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Abstract
Background: The Codon Adaptation Index (CAI) is a measure of the synonymous codon usage
bias for a DNA or RNA sequence. It quantifies the similarity between the synonymous codon usage
of a gene and the synonymous codon frequency of a reference set. Extreme values in the nucleotide
or in the amino acid composition have a large impact on differential preference for synonymous
codons. It is thence essential to define the limits for the expected value of CAI on the basis of
sequence composition in order to properly interpret the CAI and provide statistical support to
CAI analyses. Though several freely available programs calculate the CAI for a given DNA
sequence, none of them corrects for compositional biases or provides confidence intervals for CAI
values.

Results: The E-CAI server, available at http://genomes.urv.es/CAIcal/E-CAI, is a web-application
that calculates an expected value of CAI for a set of query sequences by generating random
sequences with G+C and amino acid content similar to those of the input. An executable file, a
tutorial, a Frequently Asked Questions (FAQ) section and several examples are also available. To
exemplify the use of the E-CAI server, we have analysed the codon adaptation of human
mitochondrial genes that codify a subunit of the mitochondrial respiratory chain (excluding those
genes that lack a prokaryotic orthologue) and are encoded in the nuclear genome. It is assumed
that these genes were transferred from the proto-mitochondrial to the nuclear genome and that
its codon usage was then ameliorated.

Conclusion: The E-CAI server provides a direct threshold value for discerning whether the
differences in CAI are statistically significant or whether they are merely artifacts that arise from
internal biases in the G+C composition and/or amino acid composition of the query sequences.

Background
The Codon Adaptation Index (CAI), introduced by Sharp
and Li [1], is a measure of the synonymous codon usage
bias for a DNA or RNA sequence and measures the resem-
blance between the synonymous codon usage of a gene

and the synonymous codon frequencies of a reference set.
The CAI index ranges from zero to one being one if a gene
always uses, for each encoded amino acid, the most fre-
quently used synonymous codon in the reference set.
Though it was originally developed to assess how effective
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selection has been at moulding the pattern of codon usage
[1], it has since been applied to problems such as predict-
ing the expression level of a gene [2], predicting a group
of highly expressed genes [3,4], assessing the adaptation
of viral genes to their hosts [1], giving an approximate
indication of the likely success of heterologous gene
expression [5], making comparisons of codon usage pref-
erences in different organisms [1], identifying horizon-
tally transferred genes [6-8], detecting dominating
synonymous genomic codon usage bias in genomes [9],
acquiring new knowledge about species lifestyle [10], and
identifying the causes of protein rate variation [11,12].

Since the absolute value of the CAI depends on the query
sequence and on the reference set, both of these parame-
ters are important for correctly interpreting CAI values.
On the one hand, if the reference set has a random synon-
ymous codon usage with few differences in the use of syn-
onymous codons, the CAI values will be high, i.e. close to
one. On the other hand, extreme G+C and/or amino acid
compositions on the query sequence may lead to extreme
CAI values that are not directly linked to codon usage pref-
erences. It is therefore essential to define a threshold level
for the expected CAI value (eCAI) in order to interpret the
significance of codon usage biases and to provide statisti-
cal support to CAI analyses. The eCAI estimated by our
server makes it possible to discern whether differences in
the CAI are statistically significant or whether they cannot
be distinguished from biases due to nucleotide or amino
acid composition. Although several authors have used
some kind of expected codon usage [13,14], there is no
server or program available to estimate it.

Implementation
The E-CAI server uses a novel algorithm that calculates an
expected CAI for a set of query sequences by generating
random sequences with similar G+C content and amino
acid composition to the query sequences. The server,
implemented in PHP, is integrated with several tools for
the calculation and graphical representation of CAI. CAI
value is calculated as Sharp and Li originally defined it [1]
but using the recent computer implementation proposed
by Xia [15]. The Perl source code and a graphical interface
written in Tcl/Tk, as well as a tutorial, a Frequently Asked
Questions (FAQ) section and several examples are availa-
ble on the server homepage.

