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Abstract
Background: The prediction of protein-protein binding site can provide structural annotation to
the protein interaction data from proteomics studies. This is very important for the biological
application of the protein interaction data that is increasing rapidly. Moreover, methods for
predicting protein interaction sites can also provide crucial information for improving the speed
and accuracy of protein docking methods.

Results: In this work, we describe a binding site prediction method by designing a new residue
neighbour profile and by selecting only the core-interface residues for SVM training. The residue
neighbour profile includes both the sequential and the spatial neighbour residues of an interface
residue, which is a more complete description of the physical and chemical characteristics
surrounding the interface residue. The concept of core interface is applied in selecting the interface
residues for training the SVM models, which is shown to result in better discrimination between
the core interface and other residues.

The best SVM model trained was tested on a test set of 50 randomly selected proteins. The
sensitivity, specificity, and MCC for the prediction of the core interface residues were 60.6%,
53.4%, and 0.243, respectively. Our prediction results on this test set were compared with other
three binding site prediction methods and found to perform better. Furthermore, our method was
tested on the 101 unbound proteins from the protein-protein interaction benchmark v2.0. The
sensitivity, specificity, and MCC of this test were 57.5%, 32.5%, and 0.168, respectively.

Conclusion: By improving both the descriptions of the interface residues and their surrounding
environment and the training strategy, better SVM models were obtained and shown to
outperform previous methods. Our tests on the unbound protein structures suggest further
improvement is possible.

Background
The functions of proteins rely on their interactions with
various biological molecules including proteins, DNAs,
RNAs and other small molecules. Among those interac-

tions, one of the most important ones is the protein-pro-
tein interaction. Hence, the identification of protein
binding site for protein-protein interaction becomes one
of the basic questions in the research of protein functions.
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Several experimental methods such as X-ray crystallogra-
phy, NMR, and site-directed mutagenesis [1] are well
established in providing structural information on the
protein-protein binding site. But the proteomics research
is currently generating tremendous protein interaction
data [2] in want of detailed annotation by structural infor-
mation. According to the current capability of experimen-
tal methods for obtaining structural information, only a
limited amount of the proteomics-generated data can be
processed and annotated [3]. Therefore, the computa-
tional prediction methods such protein binding site pre-
diction have become very important alternatives to
interpret and annotate the experimentally generated pro-
teomics data.

The computational prediction of protein binding site is
particularly helpful in improving the speed and accuracy
of protein docking method [4,5]. A protein docking
method predicts the structure of a protein-protein com-
plex from the structures of its monomers and can provide
detailed structural information for protein-protein inter-
actions. Docking methods can be usually divided into two
parts: sampling of complex conformations given the struc-
tures of the monomers and scoring of these conforma-
tions in order to find the near-native conformations. If the
information of the binding site could be known in
advance, the speed and accuracy of the docking method
could be significantly improved, because the process of
conformation sampling could be restricted to a relative
small area close to the binding site. Some of the recent
studies [6,7] have applied the information of predicted
binding site residues to the process of docking.

The binding site prediction method is mainly based on
the following hypothesis. First, the characteristics of inter-
face and non-interface residues are significantly different.
Second, these differences can be quantified and utilized to
design methods to discriminate and hence predict the
binding sites.

The characteristics of the binding sites, namely the inter-
face residues, have been systematically studied [8-14].
Several previous works have found that the amino acid
composition is different between the interface and the
non-interface residues. Lo Conte et al. [8] have analyzed
the amino acid composition on different parts of protein-
protein complexes using a dataset of 75 protein com-
plexes. They found that the interface residues contain
more aromatic and aliphatic residues than the non-inter-
face residues. They concluded that the amino acid compo-
sition of the interface residues is more similar to that of
the interior residues than to that of the non-interface resi-
dues. Neuvirth et al. [9] also found that some polar and
aromatic residues are more abundant in the interface than
outside the interface, which is similar to Lo Conte's con-

clusion. They also found that hydrophobic residues tend
to clusters on the interface.

Furthermore, some studies found that the interface resi-
dues are more conserved than the non-interface residues.
Zhou and Shan [10] found that the sequence conservation
works well for the discrimination of interface residues
from non-interface residues in their site-prediction meth-
ods. In their latest work [15], they compared the conserva-
tion scores of interface and surface residues and showed
that interface residues are more conserved. Hu et al. [16]
and Ma et al. [17] analyzed the residue conservation in
several protein families and found that the polar residues
are highly conserved in the interface.

The secondary structure composition of interface residues
was also studied by several researchers. Jones and Thorn-
ton [18] found that interface residues prefer to be helix or
coil rather than sheet. However, Neuvirth et al. [9] found
that the secondary structures of interface residues prefer to
be sheet or coil rather than helix. They explained the con-
tradictory results by considering the differences in the
database analyzed. So there exists a variety in the compo-
sition of secondary structures on the interface.

