi-label subgraph for each test document
based on its true/predicted GO annotations. The steps for
constructing such a subgraph are as follows: 1) map a test
document's GO annotations onto the PubMed aug-
mented GO graph; 2) find the shortest path between the
root and each of the true/predicted GO annotations; 3)

join the paths using a union of the edges of the paths to
make a subgraph of GO.

For graph-based multi-label algorithms, we used the out-
puts of each classification system as leaves to reconstruct
the multi-label subgraph. For flat-SVM, we used two ways
to evaluate its outputs: one is directly using the system
outputs in multi-label evaluation; the other is treating its
outputs as leaves (same as other systems) and building the
multi-label subgraphs. Using the metrics specifically
designed for graph-based multi-label classification
described in the Methods Section, we evaluated the per-
formance of different classification algorithms, and the
results are shown in Figure 3. In Figure 3, the first four
groups represent the performance of the flat-SVM evalu-
ated with the direct outputs, the top-down SVM (TD-
SVM), the top-down naive Bayes (TD-NB), and the ran-
dom GO walk (RGOW). From these four groups, it can be

The performance of flat-SVM, TD-SVM, TD-NB, RGOW and flat-SVM2 evaluated with multi-label classification evaluation (graph-to-graph) in terms of recall, precision and F-scoreFigure 3
The performance of flat-SVM, TD-SVM, TD-NB, RGOW and flat-SVM2 evaluated with multi-label classifica-
tion evaluation (graph-to-graph) in terms of recall, precision and F-score.
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seen that the TD-SVM, TD-NB, and RGOW systems signif-
icantly outperform the flat-SVM, with folds of increase in
recall and F-score. The last group (Flat-SVM2) in the figure
is the performance of the flat-SVM evaluated on the multi-
label subgraphs built based on its outputs. This procedure
is equivalent to evaluating the result from a flat SVM clas-
sifier as if it is from a hierarchical classifier, even though it
does not utilize the GO graph during training. It is inter-
esting to see that, although its performance is better than
that of the flat-SVM, the flat-SVM2 is outperformed by the
two top-down algorithms and the RGOW in terms of
recall and F-score. These results indicate that the better
performances by the graph-based classifiers indeed
resulted from utilizing information from the GO graph
structure during training the classifiers, rather than due to
the differences in evaluation procedures.

Leaf-to-leaf evaluation
The multi-label evaluation measures the accuracy of the
systems by comparing subgraphs, such that it evaluates
the overall capability of predicting both specific and gen-
eral terms on the graph. In practice, protein annotation
requires predicting the GO terms that are as specific as
possible, and therefore we evaluated how accurately the
predicted leaves (specific GO terms) matched the true
annotations, a procedure referred to as leaf-to-leaf evalua-
tion. The results are shown in Figure 4. Again, the results
show that the graph-based multi-label classification
methods significantly outperform the flat-SVM. TD-NB
achieves a recall of around 17%; this recall represents that
~6,800 out of 40,000 instances of GO annotation in the
GOA corpus were correctly predicted. It is interesting to
note that precision for the flat-SVM decreases significantly
in the leaf-to-leaf evaluation when compared to that in
the graph-to-graph evaluation. This difference indicates

Systems' performance evaluated with leaf-to-leaf evaluation in terms of recall, precision and F-scoreFigure 4
Systems' performance evaluated with leaf-to-leaf evaluation in terms of recall, precision and F-score.
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that many of the correct predictions by the flat-SVM are
general GO terms at the top levels of the GO graph, which
can be detected in graph-to-graph evaluation. However,
the flat-SVM is less capable of predicting more specific GO
terms observed in the test cases, and thus it performs
much worse in the leaf-to-leaf evaluation.