Inputs of the server
The basic inputs for calculating the expected CAI value are
the query sequences, the codon usage of the reference set
and the genetic code used. The query sequences must be
DNA or RNA sequences in fasta format. The codon usage
of the reference set can be introduced in a variety of for-
mats, including the format of the Codon Usage Database
[16]. Optionally, the user can introduce a G+C percentage

to generate the random sequences. If this G+C percentage
is not introduced, the server uses the G+C percentage from
the query sequences.

Generation of the random sequences and estimation of the 
expected CAI
The method for estimating an expected CAI is based on
generating 500 random sequences with the same amino
acid composition as the query but with codon usage
assigned randomly, either on the basis of the average G+C
content of the input, or on the basis of the G+C percentage
introduced by the user. Once all random sequences are
generated, their CAI values are calculated. The normality
of the CAI values of the random generated sequences is
assessed with a Kolmogorov-Smirnov Test. An expected
CAI value is then estimated using an upper one-sided tol-
erance interval for a normal distribution and a confidence
limit and a percentage of the population (also called cov-
erage) chosen by the user [17]. A tolerance interval is a
way to determine a range within which, with some confi-
dence, a specified proportion of a population falls. The
eCAI therefore represents the upper limit of the CAI for
sequences with a codon usage caused solely by mutational
bias. This means that if the CAI value of a gene is bigger
than the expected value estimated on composition bias
alone, it may be considered evidence of codon usage
adaptation or selection. An effective and intuitive way to
compare the CAI value of a gene with its expected CAI
value is to use that we call the normalised CAI value. This
normalised CAI is defined as the quotient between the
CAI of a gene and its expected value eCAI.

The E-CAI server allows two methods for generating the
random sequences. The first one, called Markov, is a
Markov Model of order 0. This means that the probability
of finding an amino acid at a specific position is inde-
pendent of the other amino acid positions. The Markov
method generates the random sequences by adding one
amino acid each time, using the frequencies of each
amino acid in the query sequences and a random number.
It chooses a random number in the interval (0,1), sums
the fractions of the amino acid composition of the query
and assigns as the next amino acid the one that causes the
sum to exceed the random number [18]. This process is
repeated until the desired length of the sequence is
reached. The random sequences are then back-translated
to DNA sequences, assigning randomly one of the synon-
ymous codon to each amino acid, either on the basis of
the average G+C content of the input or on the basis of the
G+C percentage introduced by the user. The second
method for generating the random sequences, called Pois-
son, is based on the assumption that the number of occur-
rences for each amino acid in a sequence follows a
Poisson distribution. The normalised amino acid frequen-
cies in the query sequences multiplied by the length (n) of
Page 2 of 7
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:65 http://www.biomedcentral.com/1471-2105/9/65
the generated random sequences are used as the expected
numbers of occurrences of each amino acid in the random
sequences. These values are used to calculate the probabil-
ities that there were exactly k occurrences of each amino
acid in a sequence of length n. From the sum of these
probabilities and a random number, the expected number
of occurrences for each amino acid in a random sequence
is calculated in a similar way to the Markov method. This
process is repeated until the desired number of sequences
has been generated. Again, the random sequences are then
back-translated to DNA sequences by the same method
described above. The results generated by the Markov and
Poisson methods are comparable, but the Markov method
is more precise and the Poisson method is faster. In addi-
tion, similar values of eCAI are obtained when the Gen-
RGenS software is used to generate the random sequences
[19].