Lo Conte et al. [8] and Chakrabarti et al. [11] analyzed the
shape of the interface region and defined the interface
atoms into two classes. The first class of atoms locates in
the core region of the interface and the second class sur-
rounds the first class and locates on the rim of the inter-
face.

Based on the studies on the characteristics of interface,
several methods have been developed to predict and iden-
tify the interface residues from all residues on the protein
surface [9,10,15,19-38]. Various features have been used
to describe the characteristics of the interface. Most of
them combine several properties of amino acid residues
together. Some of the common features that have been
used are sequence conservation [9,10,20-27], accessible
surface area [10,28-30], and amino acid composition
[20,29,30]. The frequently used algorithms to identify
interface residues from all surface residues are evolution-
ary tracing [21-25], probability estimation [9], linear
parameter optimization [20], neural network [19,31], and
support vector machine learning [30,32-34].

Neuvirth et al. [9] designed ProMate and applied nine dif-
ferent properties to describe the characteristics of a surface
patch. A probability estimation method was used to esti-
mate the probability of the patch to be a part of the inter-
face according to the values of nine properties. Liang et al.
[20] designed PINUP and the central (or interaction) res-
idue is described by the combination of side chain energy
score, residue conservation score and residue interface
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propensity. The three properties were linearly combined
into one score and the weights were obtained by a linear
parameter optimization method. Chen et al. [19] and
Tjiong et al. [15] designed the cons-PPISP method which
used the sequence profile of the central residue and rela-
tive accessible surface area to describe the residues. A con-
sensus neural network method was used to separate the
interface residues from the non-interface residues. SVM is
one of the most frequently used machine learning meth-
ods applied to the prediction of interface residues
[30,32,33]. Yan et al. [32] used a combination of SVM and
Bayesian network with a sequence profile of the central
residue and its sequence neighbours to make interface
prediction. Koike et al. [33] used SVM with a profile of
sequence and space neighbours of the central residue.
Bradford et al. [30] used a patch description of protein
surface and the prediction of interface patches was per-
formed by SVM.

In this paper, we designed an interface residue prediction
method based on SVM by using the concept of core inter-
face residue and by designing several new properties for
the description of both sequentially and spatially neigh-
bouring residues. It was found that the core interface resi-
dues were more effective in training SVM models. The
training and testing were performed using structures taken
from a database of the complex structures from the PDB
[39]. The prediction results of our method outperformed
several other prediction methods such as ProMate,
PINUP, and cons-PPISP. The unbound proteins from the
protein-protein interaction benchmark [40] were also
used to test our method. The results showed that our

method could make reasonable prediction for the
unbound structures as well.

Results
Statistics on the amino acid composition of the neighbour 
residues
The amino acid composition of the sequence and space
neighbour residues of the central residues were calculated.
Then, the average compositions were calculated for the
three residue classes respectively. The three classes are core
interface, rim interface and non-interface, which are all
surface exposed residues. The results are shown in Figure
1. (See Additional file 1 for the p-values of the Welch t-test
for all the residue composition data of core interface, rim
interface, and non-interface residues).

Figure 1a shows the result using core cut-off = 0.2. Amino
acid residues I, M, F, Y, and V appear more frequently in
the neighbours of the core interface residues than in either
of the other two residue classes or only the non-interface
class. This indicates that the core interface residues are
more likely to be hydrophobic. D, E, and K appear more
frequently in the neighbours of the non-interface residues
than in that of the other two residue classes. This indicates
that the non-interface residues are more likely to be polar.
The compositions of the rim interface residues indicate
that for some amino acids, the rim interface resembles the
core interface, while for others, it resembles the non-inter-
face.

When further observation on core residues is compared
using a higher core cut-off of 0.8 (Figure 1b), it is seen that
in addition to the similar trend for core cut-off 0.2, G and

Comparison of the amino acid compositions of the neighbour residues for the three residue classesFigure 1
Comparison of the amino acid compositions of the neighbour residues for the three residue classes. In this fig-
ure, the amino acid compositions of the neighbour residues for the core interface, the rim interface, and the non-interface res-
idues are compared. Colour black, red, and blue represent the core interface, the rim interface and the non-interface residues, 
respectively. a) Core cut-off equals to 0.2. b) Core cut-off equals to 0.8.
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P become more preferable to be the neighbour of the core
residues than other two residue classes. It is probably due
to the preference of coil state for the core interface residue.
On the other hand, R becomes less preferable to be the
neighbour of the core interface residues than other two
residue classes. For the neighbours of rim interface, L and
R become more preferable and P becomes less preferable.
It is probably due to their innate secondary structure pro-
pensities as the rim interface residues have distinct prefer-
ence for helix and sheet state as shown in Figure 2. Besides
P, A also becomes less preferable to be the neighbour of
rim interface. It is consistent with the result (Figure 3b)
that beta carbon atoms are less preferable to be the neigh-
bour of the rim interface. The data for the composition of
rim interface indicates that the rim interface probably
does not like residues with short side-chains and prefers
residues with long side-chains.

