
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
High-throughput bioinformatics with the Cyrille2 pipeline system
Mark WEJ Fiers, Ate van der Burgt, Erwin Datema, Joost CW de Groot and 
Roeland CHJ van Ham*

Address: Applied Bioinformatics, Plant Research International, PO Box 16, 6700AA Wageningen, The Netherlands

Email: Mark WEJ Fiers - Mark.Fiers@wur.nl; Ate van der Burgt - ate.vanderburgt@wur.nl; Erwin Datema - erwin.datema@wur.nl; Joost CW de 
Groot - joost.degroot@wur.nl; Roeland CHJ van Ham* - roeland.vanham@wur.nl

* Corresponding author    

Abstract
Background: Modern omics research involves the application of high-throughput technologies
that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated
with existing knowledge through the use of diverse sets of software tools, models and databases.
The analyses are often interdependent and chained together to form complex workflows or
pipelines. Given the volume of the data used and the multitude of computational resources available,
specialized pipeline software is required to make high-throughput analysis of large-scale omics
datasets feasible.

Results: We have developed a generic pipeline system called Cyrille2. The system is modular in
design and consists of three functionally distinct parts: 1) a web based, graphical user interface (GUI)
that enables a pipeline operator to manage the system; 2) the Scheduler, which forms the functional
core of the system and which tracks what data enters the system and determines what jobs must
be scheduled for execution, and; 3) the Executor, which searches for scheduled jobs and executes
these on a compute cluster.

Conclusion: The Cyrille2 system is an extensible, modular system, implementing the stated
requirements. Cyrille2 enables easy creation and execution of high throughput, flexible
bioinformatics pipelines.

Background
Large-scale computational analysis of biomolecular data
often involves the execution of multiple, interdependent
operations on an input dataset. The software tools, mod-
els and databases that are used in this process need to be
arranged in precise computational chains, where output
of one analysis serves as the input of a subsequent analy-
sis. Such chains are often referred to as pipelines or work-
flows. In formal terms, a pipeline can be defined as a
graph that describes the order of, and mutual relation-
ships between, the analyses to be performed on an input

dataset. In a pipeline representation, an operation per-
formed by a computational tool on input data is repre-
sented by a node. The connection between two nodes is
represented by an edge and defines a stream of data in-
between two analyses. An example of a simple computa-
tional pipeline representing part of a genome annotation
process is depicted in Figure 1.

Even for a small bioinformatics project with a few interde-
pendent analyses, it is cumbersome to perform all opera-
tions manually. For larger projects, e.g. the annotation of

Published: 12 February 2008

BMC Bioinformatics 2008, 9:96 doi:10.1186/1471-2105-9-96

Received: 14 July 2007
Accepted: 12 February 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/96

© 2008 Fiers et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18269742
http://www.biomedcentral.com/1471-2105/9/96
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
a complete eukaryotic genome, which may require the use
of dozens of interdependent tools, including gene predic-
tion tools, homology searches against different databases,
protein domain analyses and repeat discovery, this
quickly becomes excessively complex. The annotation of a
genome may require the use of dozens of interdependent
tools, including gene prediction tools, homology searches
against different databases, protein domain analyses and
repeat discovery.

Some of these tools may need to be executed up to tens of
thousands of times. The scale and complexity of such
computational analyses call for the use of dedicated pipe-
line software that enables the programming, execution
and data-flow management of all analyses required.

With primarily the development of a system for large-scale
genome annotation in mind, we have defined the follow-
ing operational requirements for the design of pipeline
management software:

High-throughput
The system should be capable of handling large datasets,
complex data analysis workflows and large numbers of
jobs requiring long periods of processing time. To this
end, the system must be able to employ a compute cluster.

Ease-of-use
In a high-throughput data production environment, it is
important to have a pipeline system in place that is easy
to use by non-expert end-users. This can be achieved by a

well-designed graphical user interface (GUI) that allows
easy and intuitive creation, adaptation, monitoring and
administration of a pipeline.

Flexible
New or upgraded bioinformatics tools, models and data-
bases appear frequently. To remain up-to-date, it is essen-
tial that employment of new or upgraded resources within
the pipeline is straightforward. The system should there-
fore be modular and flexible, and able to accommodate
complex data relationships required by some tools. Use of
an open communication standard can help to achieve this
and ensures the system is compatible with remote
resources through the use of web services [1].

Updates
In ongoing projects it is often undesirable to postpone
analysis until all data has been generated. Initial analysis
must therefore be repeated on a regular basis, for example,
when genome assemblies are updated or new reference
data (i.e. BLAST databases) become available. Again, ade-
quate data storage and tracking is important, allowing the
pipeline operator to identify the affected parts of the pipe-
line to reschedule and re-execute only the affected parts of
a pipeline with minimal redundancy.