Interpretation of the results
The reference set used to calculate the CAI is important for
the correct interpretation of its meaning. The CAI meas-
ures the similarity between the synonymous codon usage
of a gene and the synonymous codon frequency of a refer-
ence set. If this reference set is a group of highly expressed
genes and in the presence of selected codon usage bias, the
CAI values can be used to predict the expression level of
genes [20]. However, there is an intrinsic weakness in the
interpretation of CAI values when used for species with a
highly biased base composition [21]. A further problem
also may arise when CAI is used in species which do not
display a dominant translational bias [9,20]. Therefore, it
is necessary to establish whether highly expressed genes
have translationally selected biased codon usage [20]. In
this respect, the algorithm E-CAI can successfully over-
come the effects of compositional biases when calculating
CAI values. If the average codon usage of a genome is used
as a reference set, the CAI can be interpreted as a measure
of the codon adaptation of a gene in the context of a
genome. This information can be used to optimise the
expression of a gene in a heterologous expression system
[5]. The values of eCAI calculated by the E-CAI server are
expected to be over-estimations because the synonymous
codon usage of genes is highly influenced by the G+C con-
tent at the third codon position and because amino acid
usage is also species-specific [22]. The query sequences
define both nucleotide and amino acid composition and
are therefore important factors in the calculation of eCAI.
The expected CAI value could be meaningless if the com-
position of the query sequences are very heterogeneous.
To assess the homogeneity of the sequences in the query
set, a Chi-Square test is calculated to test the goodness-of-
fit between the amino acid composition or G+C content
of each of the query sequences and the average values used
to generate the random sequences. The percentage of
query sequences that fit the amino acid and/or G+C mean

distributions are then shown. If the query sequences are
compositionally very heterogeneous, these percentages
will be small. In this case we suggest splitting the query
sequences into smaller and homogeneous subsets and
estimating the eCAI values for each of the subsets sepa-
rately.

Executable version
To calculate CAI values for hundreds or thousands of
sequences on a whole-genome scale and generate an eCAI,
users can download an executable program that automat-
ically performs these calculations. The inputs, methods
and outputs of this executable version are the same as
those of the web version. However, it enables to choose
the length and number of randomly generated sequences.
More details about this script and how to use it are found
in the tutorial.

Results
Example: The Amelioration of mitochondrial genes 
encoded in the human nuclear genome
It is widely accepted that mitochondria have their origin
in a single event, arising from a bacterial symbiont whose
closest contemporary relatives are found within the alfa-
proteobacteria [23,24]. Since its origin, the mitochondrial
genome has undergone a streamlining process of genome
reduction with intense periods of loss of genes [25]. Now-
adays, mitochondrial genomes exhibit a great variation in
protein gene content among most major groups of
eukaryotes, but only limited variation within large and
ancient groups. This suggests a very episodic, punctuated
pattern of mitochondrial gene loss over the broad sweep
of eukaryotic evolution [26]. Mitochondrial genomes
have lost genes that lack a selective pressure for their con-
servation. This could include genes whose function may
no longer be necessary, genes whose function has been
superseded by some pre-existing nuclear genes or genes
that were originally present in the proto-mitochondria
and that have been transferred to the nucleus [25]. The
gene content of present mitochondrial genomes varies
from 63 protein-coding genes in Reclinomonas americana,
a flagellate protozoon, to three genes in other species (see
the GOBASE database [27], which contains information
for more than 1500 complete mitochondrial genomes).
Mitochondria in vertebrates encode for 13 respiratory-
chain proteins and for a minimal set of tRNAs that suffices
to translate all codons. However, the vast majority of pro-
teins located in the mitochondria are the product of
nuclear genes. These genes are encoded and transcribed in
the nucleus, translated in the cytoplasm and the proteins
are subsequently vehiculated to the mitochondria. Some
of these proteins are orthologous of present prokaryote
genes and are thought to be the result of horizontal gene
transfer events from the proto-mitochondrial to the
nuclear genome. This hypothesis is reinforced by the fact
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that several of these genes are encoded in the mitochon-
drial genome in other eukaryotic species [28].