When the p-value for significant differences is set as 0.05,
for both core cut-offs, all residues except G, S and T show
significant difference in the average composition between
the core interface and the non-interface. Residues A, C, D,
E, F, G, K, P, R, W, and V show significant difference in the
average composition between the rim interface and the
non-interface. Residues A, E, F, G, I, K, M, N, and Y show
significant difference in the average composition between
the core interface and the rim interface. For core cut-off
0.2, residue C shows significant difference in the average
composition between the core interface and the rim inter-
face. Residue T shows significant difference in the average
composition between the rim interface and the non-inter-
face. For core cut-off 0.8, residue G shows significant dif-
ference in the average composition between the core

interface and the non-interface. Residues M and Y shows
significant difference in the average composition between
the rim interface and the non-interface.

Statistics on the atom composition of the neighbour 
residues
The atom compositions of the sequence and space neigh-
bours of the central residues were calculated for each cen-
tral residue. Then, the average compositions for each atom
type were calculated for the three residue classes respec-
tively and shown in Figure 3 (see the Method section and
Additional file 2 for the details of the 18 atom classes [41]
and Additional file 3 for the p-values of the Welch t-test
between some of the atom composition data of core inter-
face, rim interface, and non-interface). Among 18 atom
types, five show clear difference in the atom composition
for both core cut-offs and only two atom types for core
cut-off 0.8.

Atom types 16 and 17 are preferred to be in the neighbour
of the core interface residues. These two atom types
mainly contain the gamma or delta carbon atoms of the
side chains of several hydrophobic and aromatic residues.
This preference indicates that the core interface is gener-
ally hydrophobic. Atom types 7, 8, and 9 are preferred to
be in the neighbours of the non-interface residues. These
three atom types mainly contain nitrogen, oxygen, and
carbon atoms of several charged residues. This preference
of atom types 7, 8, and 9 indicates that the non-interface
is generally polar.

For the core residues classified by the cut-off 0.8 (Figure
3b), atom class 6, CB of all residues and most carbon

The secondary structure compositions of the three residue classesFigure 2
The secondary structure compositions of the three residue classes. In this figure, the secondary structure composi-
tions of the core interface, the rim interface, and the non-interface residue are compared. The bars in black, red, and blue rep-
resent the percentage of helix, sheet, and coil in the three residue classes, respectively. a) Core cut-off equals to 0.2. b) Core 
cut-off equals to 0.8.
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atoms of Pro, preferred to be in the neighbour of the core
interface residues. Atom type 10 and 11 preferred to be in
the neighbour of non-interface residues. These two atom
types contain nitrogen, oxygen, and some of the carbon
atoms of several charged and polar residues. This prefer-
ence of atom type 10 and 11 also indicates that the non-
interface is generally polar.

Statistics on the secondary structure composition of the 
central residues
The secondary structure compositions of the core inter-
face, the rim interface, and the non-interface residues are
shown in Figure 2. When the core cut-off is 0.2, the statis-
tics on the secondary structures (Figure 2a) for all three
classes of surface residues show a similar pattern, that is,
helix and coil are more abundant than sheet. When the

core cut-off is increased to 0.8, although the rim and non-
interface still have the similar pattern, a clear difference is
seen for the core interface (Figure 2b). The core interface
is strongly preferred to be in the coil state. This pattern of
secondary structure preference suggests that the core inter-
face may be more flexible than the rim and non-interface
regions.

Statistics on the side-chain environment
The side-chain environment compositions of the core
interface, the rim interface, and the non-interface residues
are shown in Table 1. The definition of side-chain envi-
ronment can be found in the Method section. Whether
the core cut-off is 0.2 or 0.8, the composition of side-
chain environment is biased on environment states E and
P1, because most of the residues in the three interface

Comparison of the atom compositions of the neighbour residues for the three residue classesFigure 3
Comparison of the atom compositions of the neighbour residues for the three residue classes. In this figure, the 
atom compositions of the neighbour residues for the core interface, the rim interface, and the non-interface residues are com-
pared. Colour black, red, and blue represent the core interface, the rim interface and the non-interface residues, respectively. 
The details of the 18 atom types can be found in the Additional file 2. a) Core cut-off equals to 0.2. b) Core cut-off equals to 
0.8.
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Table 1: Composition of side-chain environment class

Core cut-off Residue class E P1 P2 B1 B2 B3

0.2 Core interface 75.2% 18.7% 3.8% 1.9% 0% 0.3%
Rim interface 53.2% 30.1% 8.2% 7.8% 0.1% 0.6%
Non-interface 65.5% 22.0% 5.6% 4.9% 0.1% 0.5%

0.8 Core interface 93.4% 5.4% 0.6% 0% 0% 0%
Rim interface 67.9% 22.9% 5.2% 3.5% 0% 0.4%
Non-interface 65.5% 23.5% 5.6% 4.9% 0.1% 0.5%