There are a number of pipeline systems publicly available,
including Ensembl [2], Pegasys [3], GPIPE [4], Taverna
[5], Wildfire [6], MOWserv [7], Triana [8] and Kepler [9].
We will not consider systems that are not publicly availa-
ble (e.g. the NCBI pipeline). This article describes the
development of a new pipeline system, Cyrille2. An obvi-
ous question is why we would want to develop yet
another system? The answer is, in short, that the available
systems do not sufficiently comply with the requirements
outlined above. We have built the Cyrille2 system to pro-
vide this distinct set of features. In the discussion we will
extend the comparison with other systems in more detail.

Implementation
For a detailed description of the structural design and
operation of the Cyrille2 system several key terms must be
defined. Table 1 provides the definitions of the most
important terms used. Hereafter, we will start with a gen-
eral overview of the Cyrille2 design, followed by an expla-
nation of how the data-flow is organized within the
system. With this knowledge we will continue to describe
the core software parts (user interface, Scheduler and Exec-
utor) and end with a description of pipeline operation.

System overview
The Cyrille2 system architecture is composed of four dis-
tinct layers (Figure 2). Layer 1 comprises the main func-
tional and core software components. These core
components make extensive use of a modular application

Simple genome annotation pipelineFigure 1
Simple genome annotation pipeline. Example of a sim-
ple computational pipeline for genome annotation. Green 
boxes represent nodes. The pipeline describes the execution 
of a gene predictor (node 3) and two BLAST analyses (nodes 
4 and 5) [19] on a set of input DNA sequences (node 1). The 
BLAST analysis in node 4 compares the incoming sequences 
against the NCBI NT database. Node 5 uses a BLAST data-
base created by node 2 from the same set of sequences (self-
BLAST).
Page 2 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
programming interface (API) (layer 2). The API allows
unified access to three system databases (layer 3). The bio-
logical database and the end-user interface that connect to
it are third-party systems that can be integrated with the
Cyrille2 system (layer 4). To allow tracking and debugging
of a pipeline in operation, a centralized status and logging
system is implemented. This provides a pipeline operator
access to detailed information on the status of a pipeline
run and errors that might have occurred.

A pipeline system needs to manage and store large
amounts of diverse information. To keep different types of
data separated, the system employs four databases (Figure
2, layers 3 and 4): (1) the pipeline database which stores
pipeline definitions, node settings and associated param-
eters; (2) the status database which stores the execution
state of a pipeline at any given time, tracking all jobs and
their respective in- and output.; (3) the biological data-
base which stores and provides access to the results of all
analyses and; (4) a failover database which employs a

generic method to store all data that does not need to be
stored in the biological database.

Consider, as an illustration, the gene-prediction node
(node 3) from the example pipeline given in Figure 1. The
pipeline database identifies this node as a gene prediction
node and stores all instructions (i.e. tool name and
parameters settings) on how the gene prediction tool is to
be executed on each input DNA sequence from the pre-
ceding Load sequence node (node 1). The status database
stores information on which of the input sequences the
gene prediction has been performed, which genes have
been predicted and tracks all objects associated to this
analysis in the biological database using unique object
identifiers.

Similar to the functional division of the databases, the
core software is divided into three distinct functional
parts: the Graphical User Interface (GUI), the Scheduler
and the Executor (Figure 2, layer 1). The GUI allows a
pipeline operator to create, adapt, start and stop pipeline
runs and fine-tune pipeline and tool settings. A screenshot
of a genome annotation pipeline created with the GUI is
given in Figure 3. Additional series of screenshots showing
the operation of a small pipeline using the GUI are given
in Additional file 1.

The Scheduler is the core of the Cyrille2 system. It retrieves
pipeline definitions from the pipeline database and
schedules all jobs for execution, accounting for dependen-
cies between nodes. A scheduled job is stored in the status
database. Further details on Scheduler operation are given
below. The Executor loops through all scheduled jobs and
executes each of these. The results of each job are stored in
the biological database and are tracked with unique object
identifiers in the status database. If the number of jobs to
be executed is large, a compute cluster is required to keep
the total execution time within bounds. To this end the
Executor acts as a broker between the Cyrille2 system and
third-party compute cluster software such as Sun Grid

The Cyrille2 system architectureFigure 2
The Cyrille2 system architecture. Main architectural lay-
ers are numbered (1–4). See the text for further description.

Table 1: Glossary of most important terms used

Pipeline A pipeline is the definition of a series of computational analyses that are to be performed on a set of data. A pipeline can be 
described as a graph that is composed of nodes which are connected by edges.

Node A node represents a single analysis in the context of a pipeline. A node is associated with a tool and is responsible for the 
execution of one to many jobs. A node specifies how the data from a preceding node is organized for execution.