Evaluating performance using graph-based metrics
As shown in Figure 2, a large number of observed GO
terms in the GOA corpus have only a few training docu-
ments, so it is almost impossible to train reliable classifi-
ers for them. We conjectured that the misclassification of
these cases (classes) constituted the majority of the test
errors in multi-label classification. Instead of treating the
misclassification of these terms as complete losses, it
would be interesting to quantify and evaluate how closely
the predicted and observed labels are located in the GO
graph. One may argue that the loss incurred from predict-
ing a label only one step away from the true label is more
acceptable compared to predicting a label 5 steps apart
from the true label. Indeed, one motivation of graph-
based multi-label classification is to pool the training
cases through training case propagation, so that it is pos-
sible to train more reliable classifiers associated with the
ancestors of a GO node that has sparse training cases.
Therefore we would like to evaluate how closely the pre-
dictions by these relatively reliable ancestor classifiers
relate to the true classes. To this end, we devised graph-
based metrics to evaluate results.

During graph-based evaluation, for each true GO term in
testing cases, we searched for the shortest path from the
true label to the leaves of the predicted subgraph, and the
number of edges in the path was used as a metric to reflect
how close to the true label the predicted labels were. The
shorter the path, the better the performance. Panel A of
Figure 5 shows the distribution of the shortest distances of
the predicted labels to the true GO annotations in the test
set. Note that the paths with the length of zero reflect the
correct predictions, and thus these numbers essentially
agree with the recall of classification systems. It is interest-
ing to note that many observed GO annotations are
within one or two steps from the predicted multi-labels,
and all graph-based classification systems perform better
than the flat-SVM multi-label classification system. Panel
B of Figure 5 plots the cumulative percentile of GO terms
(y axis) with respect to the number of steps from the pre-
dicted labels. It can be seen that 33% – 42% of the true
GO annotations are within only two steps from the labels
predicted by the TD-NB, TD-SVM and RGOW. The results
indicate that these graph-based classification systems are
capable of predicting GO annotations very close to the
true annotations, yet they are treated as misclassifications
according to the conventional evaluation methods for
multi-label classification. If we relax the criteria for correct

predictions to include the predictions within two steps
from the true labels, the graph-based systems can achieve
even better performance (see Figure 6): 29% – 35% in
recall, 20% – 31% in precision, and 24% – 32% in F-
score. The results are encouraging given the difficulty of
the classification problem for GO annotation.

Enhanced classification for classes with fewer training cases
One of the motivations of employing graph-based classi-
fication methods is to address the problem associated
with the training case imbalance that plagues flat classifi-
ers. The assumption is that, by performing one-vs-rest
classification locally rather than globally, the training case
imbalance can be alleviated. To illustrate the impact of the
size of training set on the prediction, we plotted the
number of correctly predicted instances for each classifica-
tion algorithm, grouped according to the number of train-
ing documents associated with each GO term in Figure 7.
The figure illustrates that, for the GO classes with fewer
than 50 training documents, the graph-based multi-label
classification systems significantly outperform the flat
multi-label classification method. As the number of train-
ing cases increases, the differences between the classifica-
tion algorithms begin to diminish. These results indicate
that the graph-based multi-label classification algorithms
improve the performance on the classes with small train-
ing sets. These results are highly encouraging because GO
terms with few training documents are the most difficult
to predict.

Discussion
In this study, we transformed the problem of literature-
based prediction of GO annotation to a graph-based
multi-label classification problem. Our results indicate
that, through utilizing the structure of the GO graph, the
graph-based multi-label classification algorithms signifi-
cantly outperform the conventional flat multi-label classi-
fication approach. Furthermore, our results demonstrate
that graph-based classification is capable of suggesting
annotations that are semantically close to the true annota-
tions. These results indicate that the graph-based multi-
label classification methods have better potential than the
conventional flat multi-label classification approach to
facilitate protein annotation based on the literature.