This table shows the composition of residues in each side-chain environment class. The first column is the value of core cut-off. The second column 
is the name of the three residue class. The third column to the eighth column shows the residue composition of each environment class for each 
residue class. The sum of the compositions of six classes does not equal to 1 because some of the residues cannot be classified into either of the 
class due to the loss of accessible surface area data. The classification method of E, P1, P2, B1, B2, and B3 is shown in the Method section.
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classes are surface exposed and thus belong to either E
(exposed) or P (partial buried) states. The majority of
them are in E, a fifth of them in P1, and the rest of four
environment states occupy about 10%. Comparing statis-
tics of core cut-offs at 0.2 and 0.8, it can be seen that the
core interface are more exposed as more stringent crite-
rion is applied to define this class, that is, using a higher
core cut-off. This is consistent with the above result of see-
ing more core interface residues in the coil state.

Training of SVM models for different core cut-offs
As mentioned in the Method section, the residues of the
927 proteins (see Additional file 4 for the list of the 927
proteins of the training set) could be divided into four
classes: the interior residues, the core interface residues,
the rim interface residues, and the non-interface residues.
The numbers of residues for each class of different core
cut-offs are shown in Table 2.

The training set for SVM consisted of 10000 random
selected core interface residues and 10000 residues which
were randomly selected from the rim-interface and non-
interface residues. The training set for the core cut-off of
0.8 consists of 5149 core interface residues and the same
number of residues which were randomly selected from
the rim-interface and non-interface residues.

The CVA (Table 3) and AUC of ROC curves (Figure 4) are
both compared to illustrate the discrimination perform-
ance of different models when the core cut-off varies. The
discrimination ability of the respective SVM model
increases as the core cut-off increases. The best model is
generated when the core cut-off equals to 0.8, the CVA is
84.8% and the AUC is 0.9169. Moreover, all the models
that discriminate core interface residues against other res-
idues are better than the 'normal' model that discriminate
the interface residues from the non-interface residues
defined by an interface contact distance of 5 Angstrom.

Contribution of each descriptor from leave-one-out tests
Eight residue descriptors and four central-residue specific
descriptors were described in the Method section. To ver-
ify their effects in the prediction of binding site, descriptor
selections based on the leave-one-out test were performed
(Table 4). In the leave-one-out test, descriptors were
removed one at a time. The values of CVA were compared

between the results of using all descriptors and that with
the selected descriptor removed. The leave-one-out tests
were performed for the training sets of core cut-offs equal
to 0.2 and 0.8.

The change of CVA for each descriptor was shown in Table
4. Conservation is the most important factors for both
core cut-off = 0.2 and core cut-off = 0.8. After the removal
of the conservation, the CVA decreased by 1.4% and 0.9%
for core cut-off = 0.2 and core cut-off = 0.8 respectively
(Table 4). Relative accessible surface area and local envi-
ronment are the second and the third most important
descriptors. The decreases of CVA after removing relative
accessible surface area are 0.6% and 0.8% for core cut-off
= 0.2 and core cut-off = 0.8 respectively. The decreases of
CVA for local environment are 0.4% and 0.5% for core
cut-off = 0.2 and core cut-off = 0.8 respectively. The
decrease of CVA after removing all other descriptors vary
from 0.1%–0.4% for core cut-off = 0.2 and 0.1%–0.3% for
core cut-off = 0.8. Therefore, all these descriptors show
positive effects in the discrimination between the core res-
idues and other residues.

Prediction results on a test set and comparison with other 
methods
A test set containing 50 proteins (therefore 50 distinct
binding interfaces/sites) was used (see Additional file 5
for the list of 50 proteins of the test set). Feature vectors
were generated for each surface residue on the proteins.
The prediction was performed as mentioned in the
Method section. Then, the sensitivity, specificity, and
MCC were calculated for each protein chain. The average
sensitivity, specificity, and MCC of the prediction for the
test set were 60.6%, 53.4%, and 0.243, respectively (Table
5) for the model using core cut-off 0.2. The average sensi-
tivity, specificity, and MCC of the prediction for the test
set were 60.2%, 18.2%, and 0.236, respectively (Table 5)
for the model using core cut-off 0.8. The deterioration of
specificity of the model using core cut-off 0.8 is mainly
because the biased number between the core interface and
other residues. Therefore, we applied the model of core
cut-off 0.2 to perform the comparison tests between other
methods.

It was generally difficult to compare the results of different
methods because of the different definition of interface

Table 2: Residue numbers for each residue class

Core cut-off Core interface residue Rim interface residue Non-interface residue Interior residue

0.2 38264 9803 70147 74453
0.5 19042 29025 70147 74453
0.8 5149 42918 70147 74453

This table shows how many residues there are in each residue class. The first column is the core cut-off for different classification. The second to 
the fifth columns are the number of residues for the core interface, the rim interface, the non-interface, and the interior residues respectively.
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residues and evaluation methods. We performed tests
using the above test set on several different binding site
prediction methods, including ProMate [9], PINUP [20],
and PPISP [15,19]. All predictions were performed via the
internet on their web servers. Data were first submitted to
the servers and then analysis was performed on the predic-
tion results received from the servers. The definition of
interface and non-interface residues followed the descrip-
tion in the Method section.