Tool A single application embedded in the pipeline, for example BLAST.
Tool-wrapper A tool wrapper is a script that frames and embeds a tool within the pipeline. It enables execution of the tool through communication 

with the pipeline software, from which it receives the tools' parameter settings (for example, which BLAST database to use). It 
translates in- and outgoing data from the pipeline in the format required by the tool.

Job A job is a single execution of a node. For example, a single gene prediction performed on a DNA sequence loaded into the 
pipeline.

Edge An edge connects two nodes and describes the stream of objects that flow between these nodes. To allow complex pipeline 
structures, a node can define multiple in- and output edges.

Object An object is the most granular element of data traversing the pipeline. Each object is tracked by the Cyrille2 system.
Stream A stream is a serie of objects traversing an edge between two nodes.
Page 3 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
Engine (SGE). It is possible to employ multiple and differ-
ent types of clusters by running multiple instances of the
Executor.

Whereas the Cyrille2 pipeline software functionally con-
sists of three separate parts, from a software implementa-
tion point of view, the essential application logic of the
system is implemented using object oriented program-
ming. The system implements different scheduling strate-
gies in different node types (Figure 4). A new node type
(i.e. a node class) can be created from scratch or it can
inherit from an existing node class making the implemen-
tation of new functionality as easy as possible.

Data flow and storage
A major challenge for any pipeline system is to devise a
fast and robust way to conduct data through a pipeline.
This is not trivial, given that even a relatively simple pipe-
line (such as the one given in Figure 1) may imply that
many thousands of separate jobs need to be scheduled
and executed, which in turn may result in millions of
objects.

Automated execution of a pipeline implies that each node
needs to hold information on the nature and format of
the objects that enter and leave it and that it has to process
such streams in a manner unique for each type of data. For
example, a stream of DNA sequences is different from a
stream containing BLAST reports. The issue is best
approached using a uniform syntax and identification of
the data transported in a pipeline. This does not only
allow for a standardized implementation of the schedul-
ing strategies of different node types, but also for a generic
node interface description and for data tracking.

Several data exchange formats, with varying scope, have
been devised and proposed for the handling and commu-
nication of biomolecular data, including XML-based for-
mats such as GAME (used by the Apollo genome
annotation curation tool [10]) and BioMOBY [11], and
flat-file formats such as GFF. An appropriate data
exchange format identifies and communicates data in a
uniform and unambiguous manner. Such a format must
permit unique identification and classification, and it
must be extensible to accommodate future incorporation
of novel data types. With this in mind, we have chosen to
implement BioMOBY [11] as data exchange format for the

Screenshot of a pipeline created with the Graphical User InterfaceFigure 3
Screenshot of a pipeline created with the Graphical User Interface. A simple genome annotation pipeline is shown, 
consisting of four gene prediction analyses (GlimmerHMM, Genscan, GeneID and SNAP), an intron-exon splice-site prediction 
(GeneSplicer), a tRNA gene predictor (tRNAscan-SE), a MAR element scan (Marscan), a repeat analysis (Tandem Repeat 
Finder) and a BLASTX analysis. The predicted genes (stored as coordinates on the original sequence; GFFCds) are converted 
into a sequence object (GenericTranscriptSequence) and subsequently subjected to a BLASTX analysis against the NCBI NT 
database.
Page 4 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
Cyrille2 system. BioMOBY is emerging as an important
data standard in bioinformatics and is already used by
MOWserv [7] and Taverna [5] when this system is dealing
with BioMOBY operations.

The BioMOBY standard contains a specification on how
to describe data types, formats, and analysis types. It is a
meta-data format, meaning that it does not describe data
but defines how to describe data. BioMOBY employs a
system of object identification and classification, in which
each BioMOBY object is identified with (1) an identifica-
tion string (id), (2) an object type (articlename) and (3) a
namespace. BioMOBY encompasses the description of
web services and facilitates interoperability with third-

party servers. In the current era of distributed computing,
this ability to communicate with systems worldwide is
becoming ever more important.

Standardized object identification is also applicable in
standardized data storage. With a BioMOBY object stored
with a unique id (as provided by the Cyrille2 system), arti-
clename and namespace, these three values are sufficient
to uniquely retrieve the object from a database. The
Cyrille2 system is designed to allow the use of different
databases schemas and/or engines to ensure flexibility. A
database wrapper functions as an intermediate between
the object identity on the one hand and database-specific
storage and retrieval of these objects on the other hand