To exemplify the use of the CAI server and the significance
of expected CAI values, we have analyzed the differential
codon adaptation of human mitochondrial genes to both
the human codon usage and the mitochondrial codon
usage. We used the human codon usage table from Lander
et al. [29] and the mean codon usage of all genes from
human mitochondrial genome (GenBank accession
number AF347015) as human and mitochondrial refer-
ence sets, respectively. We have focused on genes that
encode for a subunit of the mitochondrial respiratory
chain complexes I to V, excluding those that lack a
prokaryotic orthologue. Finally, we have divided the
genes into two categories according to whether they are
encoded in the nuclear or in the mitochondrial genome.
Our results are summarised in Table 1, which shows the
CAI values with respect to human codon usage (CAIhm)
and to the average codon usage of genes encoded in the
human mitochondrial genome (CAImt). More than half
of the analyzed nuclear-encoded mitochondrial genes
from human are present in the mitochondrial genome in
other organisms, thus reflecting their proto-mitochon-
drial origin. Because of the heterogeneity in G+C content
of the mitochondrial genes encoded in the nucleus, an
expected value (eCAI) was estimated individually for each
gene using the Poisson method, a 95% level of confidence
and 99% coverage. These expected values are also shown
in Table 1, as is the normalised CAI value, which is
defined as the quotient between the CAI for each gene and
its expected value. A value greater than one in this normal-
ised expected CAI value means that the observed CAI is
bigger than its expected value, which could be interpreted
as the result of an adaptation process in the codon usage.
Table 1 shows that most nuclear-encoded mitochondrial
genes are better adapted to the nuclear codon usage than
what would be expected by chance, while mitochondrial-
encoded mitochondrial genes are better adapted to the
mitochondrial codon usage than what would be expected
by chance. The CAIhm values of all thirteen mitochon-
drial-encoded mitochondrial genes are below their
expected upper limit, estimated using a sample of random
genes with the same G+C content and amino acid compo-
sition (Table 1b). At the same time, twelve out of these
thirteen genes have a CAImt above their expected upper
limit at a 99% confidence level and 95% coverage. The
obvious interpretation, therefore, is that mitochondrial-
encoded mitochondrial genes are better adapted to mito-
chondrial codon usage than to nuclear codon usage. Con-
versely, nuclear-encoded mitochondrial genes are better
adapted to nuclear codon usage than to mitochondrial
codon usage. Within nuclear-encoded mitochondrial, 34
out of 37 genes show a CAIhm above the expected upper
limit at a 95% confidence level and 99% coverage,

whereas only two genes have a CAImt above the expected
upper limit at a 95% confidence level and 99% of cover-
age (Table 1a). We interpret this result so that the codon
usage of the genes originally encoded in the proto-mito-
chondria and that are now encoded in the human nuclear
genome has been ameliorated and adapted to the human
codon usage after their transfer to the nucleus. The E-CAI
server provides individual CAI values for each gene with
respect to both the nuclear and mitochondrial codon
usages, as well as independent eCAI threshold values for
differentiating true codon usage optimization from spuri-
ous random matches that may arise from compositional
biases.

Several nuclear-encoded mitochondrial genes have a
higher G+C content than mitochondrial-encoded mito-
chondrial ones. It could therefore be argued that the dif-
ferences between CAI values of mitochondrial genes of
different origin probably reflect differences in G+C con-
tent rather than differences in codon usage adaptation. To
address this issue, in Figure 1 we have represented the nor-
malised CAIhm of human mitochondrial genes against
their G+C content at third codon position. Although some
mitochondrial genes encoded in the nuclear genome have
a higher G+C content than mitochondrial encoded ones,
there are several mitochondrial genes, encoded in the
nuclear and mitochondrial genome, with similar G+C
contents. However, the normalised CAIhm is very differ-
ent in both populations (figure 1), as is also demonstrated
if a Kolmogorov-Smirnoff test (D = 1.0, P < 0.0001) is
used. This clearly shows that the codon usage of the
nuclear encoded genes is not only due to mutational pres-
sure or G+C content, and that a certain degree of codon
usage adaptation exists. In this sense, it has recently been
reported that a weak positive correlation between gene
expression levels and the frequency of optimal codons
exists in humans [30,31].