The prediction results on all the servers are shown on
Table 6. The sensitivities for ProMate, PINUP, and PPISP
were 9.9%, 21.2%, and 27.7% respectively. The specifici-
ties for ProMate, PINUP, and PPISP were 28.1%, 39.5%,

and 44.2%, respectively. The MCCs for ProMate, PINUP,
and PPISP were 0.009, 0.096, and 0.146, respectively. For
comparison, we directly did the statistics on the interface
residues instead of on the core interface residues in the
prediction result of our method. The sensitivity, specifi-
city, and MCC of our prediction result using the model of
core cut-off = 0.2 are 60.7%, 41.9%, and 0.203 respec-
tively. From the above comparisons, it can be seen that
our prediction method is generally more accurate than the
other three methods.

Prediction test on the Benchmark of unbound complexes
To further verify the prediction ability of our best SVM
model, prediction tests were performed on the protein-
protein interaction benchmark v2.0 [40]. The unbound
protein complexes in the benchmark have been divided
into receptor and ligand already. Some of the receptors
and ligands were discarded because they contained more
than one chains. Altogether, there were 101 unbound pro-
teins left (see Additional file 6 for the list of the 101
unbound proteins) and their interaction sites were pre-
dicted. The average sensitivity, specificity, and MCC of the
prediction results of the 101 proteins were 57.5%, 32.5%,
and 0.168, respectively using the SVM with core cut-off =
0.2 (Table 7).

Discussion
In our method, we applied the concept of core interface
residue to perform the prediction. The concept of core
interface residue was first purposed by Lo Conte et al. [8]
and Chakrabarti et al [11]. In their paper, atoms on the
interface are divided into two parts according to the bur-
ied level after binding. Their idea was adapted into our
method. Those most buried residues by the interface were
defined as the core interface residues. We assumed that
the property around the binding site area changes gradu-
ally from the core interface to the non-interface. There-
fore, the rim interface is an intermediate region between
the core interface and the non-interface, which has the
mixed characteristics of both.

The ratio of interface neighbours is designed to give a
quantitative measure to evaluate whether a residue
belongs to the core interface or the non-interface. If the
ratio equals to 1, the residue is surrounded by interface
residues and is an ideal core interface residue. If the ratio
equal to 0, the residue has nothing to do with the interface
and belong to non-interface. We can use different ratios
(core cut-offs) to study different subsets of residues on the
interface. In our current work, two cut-offs were used. The
core interface residues using cut-off = 0.8 reflect the char-
acteristics of residues on the centre of the interface. Their
numbers are small but they have unique properties and
can be better discriminated from other residues. However,
the small proportion of these residues in the whole sur-

Table 3: Cross validation accuracy for different models

Model Cross Validation Accuracy

'Normal' 68.2%
Core cut-off = 0.2 69.2%
Core cut-off = 0.5 74.8%
Core cut-off = 0.8 84.8%

'Normal' stands for the model trained by interface and non-interface 
residues without using the definition of core interface residues. Core 
cut-off = X (0.2, 0.5, 0.8) corresponds to the model trained by core 
interface, rim and interface residues. The second column is the 5-fold 
cross validation accuracy.

The ROC curves for different modelsFigure 4
The ROC curves for different models. In this figure, the 
ROC curves for different SVM models are presented. The 
gray curve is generated using models to discriminate inter-
face from non-interface residues. The red, blue, and pink 
curves are generated using models to discriminate core 
interface from other residues. The core cut-offs for red, 
blue, and pink curves are 0.2, 0.5, and 0.8 respectively. The 
AUC for the gray, red, blue, and pink curves are 0.7385, 
0.7498, 0.8184, and 0.9169 respectively.
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face residues makes the prediction specificity stay at a low
level. Therefore, a looser standard was used instead with
the cut-off = 0.2. This leads to relative higher prediction
specificity and more applicability.

The basis of interaction binding site prediction is that
there are significant differences in the characteristics
between the interface and non-interface residues.
Sequence conservation is generally considered very
important for the discrimination between the interface
and non-interface residues. We also found it to be one of
the most important descriptors in our method. Relative
accessible surface area is also used in several site predic-
tion methods [19,29], and proved to be effective. Our
results are consistent with their results. Among many new
descriptors that we tried in our binding site prediction, the
side-chain environment is another important descriptor
that is able to discriminate the core interface residues from
the rim interface and non-interface residues. The signifi-
cant effect of the side-chain environment is because it

combines two properties, namely the solvent accessibility
of the central residue and the degree of polarity in the
exposed part of the side-chain, and provides the precise
description of the characteristics of the centre residue.