Controlled vocabularies such as the GO and the Unified
Medical Language System (UMLS) [19,20] provide com-
putable forms of biomedical concepts, which are critically
important in knowledge representation and are widely
used in molecular biology and medicine. Interconnec-
tions between biological concepts can often be best repre-
sented as DAGs rather than trees. Although there have
been many investigations on tree-based hierarchical text
classification, studies of utilizing a graph structure for
multi-label classification of text are few. Recently, Barutc-
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Systems' performance evaluated with graph-based metricsFigure 5
Systems' performance evaluated with graph-based metrics. Panel A. The distribution of the shortest distances of the 
predicted labels to the true GO annotations in the test set. Panel B. Cumulative percentile of GO terms with respect to the 
number of steps from the predicted labels. If a true class is missing from the predicted labels, the distance is set to 30.
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uoglu et al. have proposed a sophisticated Bayesian net-
work framework to perform graph-based hierarchical
multi-label classification and employed it to predict GO
annotations of proteins based on biological data, e.g.,
gene expression and protein-protein interactions [10].
Their framework requires a relatively large number of
training cases in order to train their model, such that they
limited the target classes to about 100 GO terms with at
least 20 training cases. This requirement would have elim-
inated most biologically specific GO terms in our case. In
contrast, our methods can be applied on the full graph of
the Biological Process domain of GO.

Our work is closely related to that by Kiritchenko et al [16]
in terms of problem formulation and evaluation. In their
work, the investigators employed a global hierarchical
classification system with an AdaBoost algorithm as the

base classifier. In this study, we further investigated the
performance of systems consisting of SVM and naïve
Bayes classifiers, which are well established as the best text
categorization classifiers [21]. In terms of evaluation, our
graph-to-graph evaluation is essentially equivalent to the
hierarchical recall and precision from Kiritchenko et al, in
that they all evaluated the performance of overall multi-
ple-label classification. In addition, we also performed the
leaf-to-leaf evaluation which is more relevant to the real
world evaluation from biologists' point of view. Further-
more, their evaluation concentrated on exact matches,
which may not fully reflect the benefit of graph-based
classification revealed by our relaxed graph-based evalua-
tion. Thus, our evaluation methods demonstrated addi-
tional advantages of graph-based multiple-label
classification to previous studies. Although it would be
ideal to include their method in our evaluation, the lack

Systems' performance in terms of recall, precision, and F-score for relaxed hits (within two steps)Figure 6
Systems' performance in terms of recall, precision, and F-score for relaxed hits (within two steps).
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of available software makes it difficult to perform a fair
comparison due to potential minute variances in re-
implementation.

Graph-based multi-label classification from this study is
readily carried out as a series of localized classifications.
For the TD-SVM and TD-NB algorithms, the localized clas-
sification is performed in a breadth-first-search manner,
which is guaranteed to stop when all feasible paths are vis-
ited. In addition, to improve classification accuracy,
employing top-down classification algorithms is more
efficient due to their branch-and-bound nature. On the
other hand, the RGOW algorithm transforms the DAG
into an undirected graph and traverses the graph follow-
ing the most probable paths. In addition to a more thor-
ough search of the graph, the advantages of this algorithm
also include the probabilistic outputs that accommodate

the uncertainty of the predictions. Our results indicate
that the probabilistic outputs by RGOW correctly reflect
the uncertainty of predictions and can be further utilized
to determine the decision threshold of classification.

The more important advantage of the graph-based multi-
label classification algorithms lies in the fact that, even
when not exactly matching the true target annotations,
many of the predicted GO annotations are semantically
close to the target annotations. This is the underpinning
characteristic and motivation of our approach – suggest-
ing and predicting annotations that are as close as possi-
ble to the GO terms with few training cases, and the
classification on these GO terms would be impossible
otherwise. Note that, since most of the observed GO
annotations are very specific per the guidelines of the
Gene Ontology Consortium, the predicted GO annota-

The number of correctly predicted instances with training sets of different sizesFigure 7
The number of correctly predicted instances with training sets of different sizes. For each method, the sum of 
these numbers is shown in Panel A of Figure 5 at edge distance equal to 0.
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tions that are only one step away from the true annotation
should be fairly specific too. If these predictions are
counted as correct, the systems can achieve around 0.4 in
recall, which may potentially be helpful to human anno-
tators during annotation processes.