Conclusion
The E-CAI server described here provides an expected
value of CAI for discerning whether the differences in CAI
are statistically significant and arise from the codon pref-
erences or whether they are merely artifacts that arise from
internal biases in the G+C composition and/or amino
acid composition of the query sequences. Using a normal-
ised CAI value, defined as the quotient between the CAI of
a gene and its expected value, is an effective and intuitive
way to analyze the codon usage bias of genes and codon
usage adaptation.

Availability and requirements
• Project name: E-CAI

• Project home page: http://genomes.urv.es/CAIcal/E-
CAI
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Table 1: Analysis of human mitochondrial genes that encode a subunit of complexes I-V of the mitochondrial respiratory chain 
encoded in the nuclear (a) or mitochondrial (b) genome.

a) Nuclear encoded genes

Complex Gene name Length CAIhm eCAIhm CAIhm/eCAIhm CAImt eCAImt CAImt/eCAImt

p = 0.05 p = 0.05 p = 0.05 p = 0.05

I NDUFS1 2184 0.695 * 0.683 1.018 0.434 0.519 0.836
NDUFS2 1392 0.765 ** 0.734 1.042 0.391 0.500 0.782
NDUFS3 795 0.754 * 0.750 1.005 0.402 0.488 0.824
NDUFS7 642 0.867 ** 0.780 1.112 0.442 0.446 0.991
NDUFS8 633 0.868 ** 0.796 1.090 0.439 0.465 0.944
NDUFV1 1395 0.825 ** 0.774 1.066 0.417 0.482 0.865
NDUFV2 750 0.695 0.703 0.989 0.449 0.519 0.865

II SDHC 510 0.699 * 0.679 1.029 0.377 0.457 0.825
SDHD 480 0.663 * 0.654 1.014 0.387 0.464 0.834
SDHA 1995 0.768 * 0.750 1.024 0.423 0.496 0.853
SDHB 843 0.778 ** 0.754 1.032 0.454 0.481 0.944

III UQCRFS1 825 0.711 * 0.711 1.000 0.391 0.483 0.810
CYC1 978 0.759 * 0.750 1.012 0.379 0.449 0.844

IV COX10 1332 0.744 ** 0.713 1.043 0.454 0.462 0.983
COX11 831 0.738 * 0.725 1.018 0.407 0.513 0.793
COX15 1140 0.707 * 0.688 1.028 0.411 0.472 0.871

V ATP5B 1590 0.714 * 0.698 1.023 0.412 0.507 0.813
ATP5A1 1512 0.695 * 0.684 1.016 0.409 0.519 0.788
ATP5C1 897 0.726 * 0.705 1.030 0.463 0.509 0.910
ATP5O 642 0.700 ** 0.681 1.028 0.429 0.486 0.883
ATP5D 507 0.807 ** 0.748 1.079 0.410 0.426 0.962
ATP5G1 411 0.776 ** 0.707 1.098 0.456 0.482 0.946
ATP5G2 474 0.752 ** 0.686 1.096 0.472 * 0.451 1.047
ATP5G3 429 0.720 ** 0.678 1.062 0.430 0.510 0.843
ATP6V1A 1854 0.709 * 0.702 1.010 0.451 0.525 0.859
ATP6V1B1 1536 0.703 0.711 0.989 0.439 0.514 0.854
ATP6V1D 744 0.676 0.697 0.970 0.430 0.522 0.824
ATP6V1E1 681 0.721 * 0.713 1.011 0.431 0.500 0.862
ATP6V1E2 681 0.777 ** 0.733 1.060 0.410 0.466 0.880
TCIRG1 2493 0.857 ** 0.781 1.097 0.421 0.434 0.970