The prediction results of the benchmark unbound com-
plexes were worse than that of the test set of 50 proteins.
The proteins in the benchmark are in unbound state. The
proteins in the test set are in bound state. The main reason
for the deterioration on the benchmark is because of the
errors that come from the conformational change on the
interface region of the unbound structure. An unbound
training set may be a possible way to increase the general
accuracy of prediction on unbound structures.

Conclusion
In this paper, we purposed a SVM-based protein-protein
interaction-site prediction method using the concept of
core interface residue. We tested our method on the test

Table 4: Contribution of each descriptor

Composition of feature vector Core cut-off = 0.2 Core cut-off = 0.8

All descriptors 69.2% 84.8%
Without number of atom 0% -0.1%
Without number of charge -0.2% -0.2%
Without number of H-bond -0.1% 0%
Without hydrophobic index -0.3% -0.1%
Without relative accessible surface area -0.6% -0.8%
Without secondary structure -0.2% -0.3%
Without conservation score -1.4% -0.9%
Without side-chain environment -0.4% -0.5%
Without sequence distance -0.1% -0.1%
Without spatial distance -0.2% 0%
Without residue composition -0.4% -0.1%
Without atom composition -0.1% -0.2%
Without total charge number -0.1% 0%
Without total H-bond number -0.1% 0%

This table shows the results of leave-one-out test for models built when the core cut-offs equal to 0.2 and 0.8 respectively. The first column is the 
composition of feature vectors. The second and the third columns are the CVA results of core cut-off = 0.2 and core cut-off = 0.8, respectively. 
The second line shows the CVA results of using all descriptors of both cut-offs. The values from the third line to the sixteenth line are the 
difference between the CVA of each leave-one-out test and the CVA using all descriptors.

Table 5: Prediction results on test set using different core cut-
offs

Core cut-off Sensitivity Specificity MCC

0.2 60.6% 53.4% 0.243
0.8 60.2% 18.2% 0.236

This table shows the prediction results on test sets by models using 
different core cut-offs. The first column is the core cut-off used to 
make classification. The second to the fourth columns are the average 
sensitivity, specificity, and MCC for the 50 proteins in the test set 
respectively.

Table 6: Prediction results on test set

Prediction method Sensitivity Specificity MCC

Lib-SVM 60.7% 41.9% 0.203
ProMate 9.9% 28.1% 0.007
PINUP 21.2% 39.5% 0.096
PPISP 27.7% 44.2% 0.146

This table shows the prediction results of different method on the 
test set. The first column is the method used for site prediction. The 
second, third, and fourth columns are average sensitivity, specificity, 
and MCC over all proteins in the test set. All the statistics are 
perform according to the classification method which classifies 
residues into interface and non-interface classes.
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set and the protein-protein interaction benchmark V2.0,
and obtained reasonable prediction results for both
bound and unbound structures. Through the comparison
of prediction results of the test set, we showed that our
method outperformed three other binding-site prediction
methods. Therefore, our method shows adequate predic-
tion ability and provides a basis for further development.

Methods
Generation of the data set of complex structures
The data set of complex structures consisted of 977 binary
complexes. Each complex has a protein chain and an
interaction partner. These complexes were extracted from
PDB database [39] according to the following criterions.
First, each protein chain must form a heterodimer with its
interaction partner chain. Second, all the protein chains
must be derived from PDB entries whose structures were
solved by the X-ray diffraction method and their resolu-
tions must be better than 3.0Å. Third, if a protein chain
had contacts with more than one chains, the interaction
partner chain selected was the chain that has the largest
interface area. Fourth, all protein chains must be longer
than 40 residues while their respective interaction partner
chains could be of any length. 7610 protein chains and
their respective interaction partner chains were obtained
after filtering the PDB database with the above mentioned
criterions. Then these protein chains were clustered
according to their sequence homology by the BLAST-
CLUST program in the NCBI BLAST2.0 package. If the
sequence alignment of any two protein chains had more
than 30% identity while their alignment covered 90% of
the two sequences, they would be considered to be in the
same homology cluster. According to this criterion, 7610
protein chains were clustered into 977 clusters. After the
sequence homology clustering, only one protein chain
was kept for each cluster. Several factors were compared to
decide which chain in the cluster was to be kept. First, the
chain with the best resolution was kept. Second, if more
than one chain was left after the comparison of resolu-
tion, then the sequence length was compared and the
longest one was kept. Finally, if there was still more than
one chain left, the deposition date was compared and the
newest one was kept. After the three-step comparison was

finished, 977 proteins were kept and they formed the data
set of complexes.

Classification of residues
The residues are divided into four classes: interior resi-
dues, core interface residues, rim interface residues, and
non-interface residues.