Data flow within Cyrille2Figure 4
Data flow within Cyrille2. Detailed illustration of the data flow and scheduling strategies of the node types from the pipeline 
shown in Figure 1. Green boxes represent nodes. The different node types start, single, all, and cross are indicated in the top 
left corner of each box. In this example, three DNA sequences are uploaded into the system (s1, s2 and s3) which are subse-
quently processed by the different nodes. Open circles in-between the nodes indicate objects traversing the pipeline. Open 
boxes inside the nodes represent the jobs that are scheduled. For example; sequences uploaded (s1, s2 and s3) are scheduled 
by node 4 for a BLASTN analysis against the NT database. This BLAST analysis results in the BLAST-hits indicated by objects 
hA-hF. See text for more details.
Page 5 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
(Figure 5). The database wrapper contains specific instruc-
tions to store, retrieve and delete each different object type
in the biological database. This solution combines the
unique identification of any object with the freedom to
use any database. The database wrapper currently imple-
mented in our system is written for the Generic Genome
Browser database schema using MySQL. Two other data-
base schemes have been implemented for use in projects
on miRNA discovery and comparative genomics.

Storage of all intermediate data generated during pipeline
operation is guaranteed by the failover database that auto-
matically stores any object not stored in the biological
database. This may happen for two reasons: firstly, an
intermediate object might be of no importance to the end-
user querying the biological database, or, secondly, the
database wrapper fails to store the object to the biological
database for an unexpected reason; in either case, no data
is lost.

Apart from transporting data in between separate nodes of
the system, a pipeline system needs methods to upload
new data into the system and retrieve the results after-
wards. To upload data into the Cyrille2 system, specific
start nodes are provided allowing the upload of data
through the user interface or automatically harvesting
data from a file system. The resulting data of the pipeline
is stored in a domain specific database, for example the
Generic Genome Browser database [12], which is com-
monly used in genome annotation. The web interface is,
in this case, a bonus that helps end-users to access the
data.

Scheduler
The Scheduler is the core of the Cyrille2 system. Based on
a pipeline definition (from the pipeline database) it
schedules all jobs for execution, taking mutual dependen-
cies between nodes into account. Various tools used in an
analysis pipeline require different arrangements of incom-
ing data. For example, node 2 in Figure 1 uses all DNA
sequences from node 1 to create a BLAST database. The
Scheduler thus arranges all sequences to be processed by a
single job. In contrast, node 4 processes each sequence
separately in a BLAST analysis. In this case the Scheduler
creates as many jobs as there are input sequences. This is
illustrated in Figure 4, which shows the same pipeline as
given in Figure 1, but now expanded with detailed infor-
mation on the objects that are created and the jobs that are
scheduled.

Scheduler functionality is embedded in the node classes.
This modular, object-oriented implementation of a node
allows for complex scheduling strategies. A more complex
node implemented in the Cyrille2 system schedules
groups of objects which share a common grandparent, for
example, all repeats that are predicted by several different
repeat detection tools, grouped per BAC sequence (the
grandparent).

Pipeline execution
Execution of a pipeline can be considered at two levels:
execution of a separate node, and execution of an entire
pipeline. A single node in the Cyrille2 system executes a
variable number of distinct jobs. For example, a BLAST
analysis of 10 input sequences requires a BLAST node to
execute 10 BLAST jobs. A single BLAST job consists of sev-

Relationship between the status and the biological databaseFigure 5
Relationship between the status and the biological database. The status database employs BioMOBY identification (id, 
articlename and namespace) and holds information on the biological database in which the object is stored. The biological data-
base is accessed through a database specific wrapper that provides a generic interface to retrieve an object based on the infor-
mation in the schedule database. The database wrapper is accessed through a wrapper script (number 1 and 3 in Figure 6).
Page 6 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
eral processing steps: retrieve the input sequence (in Bio-
Moby format) from the biological database; export the
sequence as a FASTA file; execute BLAST with the correct
parameters; read and parse the resulting BLAST report to a
BioMOBY representation; write the BioMOBY formatted
BLAST report to the biological database, and; register the
results in the status database.

Node operation in Cyrille2 is performed by executing
three different scripts (Figure 6): (1) data is retrieved from
the database; (2) the tool is executed, and; (3) the results
are stored back in the database. Communication with the
database is handled by two database connection scripts
(steps 1 and 3, see also Figure 6: database-get and data-
base-store), which is equivalent to the Ensembl Runna-
bleDB [13]. These two scripts access the database wrapper
(Figure 5) and provide generic communication with any
database of choice.

A tool wrapper is responsible for the execution of the tool
and provides generic interaction with the Cyrille2 system.
Tool wrappers are implemented in such a way that they
can run standalone, be part of a BioMOBY web service, or
function as a component of the Cyrille2 system. A tool
wrapper is equivalent to a Runnable in the Ensembl sys-
tem [13]. During execution, the tool wrapper is responsi-
ble for steps D, E and F from Figure 6.