ATP6V0D2 1053 0.732 * 0.722 1.014 0.456 0.518 0.880
ATP6V0C 468 0.838 ** 0.748 1.120 0.511 ** 0.461 1.108

ATP6F 618 0.803 ** 0.741 1.084 0.510 0.514 0.992
ATP6V0D1 1056 0.831 ** 0.793 1.048 0.457 0.495 0.923
ATP6V0A1 2496 0.758 * 0.734 1.033 0.424 0.507 0.836
ATP6V0A4 2523 0.770 ** 0.735 1.048 0.458 0.494 0.927
ATP6V0A2 2571 0.748 * 0.728 1.027 0.450 0.491 0.916

b) Mitochondrial encoded genes

Complex Gene Name Length CAIhm eCAIhm CAIhm/eCAIhm CAImt eCAImt CAImt/eCAImt

p = 0.05 p = 0.05 p = 0.05 p = 0.05

I ND1 957 0.635 0.796 0.798 0.760 ** 0.456 1.667
ND2 1044 0.616 0.774 0.796 0.677 ** 0.457 1.481
ND3 345 0.571 0.703 0.812 0.701 ** 0.461 1.521
ND4L 297 0.550 0.679 0.810 0.738 ** 0.472 1.564
ND4 1377 0.612 0.654 0.936 0.722 ** 0.455 1.587
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• Operating system(s): Platform independent

• Programming language: PHP

• Other requirements: none

• Any restrictions to use by non-academics: license
needed
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Graphical representation of the normalised CAIhm, defined as the quotient between the CAI of a gene and its expected value, versus G+C content at the third codon positions for the human genes that encode a subunit of a complex of the mitochondrial respiratory chainFigure 1
Graphical representation of the normalised CAIhm, 
defined as the quotient between the CAI of a gene 
and its expected value, versus G+C content at the 
third codon positions for the human genes that 
encode a subunit of a complex of the mitochondrial 
respiratory chain. Red squares represent mitochondrial 
genes encoded in the human mitochondrial genome and blue 
dots represent mitochondrial genes encoded in the human 
nuclear genome. An expected value of CAI was estimated for 
each gene with the E-CAI server, using the Poisson method 
and a 95% interval confidence and a 99% population cover-
age.

ND5 1812 0.651 0.750 0.868 0.723 ** 0.471 1.535
ND6 525 0.612 0.754 0.812 0.361 0.551 0.655

III CYTB 1134 0.655 0.711 0.921 0.758 ** 0.481 1.576

IV COX1 1542 0.644 0.750 0.859 0.715 ** 0.509 1.405

COX2 684 0.641 0.713 0.899 0.664 ** 0.503 1.320
COX3 780 0.656 0.725 0.905 0.704 ** 0.497 1.416

V ATP8 207 0.606 0.688 0.881 0.633 ** 0.452 1.400
ATP6 681 0.629 0.698 0.901 0.701 ** 0.472 1.485

Expected CAIs (eCAIs) at 95% (p = 0.05) and 99% (p = 0.01) confidence and 99% coverage were calculated using the Poisson method of the E-CAI 
server. For the sake of clarity, only the eCAI values at p = 0.05 are shown. CAIhm and CAImt mean CAI calculated using the mean nuclear and 
mitochondrial codon usage as a reference set, respectively. CAI values were calculated using the CAIcal tool http://genomes.urv.es/CAIcal.
* and ** mean that the CAI is higher than the eCAI estimated at 95% (*) and 99% (**) confidence and 99% coverage. Normalised CAI values (defined 
as the quotient between the CAI and its expected value) bigger than one are in bold and must be interpreted as evidence of adaptation to the 
reference codon usage beyond mere compositional biases.

Table 1: Analysis of human mitochondrial genes that encode a subunit of complexes I-V of the mitochondrial respiratory chain 
encoded in the nuclear (a) or mitochondrial (b) genome. (Continued)
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