To perform the classification, all residues of the protein
chain were first divided into surface residue and interior
residue. The REMOVESURFATOM program in SOFT-
DOCK package [42] was used to define the surface resi-
dues of a protein structure. The main-chain atoms that
had no more than 22 neighbour atoms or the side-chain
atoms that have no more than 16 neighbour atoms were
defined as surface atoms. Two atoms were defined as
neighbours to each other if their distance was less 5Å. Res-
idues that contained surface atoms were defined as surface
residues. Residues that were not defined as the surface res-
idues were defined as interior residues. Then interface res-
idues were picked out from the surface residues. The
interface residues were defined as the surface residues that
contacted with any residue on the interaction partner. A
residue-residue contact was defined when the shortest dis-
tance between any pair of atoms from two residues was
less than 5Å. The surface residues that did not belong to
the interface residues were defined as non-interface resi-
dues. The prediction results of ProMate, PINUP, and
PPISP are analyzed following the definition of interface
and non-interface residues.

The classification of core interface residues and rim inter-
face were performed according to the ratio of interface
neighbours. For each surface residue, the ratio of interface
neighbours is calculated as the proportion of the number
of interface neighbours against the number of all its
neighbours. Then we set up a cut-off for the ratio (core
cut-off). The core interface residues are defined as surface
residues whose ratio is no less than the cut-off. The rim
interface residues are defined as surface residues whose
ratio is less than the cut-off and larger than zero. The non-
interface residues are defined as surface residues whose
ratio is zero. Different cut-offs of ratio can give out differ-
ent classification of the core and the rim interface resi-
dues. Therefore we can apply different cut-offs of the ratio
to carry out the analysis of residue characteristics and
build SVM models. (See Additional file 7 for detail infor-
mation.)

Construction of the residue neighbour profile
We used a residue neighbour profile to describe the local
characteristics for each central or interaction residue. The
residue neighbour profile consists of three parts: the cen-
tral residue, the sequence neighbour residues of the cen-

Table 7: Prediction result on unbound proteins of the 
Benchmark

Sensitivity Specificity MCC

Benchmark unbound 57.5% 32.5% 0.168

This table shows the prediction result on 101 unbound proteins of 
the Benchmark.
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tral residue, and the spatial neighbour residues of the
central residue.

The sequence neighbour residues contained all the resi-
dues within a window size M of the sequence centred at
the central residue. The spatial neighbour residues were
the N spatial nearest residues of the central residue. When
searching for spatial neighbour residues, the sequence
neighbour residues were excluded from consideration.

Descriptors for amino acid residue
Each amino acid residue in the residue neighbour profile
was characterized by eight descriptors including physico-
chemical characteristics, hydrophobic index, relative
accessible surface area, secondary structure, sequence con-
servation, side-chain environment, sequence distance,
and spatial distance.

1. Physicochemical characteristics. Physicochemical char-
acteristics of an amino acid residue (Table 8) were
described by three values: number of atoms, number of
electrostatic charge, and number of potential hydrogen
bonds. These values were only related to the type of
amino acid and did not contain any structural informa-
tion from the amino acid residue.

2. Hydrophobicity. The hydrophobicity of an amino acid
residue was described by the hydrophobic index designed
by Eisenberg et al. [43].

3. Relative accessible surface area. The relative accessible
surface area was calculated by dividing the accessible sur-
face area with the accessible surface area of fully-exposed
amino acid. The accessible surface area of an amino acid
was calculated by DSSP program [44]. The accessible sur-
face areas of the fully exposed amino acids were according
to Rost et al. [45].

4. Secondary structure. The secondary structure of an
amino acid residue was also calculated by DSSP. The sec-
ondary structure was divided into three states: helix, sheet
and coil. DSSP secondary structure type I, G and H were
considered as helix; type E and B were considered as sheet;
type T, S and blank were considered as coil.

5. Conservation score. The values of sequence conserva-
tion for amino acids were obtained by PSI-BLAST search
[46] of the protein chain sequence in the Uniprot data-
base [47]. The round of iteration was set to 3. The result of
the PSI-BLAST search was a position-specific scoring
matrix. The diagonal value of each residue was extracted
as the value of sequence conservation.

6. Side-chain environment. Side-chain environment was
first purposed by Eisenberg et al. [48] and used in his 3D-
profile structural prediction method. We followed their
method and divided the side-chain environment of a res-
idue into six classes (Figure 5) according to its burial
degree and the fraction of side-chain area covered by polar
atoms. The details of the classification for the side-chain
environment were described in Eisenberg et al. [49].

7. Sequence distance. The sequence distance was the dif-
ference of sequence numbers between a residue in the
profile and the central residue.

8. Spatial distance. The spatial distance was the minimum
distance between the residue in the profile and the central
residue.

9. Descriptors for the central residue only. The residue and
atom compositions of all sequence and space neighbours
of the central residue are calculated. Atoms of amino acids
are divided into 18 classes according to the work of Zhang
et al. [41].