A further task of the tool wrapper is to register itself in the
Cyrille2 system. Registration implies that the tool
becomes available through the GUI, allowing a pipeline
operator to integrate it into a pipeline and allowing the
Scheduler to correctly schedule jobs for that tool. The
process communicates what type of objects are required as
input (e.g. protein sequences for BLASTP), what parame-
ters are accepted (e.g. specification of a protein database)
and with what node type it must be associated. This is
implemented in a generic registration method where the
wrapper registers all required information into the pipe-
line database.

In a rapidly evolving field like bioinformatics, it is of great
importance that new tools can be implemented quickly.
In the Cyrille2 system this requirement is implemented
through modular, object oriented, design of the tool
wrapper code. In brief, implementation of a novel tool in
the Cyrille2 system involves the following procedure: (1)
installation and configuration of the new tool on the exe-
cution server or cluster; (2) writing of the BioMOBY-com-
patible tool wrapper; (3) definition of new BioMOBY
objects (if required); (4) confirmation of compatibility
between object types and the biological database in use,
and; (5) registration of the tool in the pipeline database.

A complete pipeline operates by iteratively running the
Scheduler and Executor. Results produced by a tool under
control of the Executor can result in more jobs to be
scheduled by the next Scheduler run. If there are no more
jobs to be executed for a node and all its parents, it is
flagged as finished in the status database. A complete
pipeline is finished if all nodes are in the finished state.
Pipeline iteration can be resumed after new data is
uploaded into the pipeline, when a database has been
updated (e.g. BLAST databases) or when the pipeline def-
inition has changed. Resumption is accomplished by
unflagging the finished state of one or more nodes in a
pipeline. This is either done manually (through the GUI)
or automatically, for example after a BLAST database
update.

Results
Our local implementation of the Cyrille2 system runs on
a dedicated server (dual AMD Opteron 850, 4 Gb mem-
ory, 300 Gb disk) and has a 50 CPU, SGE based Linux
compute cluster at its disposal. A list of third party tools
currently wrapped in the Cyrille2 system is provided [see
Additional file 2].

In a test run, the Cyrille2 system analyzed 50 Arabidopsis
BAC sequences (4.8 Mb) randomly downloaded from
NCBI using the pipeline shown in Figure 3. The analyses
resulted in over 735.000 objects created in over 10.000
different analyses executed. The results are summarized

Execution and data flow in a nodeFigure 6
Execution and data flow in a node. The standardized 
execution and data flow within a separate node in the 
Cyrille2 system. Execution starts with sending the object 
identifiers describing which objects serve as input for this 
specific node (A). The database-get script retrieves this data 
from the biological database (B), converts it to BioMOBY 
format (C) and sends it to the tool wrapper. The tool wrap-
per prepares the data for the tool (D), executes the tool, 
interprets its output (E) and converts it to BioMOBY (F). The 
database-store script stores the data in the biological data-
base (G) and returns the newly created object identifiers (H) 
back to the system.
Page 7 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
Additional file 3. Measurement of the pipeline execution
time is not relevant as the bulk of the execution time
results from executing the actual tools. As an illustration,
however, the analysis of a single BAC with the pipeline
from Figure 3 takes approximately an hour to complete on
a Linux compute cluster with 50 CPUs (hardware specifi-
cations as above).

The Cyrille2 system is now used routinely for BAC anno-
tation in two solanaceous genome sequencing projects in
which our group is involved [14,15]. In addition, we run
the system in a comparative genomics project of fungal
genomes and a second project on the large-scale predic-
tion of microRNAs in plant and animal genomes. These
last two projects require very high data throughput and
employ databases different from the Generic Genome
Browser database and thus demonstrate the flexibility of
the Cyrille2 system and its ability to execute complex and
computationally demanding pipelines.

Discussion
The Cyrille2 system was developed with the aim of pro-
viding an automated, high-throughput, easy-to-use, flexi-
ble and extensible bioinformatics workflow management
system. Among its most notable features are the imple-
mentation of a powerful job scheduler module, storage of
intermediate data, compatibility with different database
types for storage of biological data, a generic tool wrapper
module, and uniform data transport and data tracking.

Ease-of-use is achieved through implementation of an
intuitive user interface with several layers of complexity. A
pipeline operator can select from a predefined set of pipe-
lines and nodes to perform complex data analysis tasks
while an administrator is able to construct novel, and
fine-tune existing, pipelines.

High-throughput operation
The major part of the development effort has been
directed towards achieving flexibility and extensibility in
architecture and high-throughput operation. In a high-
throughput data analysis environment, parallel execution
of jobs is important to optimally use the available compu-
tational facilities and hence, make pipeline calculation
time as short as possible. This requires specific scheduling
logic for different node types. The Cyrille2 Scheduler pre-
pares jobs for parallel execution as soon as results from
preceding analyses become available. The single node
type schedules a job immediately after an input object
becomes available. This means that subsequent analyses
can already start before the parent node is finished. Most
pipeline systems implement a scheduling engine able to
schedule jobs in parallel [3-9,12]. An important feature of
Cyrille2 is the modular implementation of the node class
allowing a greater variety in scheduling strategies.