Although outperforming the flat classification system, the
current graph-based multiple-label classification methods
need further improvement in order to meet the require-
ments of real-world literature-based annotation. Reasona-
ble directions for improvement include, first, further fine-
tuning the base classifiers. For example, one may fine tune
and vary the classification threshold based on the level of
the node. Second, a refined approach would use more
specific training data. Ideally, the most relevant part of a
document related to the GO terms should be identified
through semantic analysis [22] and used for training clas-
sifiers.

Conclusion
In this paper, we investigated and studied the methods of
enhancing automatic multi-label classification of bio-
medical literature by utilizing the structure of the Gene
Ontology graph. We systematically evaluated and com-
pared three graph-based classification algorithms to a
conventional flat multi-label algorithm and concluded
that through utilizing the information from the structure
of the Gene Ontology graph, the graph-based multi-label
classification methods have better potential than the con-
ventional flat multi-label classification approach to facili-
tate protein annotation based on the literature.

Methods
Data set
The Uniprot [23] gene-GO association file, version 47,
was downloaded from the website of the Gene Ontology
Annotation (GOA) [18] project of the European Bioinfor-
matics Institute. Each entry in the association files con-
tains a gene identification number, the associated GO
term, and the PubMed identification number (PMID) for
the annotation if available, and thus the data provide the
link between the GO annotation and the literature. A cor-
pus consisting of the titles and abstracts of 36,423
MEDLINE entries was downloaded from the National
Center for Biotechnology Information (NCBI) using the
Entrez E-utility service. The corpus was processed as fol-
lows: (1) common words from a standard English "stop
words" list were removed; (2) words were stemmed using
the Porter stemmer algorithm [24]; (3) words with fewer
than 5 occurrences in the corpus were discarded, resulting
in a vocabulary of 33,230 unique words. In this study, we
only used the Biological Process branch of the GO to
study the performance of the graph-based multi-label
classification methods, and the approaches are readily
extendable to other GO domains.

Constructing the PubMed augmented GO graph
The GO definition file released in April 2007 was down-
loaded from the GO website and used to construct a GO
graph. We have developed a Python software package
referred to as GOGrapher (manuscript in preparation),
which contains a set of application programming inter-
faces for building a GO graph and performing various
graph-based queries. In the GO graph, each node (vertex)
represents a GO term, and each directed edge corresponds
to the IS_A relationship between a parent-child GO term
pair. In the GOA corpus, each node is associated with a set
of PMIDs, referred to as nodeUniqPMIDs. The GO graph
was topologically sorted [25], and the PMIDs associated
with each GO node were propagated from all children to
their parents in a bottom-up fashion. At this stage, each
GO node was associated with an additional set of PMIDs
referred to as nodeTotalPMIDs, consisting of the union of
its own nodeUniqPMIDs and its children's nodeTotalPMIDs
sets. After propagation of PMIDs, the nodes with an empty
set of nodeTotalPMIDs were pruned from the graph, which
resulted in a graph with a total of 5,797 nodes (target
classes). Based on the nodeTotalPMIDs, a word-vector was
constructed for each GO node, of which each element was
the count of the word associated with the GO term in the
corpus. We refer to this graph as the PubMed augmented
GO graph. A sub graph of the PubMed augmented GO
graph is shown in Figure 1.

Classification methods
Flat multi-label classification system
As a baseline reference classification system that would
not utilize the structure of GO, a flat one-vs-rest multi-
label classification system was constructed. SVM was cho-
sen as the base binary classifier because it is the state-of-
the-art classifier for text categorization [26-28]. In this
model, the GO structure was flattened after propagation
of PMIDs, and each class (node) was associated with a
binary SVM classifier [26-28] to discriminate this class
from the other classes. We refer to such a classification sys-
tem as flat-SVM. A Python wrapper for LibSVM [29] with
a linear kernel and default parameter settings were
employed. Given a GO node, g, all PubMed documents in
its nodeTotalPMIDsg set were labeled as positive training
data and all other documents not covered by nodeTotalP-
MIDsg were labeled as negative training data.