Table 8: Physiochemical characteristics of amino acids

Amino Acid Name Physicochemical characteristics Amino Acid Name Physicochemical characteristics

A (5 0 2) M (8 0 2)
C (6 0 2) N (8 0 4)
D (8 -1 4) P (7 0 2)
E (9 -1 4) Q (9 0 4)
F (11 0 2) R (11 1 4)
G (4 0 2) S (6 0 4)
H (10 0 4) T (7 0 4)
I (8 0 2) V (7 0 2)
K (9 1 2) W (14 0 3)
L (8 0 2) Y (12 0 3)

This table shows the physiochemical characteristics value for different amino acid. The first and the third columns are one letter abbreviation of 
amino acids. The second and the fourth columns are the value of physiochemical characteristics for amino acids. The three numbers in the brackets 
are the number of atoms, the number of electrostatic charge, and the number of potential hydrogen bond.
Page 10 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:553 http://www.biomedcentral.com/1471-2105/9/553
For each central residue, a residue neighbour profile of
1+M+N residues was defined and calculated. Each residue
in the profile was described by its descriptors which was
48 for the central residue and 10 for the other residues in
the profile. Therefore, the feature of each central residue
was described by a 48+10M+10N dimensional vector,
with M = 8 and N = 4 for our final SVM model.

SVM training
977 proteins were randomly divided into a training set
and a test set. 927 proteins were assigned to the training
set (see Additional file 4) and 50 randomly selected pro-
teins to the test set (see Additional file 5).

The SVM training and prediction were performed by the
lib-SVM package [49]. A balanced training set comprised
of equal number of core interface residues and non-core
interface residues was constructed and used to carry out
SVM training. Different combinations of window size M
for sequence neighbour and number N for spatial neigh-
bour were tested by the training set using 0.2 as the core
cut-off. The value of CVA was used to determine which
parameter set was better. The best parameters for windows
size M and number N were set to be 8 and 4, respectively.
The radial kernel function was used. The parameter c and

gamma of the radial kernel function were optimized and
set to be 1 and 1/168 respectively. When the training of
SVM model was finished, the SVM model was kept for the
SVM prediction.

SVM prediction
The SVM model obtained from the training process was
used to predict the interaction binding site on the protein
surface. We utilized the probability estimation function of
lib-SVM which can evaluate for each residue the probabil-
ity to be a core interface residue.

Evaluation of prediction results
When the optimization of parameters and the descriptor
selection were performed, the cross validation accuracy
(CVA) was used. The CVA was calculated by lib-SVM when
performing the cross validation tests. In this paper, all
CVA were calculated for the 5-fold cross validation test.

The prediction results were evaluated by sensitivity, specif-
icity, and Matthews correlation coefficient (MCC):

In above equations, TP, FN, FP, and TN are true positive,
false negative, false positive and true negative, respec-
tively. Sensitivity is the fraction of the number of true pos-
itive over the number of true positive plus false negative.
Specificity is the fraction of the number of true positive
over the number of true positive plus false positive. The
value of MCC is between 1 and -1 and higher MCC corre-
sponds to better prediction performance.

Drawing ROC curves and the calculation of AUC
The data of the test set is first merged into the data of core
interface and the data of other residues. Then SVM model
was used to make predictions on the merged test set data.
The receiver operating characteristics (ROC) curves are
drawn by changing the probability value cut-off output by
lib-SVM. The AUC is calculated by the trapezoidal rule
[50].

Calculation of p-value
The values of residue and atom composition of the core
interface, the rim interface, and the non-interface residues
are submitted to a statistical test. The Welch two sample t-
test in R package [51] was used to calculate the p-value.
We used 0.05 as the cut-off of the probability to judge
whether the difference of average between the two sam-
ples is significant.

Sensitivity
TP

TP FN

Specificity
TP

TP FP

MCC
TP TN FP FN

TP F

=
+

=
+

= × − ×
+( PP TP FN TN FP TN FN) ( ) ( ) ( )× + × + × +

The definition of the six local environment classesFigure 5
The definition of the six local environment classes. 
This figure shows the classification method of side-chain 
environment. RASA stands for the relative accessible surface 
area and FP stands for the fraction of surface area of polar 
atoms in the surface area of the whole side-chain. If RASA ≥ 
0.36, the residue will be divided into class E (exposed). If 0.09 
≤ RASA < 0.36, the residue will be divided into class P (par-
tial buried). Within class P, if FP < 0.67, the residue will be 
class P1, and if FP ≥ 0.67, the residue will be class P2. If RASA 
< 0.09, the residue will be divided into class B (buried). In 
class B, if FP < 0.45, the residue will be class B1, if 0.45 ≤ FP < 
0.58, the residue will be class B2, and if FP ≥ 0.58, the residue 
will be class B3.
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Program availability
The source code of our site prediction method is mainly
written by PERL and C. The SVM part of our method used
lib-SVM [49]. Currently, the source code of the programs
can be downloaded from web-site http://bio.iphy.ac.cn.
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