Parallel scheduling requires parallel execution, which is
controlled by the Executor. There are many solutions
available for the distribution of jobs over a compute clus-
ter, including Sun Grid Engine (SGE), Condor, OpenPBS
and LSF. For the Cyrille2 Executor, we have chosen to
employ SGE, which is both stable and able to handle high
loads. A port for Grid technologies such as Condor is
under development and will allow the Cyrille2 system to
employ idle Windows desktops.

Another important aspect in high-throughput pipeline
analysis is the storage of intermediate results. If this is
implemented, the pipeline system will be able to resume
calculations close to the point where it may have stopped
after a system failure. This feature becomes important
when a pipeline requires a long execution time and hence,
the chance of a failure, somewhere in the system,
increases. If storage of intermediate data is undesirable,
for example because of disproportional usage of storage
capacity, it is straightforward to either develop a node type
which embeds two or more other nodes and directly
transfers the data between the nodes in a single Executor
run, or to develop a single tool wrapper which executes
both steps and behaves as a single tool in the system. In
both cases, intermediate data storage is by-passed.

A further advantage of intermediate data storage is that
each part of a pipeline can be re-executed when necessary.
This is essential when only part of a pipeline needs to be
repeated with either different parameter settings, after a
database update, or upon the addition of extra nodes to
the pipeline. In the current implementation of Cyrille2,
the system will remove, prior to a rerun, all data that is
affected by the update from both the status and biological
databases and rerun the necessary analyses. For example,
consider the genome annotation pipeline of Figure 3.
Prior to uploading a new version of a sequence, the pipe-
line operator will flag this sequence, instructing the sys-
tem to delete all gene predictions and BLAST hits
associated with that sequence. The system will subse-
quently perform only those analyses on which the
changed sequence had an impact.

We have encountered two severe problems during
Cyrille2 development, both related to system overhead: 1)
BioMOBY XML parsing is very time-consuming for large
data-sets, and; 2) SGE overhead becomes very large for
nodes which execute a large amount of small jobs. The
import and export of large XML files in general is notori-
ously slow. In Cyrille2, we have solved this problem by
circumventing raw XML transport as much as possible. For
example, conversion of the data between steps 1, 2 and 3
in the node depicted in Figure 6, from raw XML to an
internal python object representation of the BioMOBY
XML boosted the performance of this node significantly.
Page 8 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
Using serialized objects might, as a drawback, have an
impact on backwards compatibility, specifically if objects
are stored in the Failover database.

The second major obstacle concerned the overhead
involved in executing large numbers of jobs with very
short computation time. If each of these jobs is scheduled
separately on an SGE cluster, the overhead used by SGE
considerably exceeds the time required for the execution
itself. This overhead was significantly reduced by imple-
menting a generic batch mechanism which is able to exe-
cute an arbitrary amount of pipeline jobs as a single SGE
job.

Flexibility
In the rapidly evolving field of genome annotation, it is
critical that a pipeline management system is flexible and
easily extensible. The Cyrille2 system was designed to
allow future incorporation of novel tools, data types and
databases in a generic fashion. For example, for a present-
day genome annotation project, it is generally sufficient to
store all relevant data in a biological database such as the
Generic Genome Browser database [12]. However, if one
would require the inclusion of data such as multiple align-
ments or 3D protein structures, a different database is
required.

The Cyrille2 system is designed to make the addition of a
novel object type or the complete change of the biological
database as easy as possible. This is achieved by imple-
mentation of the database wrapper as a separate module.
Addition of a novel data type can be done by adding a
'get', 'store' and 'delete' function for this type of data type
to the database wrapper. To create a wrapper for another
database schema, a new module must be written with a
storage, retrieval and delete function for each object type.
This mode of integration of a third-party database with a
pipeline system is unique for the Cyrille2 system. Many
alternative systems do not use a database for storage of
intermediate results, (Taverna [5]; GPIPE [4]; Wildfire
[6]). Instead, these systems transport the output of one
program directly to the next program and/or store inter-
mediate results as flat files. Such an approach is unsuita-
ble for large-scale data analysis. A database system is
better suited to keep track of many, possibly millions, of
intermediate objects and their mutual relationships.
Moreover, a database is better adapted to distribute data
in a heterogeneous environment. Other systems do
employ a database for data storage (Ensembl [13]; Pegasys
[3]; MOWserv [7]) but each of these is strongly linked to
a specific database schema, thus limiting their flexibility.