Top-down hierarchical classification system
We designed and compared two classification systems for
GO annotation with either SVM or naive Bayes as a base
classifier. The classification procedure of the system is
similar to top-down, tree-based hierarchical classification
[12,30] but is generalized to deal with the more compli-
cated GO graph structure. The idea underlying the top-
down system was to perform localized one-vs-rest, rather
than overall one-vs-rest classification at each level to over-
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come the training case imbalance problem. Given a GO
node, g, a base classifier was trained with the documents
of nodeTotalPMIDsg as positive training cases and the doc-
uments of negTrainingSetg defined in Equation (1) as neg-
ative training cases. Here, negTrainingSetg is the set of the
union of all g's parents total PMIDs excluding g's nodeTo-
talPMIDs.

Naive Bayes is a well-studied probabilistic algorithm with
robust performance on text classification. In this study, a
multinomial version of naive Bayes [31] was imple-
mented. Let V be the set of vocabulary of the corpus and
Wd be a sequence of words in document d. For the binary
naive Bayes classifier of node g, the prior probability,
p(cg), the conditional probability of observing a word,
p(w|cg), and the posterior probability for a class are
defined as follows:

In Equation (3),  is the count of w in the train-

ing documents for a given class cg;  is the Laplace

smoothing parameter [31], which was set to 0.001 in this
study. With individual base-classifiers trained at each GO
node, classification of a new document was performed
according to Algorithm 1 in a top-down, breadth-first-
search manner as shown in Table 1.

Random GO walk (RGOW)
RGOW performs a stochastic search of the best multiple-
labels for a given document, based on the Metropolis-
Hastings algorithm [32] with a simulated annealing pro-
cedure. We designed RGOW to explore if stochastic proce-
dures can be used to alleviate the local maximum problem
due to the greedy search nature of the top-down SVM and

naïve Bayes classifiers. In addition, the system also out-
puts a probability distribution over the leaf labels reflect-
ing the posterior probability of the multiple-labels.

An intuitive explanation for the algorithm is as follows:
imagine that an undirected version of the PubMed aug-
mented GO graph constitutes a landscape, and a new test
document d is allowed to stochastically traverse the land-
scape to search for the most probable labels for it. At each
step, the document stays at current node g and looks for
the next node g*. A candidate node g* is stochastically
selected according to a proposal distribution q(g* | g, d)
defined as Equation (5) and accepted according to Algo-
rithm 2 in Table 2. Furthermore, a simulated annealing
procedure enables the algorithm to search for the global
maximum of the landscape–the most probable labels for
the document. If an affinity function is chosen such that it
reflects the likelihood of the GO term being used to anno-
tate the document d, a probability distribution over the
multi-labels of the graph can be obtained by counting the
samples that stop at each GO node followed by a normal-
ization procedure. A posterior multinomial distribution
guiding the next step from g (line 9 and 10 in Table 2) is
constructed locally through a Bayesian approach, in
which the probability of the document reaching node g*
in the next step is defined as Equation (5). The term p(g|d)
in Algorithm 2 (at line 12 in Table 2) is defined as Equa-
tion (6).
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Table 1: Algorithm 1 Top-down classification algorithm

1 inputs
d, a new document
G, a GO graph with trained base-classifiers

2 initialize:
3 PA  {root} //Predicted GO annotation set
4 Q  {root} //Queue for breadth first search
5 while Q not empty
6 n  Q.pop()
7 S  G.children(n)
8 for each c in S:
9 y  c.predict (d)

//Classify d using the base-classifier of c
10 if y == 1:

//if prediction is positive
11 Q  union(Q, c)
12 PA  union(PA, c)
13 end
14 end
15 outputs: PA
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where the probability quantities in Equation (5) are
defined as follows:

In the above equations, V, Wd and  are the same as
defined in binary naive Bayes, count(w)g is the number of

words taking the value of w in the document set of nodeTo-
talPMIDsg, and neighbors(g) is the set of neighbor nodes of
g. With the local proposal distribution determined, a new
document can traverse the GO graph through sampling
(random walk) to search for the most likely GO annota-
tion (see Algorithm 2 in Table 2)

In Algorithm 2, the function calProbFromSample calculates
the probability that document d stops at node g by divid-
ing the number of samples whose final visited node is g by
the total number of samples. We set the sample size to 40
and the number of steps of the random walk to 30. The
simulated temperature is defined as Equation (11):

TempFunc(i) = (C ln(i + T0))-1, (11)

where T0 is the initial temperature and C is a constant. T0
and C were set to 1.1 and 4, respectively.

Evaluation
Semantic distance
In this study, we adopted a commonly used method to
measure the semantic distance between a pair of GO
terms, in which the difference between the information
contents (IC) [33-36] of the GO terms was employed as a
measure of the semantic distance. Here, the IC of a GO
term t was calculated as: IC(t) = -ln P(t), where P(t) was
the probability of observing the term, calculated as the
number of annotation instances by the term divided by
the total number of annotation instances. Then the
semantic distance between a parent-child pair of GO
terms, tp and tc, was determined as follows,

dist(tp, tc) = |IC(tp) - IC(tc)|. (12)

Note, that the IC-based semantic distance is not a metric
distance in that it does not satisfy the triangle inequality,
which potentially introduces errors during a search for the
shortest path between a pair of GO terms. However, the
operations of searching for the shortest paths between GO
terms were performed in a consistent manner during the
evaluation of all classification algorithms, and therefore
we believe this characteristic of the IC-based semantic dis-
tance had no significant impact on the comparison of the
results.

Multi-label evaluation metrics
Since abundant training and testing data are available, we
employed a four-fold cross validation procedure in evalu-
ation. Evaluation of multi-label classification is different
from that of conventional binary classification. In this
study, we adopted the information retrieval metrics that
were modified for evaluating multi-label classification
[9,16,37]. Let D denote the test corpus and Yd and Zd be
the true and predicted label sets, respectively, for docu-
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Table 2: Algorithm 2 Random GO walk

1 inputs:
d, a new document
G, a GO graph with training cases
nSample, the sample size
nMaxSteps, the number of maximum steps

2 initialize:
3 finalLeaves  {}
4 finalLeavesProbs  {}
5 for n in 1: nSamples
6 g  initialize()
7 //Select initial GO node randomly

for s in 1: nMaxSteps:
8 T  TempFunc(s)
9 nbrs  G.neighbors(g)
10 g*  q(g*|g, d)

//Sample from proposal distribution, g*{g, nbrs}
11 u  uniform [0, 1]
12

if u <A  

13 g  g*
14 end
15 finalLeaves  union(finalLeaves, curNode)
16 end
17 finaLeavesProbs  calProbFromSample(finalLeaves)
18 outputs: finalLeaves, finaLeavesProbs
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ment d. The precision, recall and F-score for a classifica-
tion system are determined as follows,

Graph-based evaluation metrics
When the predicted labels do not match exactly with the
true labels, the above metrics consider such an error as a
complete loss. However, in the graph-based classification
scenario, we wanted to know whether the predicted
classes were closely related to the true classes even if they
were not direct matches. We used the length (in number
of edges) of the shortest path (measured with IC) between
true and predicted labels as a metric for evaluating the
closeness of the predicted and true labels. The shortest
paths between all pairs of true and predicted labels were
found using Dijkstra's algorithm [38].

Software
A Python package is available at:

http://projects.dbbe.musc.edu/public/GOHClassifica
tion/trunk/
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