In the current implementation of Cyrille2, the Generic
Genome Browser database [12] is used for storage of the
genome annotation data with, as an obvious extra, the

Generic Genome Browser allowing an end-user easy
access to the annotations. Implementing Cyrille2 in dif-
ferent projects, such as comparative genomics and miRNA
prediction has proven the capability of Cyrille2 to operate
using different databases schemes.

The use of BioMOBY as a communication standard com-
bined with the storage of standardized object identifiers
by the Cyrille2 system ensures that any object can be han-
dled and tracked by the system, including binary objects
such as images [11]. Other advantages of using BioMOBY
are that it ensures easy integration with the growing body
of remote BioMOBY web services and optimal intercon-
nectivity between nodes. At the same time, it is possible
for external users to access the Cyrille2 tools using any
BioMOBY client if the tools and toolwrappers are placed,
with some minor modifications, on a web server.

Several systems employ specific embedded scripts to
translate the output of one tool to the input of the next
(Wildfire, [6]; FIGENIX [16]; GPIPE [4]) as opposed to
using a standardized data format. Most analysis tools have
a unique in- and output format and thus the number of
unique translation steps grows quickly with the number
of tools wrapped. This can be mitigated by using uniform
data transport such as BioMoby, which is used in Cyrille2,
MOWserv [7] and Taverna [5] when this system is dealing
with BioMOBY operations. The Ensembl system employs
a uniform Perl data structure to the same end [17].

On a higher level, import and export of the description of
a complete pipeline would improve flexibility by allowing
the exchange of workflows with other systems. For exam-
ple, a pipeline developed in Taverna could then be exe-
cuted in Cyrille2, or vice versa. There are several candidate
languages available such as Scufl, used by Taverna, or the
more widely accepted BPEL [18]. Research is necessary to
see if the adaptation of such a standard would be worth-
while for the Cyrille2 system, both to see if any candidate
provides sufficient flexibility as to assess the amount of
work necessary to implement such a standard.

Conclusion
The Cyrille2 system has been developed to operate in the
environment of a high-throughput sequencing facility
with a need for robust, automated and high-throughput
genome analysis, and easy creation, adaptation and run-
ning of pipelines by non-expert users.

Most of the pipeline systems that have recently been
released were developed as a workbench for bioinforma-
ticians. Some systems excel in the way they allow for com-
plex pipelines to be built through a visually appealing but
sometimes complex GUI (Taverna, Kepler, Triana). Most
systems are not suited for automated, high-throughput
Page 9 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:96 http://www.biomedcentral.com/1471-2105/9/96
operation with as obvious exception Ensembl [13].
Ensembl was, however, not designed to be deployed at
other sites or execute ad hoc pipelines.

In view of the distinctive functionality and combination
of features implemented in the Cyrille2 system we believe
that it is a valuable addition to the array of pipeline sys-
tems available and particularly useful in environments
that require high-throughput data analysis. In the near
future we are planning to expand the Cyrille2 system in
computational workflows for metabolomics data analy-
sis.

Availability and requirements
Cyrille2 is written in Python on a Linux platform and
requires a MySQL database server and an Apache/
mod_python web server. The system expects a Rocks
Linux cluster for execution of analysis tools, although
other SGE based solutions should work. The source code
of the Cyrille2 system is published under the terms and
conditions of the GNU Public License and is freely availa-
ble from http://www.ab.wur.nl/Cyrille2.

Authors' contributions
MF is the lead developer of the Cyrille2 system, has imple-
mented most of the core of the system and has drafted this
publication. AvdB and ED have both contributed to the
development of tool wrappers, the database layer, limited
work on the core and the manuscript. JdG has aided in
implementing the GUI. RvH has been the project manager
and contributed in discussions, planning and writing of
this manuscript. All authors have read and approved the
manuscript.

Additional material

Acknowledgements
The development of Cyrille2 was supported by the Centre for BioSystems 
Genomics (CBSG).

References
1. Neerincx PBT, Leunissen JAM: Evolution of web services in bio-

informatics.  Brief Bioinform 2005, 6:178-188.
2. Hubbard T, Andrews D, Caccamo M, Cameron G, Chen Y, Clamp M,

Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down
T, Durbin R, Fernandez-Suarez XM, Gilbert J, Hammond M, Herrero
J, Hotz H, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D,
Keenan S, Kokocinsci F, London D, Longden I, McVicker G, Melsopp
C, Meidl P, Potter S, Proctor G, Rae M, Rios D, Schuster M, Searle S,
Severin J, Slater G, Smedley D, Smith J, Spooner W, Stabenau A,
Stalker J, Storey R, Trevanion S, Ureta-Vidal A, Vogel J, White S,
Woodwark C, Birney E: Ensembl 2005.  Nucleic Acids Res 2005,
33:D447-53.

3. Shah SP, He DYM, Sawkins JN, Druce JC, Quon G, Lett D, Zheng
GXY, Xu T, Ouellette BFF: Pegasys: software for executing and
integrating analyses of biological sequences.  BMC Bioinformat-
ics 2004, 5:40.

4. Garcia Castro A, Thoraval S, Garcia LJ, Ragan MA: Workflows in
bioinformatics: meta-analysis and prototype implementa-
tion of a workflow generator.  BMC Bioinformatics 2005, 6:87.

5. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver
T, Glover K, Pocock MR, Wipat A, Li P: Taverna: a tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics 2004, 20:3045-3054.

6. Tang F, Chua CL, Ho L, Lim YP, Issac P, Krishnan A: Wildfire: dis-
tributed, grid-enabled workflow construction and execution.
BMC Bioinformatics 2005, 6:69.

7. Navas-Delgado I, Rojano-Muñoz MDM, Ramírez S, Pérez AJ, Andrés
León E, Aldana-Montes JF, Trelles O: Intelligent client for inte-
grating bioinformatics services.  Bioinformatics 2006, 22:106-111.

8. Taylor I, Shields M, Wang I, Harrison A: Visual Grid Workflow in
Triana.  Journal of Grid Computing 2005, 3(3):153-169.

9. Altintas I, Berkley C, Jaeger E, Jones M, Ludäscher B, Mock S: Kepler:
An Extensible System for Design and Execution of Scientific
Workflows.  In Proceedings of the 16th International Conference on Sci-
entific and Statistical Database Management (SSDBM'04): 21-23 June
2004; Santorini Island, Greece IEEE Computer Society; 2004:423-424. 

10. Lewis SE, Searle SMJ, Harris N, Gibson M, Lyer V, Richter J, Wiel C,
Bayraktaroglir L, Birney E, Crosby MA, Kaminker JS, Matthews BB,
Prochnik SE, Smithy CD, Tupy JL, Rubin GM, Misra S, Mungall CJ,
Clamp ME: Apollo: a sequence annotation editor.  Genome Biol
2002, 3:RESEARCH0082.

11. Wilkinson MD, Links M: Biomoby: an open source biological
web services proposal.  Brief Bioinform 2002, 3:331-341.

12. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson
E, Stajich JE, Harris TW, Arva A, Lewis S: The generic genome
browser: a building block for a model organism system data-
base.  Genome Res 2002, 12:1599-1610.

13. Potter SC, Clarke L, Curwen V, Keenan S, Mongin E, Searle SMJ, Sta-
benau A, Storey R, Clamp M: The ensembl analysis pipeline.
Genome Res 2004, 14:934-941.

14. Jacobs J, Conner A, Bachem C, van Ham R, Visser R: The potato
genome sequence consortium.  Breeding For Success: Diversity In
Action. Proceedings Of The 13Th Australasian Plant Breeding Conference
2006:933-936.

15. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C,
Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N,
Zamir D, Tanksley SD: The sol genomics network: a compara-
tive resource for solanaceae biology and beyond.  Plant Physiol
2005, 138:1310-1317.

16. Gouret P, Vitiello V, Balandraud N, Gilles A, Pontarotti P, Danchin
EGJ: Figenix: intelligent automation of genomic annotation:
expertise integration in a new software platform.  BMC Bioin-
formatics 2005, 6:198.

17. Stabenau A, McVicker G, Melsopp C, Proctor G, Clamp M, Birney E:
The ensembl core software libraries.  Genome Res 2004,
14:929-933.

18. Web Services Business Process Execution Language Version
2.0   [http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf]

19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool.  J Mol Biol 1990, 215:403-410.

Additional file 1
Fiers.Cyrille2.Suppl1.pdf contains a series of screenshots showing the cre-
ation and operation of a small pipeline using the Cyrille2 system.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-96-S1.DOC]

Additional file 2
Fiers.Cyrille2.Suppl2.pdf contains a list of tools currently wrapped for use 
in the Cyrille2 system.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-96-S2.DOC]

Additional file 3
Fiers.Cyrille2.Suppl3.pdf contains the results of a test run with the pipe-
line from Figure 3 and 50 randomly downloaded BACs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-96-S3.DOC]
Page 10 of 10
(page number not for citation purposes)

http://www.ab.wur.nl/Cyrille2
http://www.biomedcentral.com/content/supplementary/1471-2105-9-96-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2105-9-96-S2.DOC
http://www.biomedcentral.com/content/supplementary/1471-2105-9-96-S3.DOC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15975226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15975226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15813976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15813976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15813976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12537571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16010005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16010005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16083500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16083500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123588
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712

	Abstract
	Background
	Results
	Conclusion

	Background
	High-throughput
	Ease-of-use
	Flexible
	Updates

	Implementation
	System overview
	Data flow and storage
	Scheduler
	Pipeline execution
	Results

	Discussion
	High-throughput operation
	Flexibility
	Conclusion

	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

