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Abstract
Background: A mathematical model to understand, predict, control, or even design a real
biological system is a central theme in systems biology. A dynamic biological system is always
modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic
behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and
accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems,
the system admissible input (corresponding to independent variables of the system) can be time-
dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite
dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take
into account this case for the dynamic log gains.

Results: We present an algorithm with an adaptive step size control that can be used for
computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously.
Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities
of an ODE system, the step size determined by model equations can be used on the computations
of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity
equations are more stiff than model equations. To show this algorithm can perform the dynamic
sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied
to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy
of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from
this new algorithm and from the direct method with Rosenbrock stiff integrator based on the
indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch
fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to
realistic models with time-dependent admissible input.

Conclusion: By combining the accuracy we show with the efficiency of being a decouple direct
method, our algorithm is an excellent method for computing dynamic parameter sensitivities in stiff
problems. We extend the scope of classical dynamic sensitivity analysis to the investigation of
dynamic log gains of models with time-dependent admissible input.
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Background
A mathematical model to understand, predict, control, or
even design a real biological system is a central theme in
systems biology. The most often used mathematical mod-
els for dynamic biological systems are formulated as non-
linear ordinary differential equations (ODEs). The critical
challenges to get an ODE model are structure identifica-
tion and parameter estimation of the model. To identify
the structure and parameters of a dynamic model, the
most important and essential job is to find the solution of
ODEs efficiently and accurately. This job can be treated by
analytical and numerical methods. Analytical methods
are limited to certain special forms of ODEs, but numeri-
cal methods have no such limitations. There are several
numerical methods can be used to solve ODEs [1-3], e.g.,
Taylor-series methods, modified Euler methods, and
Runge-Kutta methods with variable step size control. The
Taylor-series method takes more computation time to
solve ODEs if the various derivatives are complicated, and
the error is difficult to determine for arbitrary functions.
The modified Euler method is a special case of a second-
order Runge-Kutta method, and is more efficient com-
pared to the Taylor-series method [4]. Fourth-order
Runge-Kutta method is the most widely used ODE solver
to meet requirements on both efficiency and accuracy.
Collocation methods [5] are another common algorithms
for solving ODEs and have been used for more than forty
years. Wang [6] proposed a modified collocation method
to transform ODEs into algebraic equations, and solved
them by the Newton-Raphson method or an iteration
method with step length restriction. The restricted step
size is fixed and computed by trial and error. To overcome
this drawback, we propose an adaptive step size control
approach based on the Banach fixed point theorem for the
modified collocation method in this paper.

There are different types of gains and dynamic sensitivities
defined for sensitivity analysis [7-9]. The relative change
of a dependent variable in response to a relative change in
an independent variable is called a logarithmic gain, or a log
gain. Log gains describe the change of dependent variables
due to an environment change and are very useful for the
assessment of the robustness and parameter estimation of
a model. The change of a dependent variable in response
to a change in a parameter is called a parameter sensitivity.
In contrast to log gains, parameter sensitivities are the
change of dependent variables correspond to a structure
change in the model. The Biochemical Systems Theory
(BST) [10] and Metabolic Control Analysis (MCA) [11-
13] have achieved a great success in addressing the sensi-
tivities at a steady state. However, the transient or periodic
behavior is the primary interest in many systems (e.g.,
oscillation systems and fermentation systems that do not
have a steady state). In these systems, the parameter sensi-
tivities and log gains change with time, therefore the cal-

culation methods for the steady state responses can not
function. Dynamic sensitivity analysis is used in studying
time-varying sensitivities in dynamic biological systems. A
dynamic biological system can be characterized using log-
arithmic gains, sensitivities with respect to parameters and
initial conditions. Several methods have been published
to evaluate dynamic sensitivities [14-24]. They can be
divided into the indirect methods (IDMs) and the direct
methods (DMs). In the IDMs, the value of one dedicated
parameter is varied infinitesimally while the values of
other parameters are fixed. The model equations are
solved anew for these sets of values of the parameters that
differ in the value of the dedicated parameter only. The
sensitivity of each variable with respect to this dedicated
parameter is computed using the difference between the
solutions of that variable for the two sets of values of the
parameters divided by the infinitesimal difference of the
dedicated parameter. In the DMs, using an ODE solver to
solve the model equations and sensitivity equations
simultaneously is the most used method for computing
dynamic sensitivities. Shiraishi et al. [25] published a var-
iable-order, variable-step Taylor-series method that can be
used as an ODE solver providing a highly accurate calcu-
lation to compute dynamic sensitivities. This method is
limited to general mass action (GMA) models described
by power-law differential equations. Runge-Kutta meth-
ods with variable step size control can be used to compute
dynamic sensitivities for most of the nonlinear differential
equations, but is inefficient to determine the step size in a
large dimensional system including the model differential
equations and sensitivity differential equations. Due to
the efficiency, Dunker [15] proposed the decoupled direct
method (DDM), in which the sensitivity equations are
solved separately from the model equations. He said: "the
decoupled method has advantages in simplicity, stability,
accuracy, efficiency, storage requirements, and program
size over other methods". Although the DDM approach
has so many advantages, the step size for the time profile
determined by the error control of model equations is
unable to be used for the sensitivities when the sensitivity
equations are more stiff than the model equations and
will generate inaccurate results.

Dynamic sensitivity analysis evaluates the influences on
dependent variables due to variations of parameters, ini-
tial conditions and independent variables. In many prac-
tical applications, e.g., the fed-batch fermentation
systems, the system admissible input (corresponding to
independent variables of the system) can be time-depend-
ent. The main difficulty for investigating the dynamic log
gains of these systems is the infinite dimension due to the
time-dependent input. Shiraishi et al. [26] proposed an
efficient method, based on a combination of the recasting
technique and the Taylor-series method, for calculating
the time courses of log gains to investigate the dynamic
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behavior of log gains for oscillation models with a limit
cycle. The method is limited to the computations of
dynamic log gains with respect to constant independent
variables. We extend the computations of dynamic log
gains to a model with continuous time-varying admissible
input based on the finite parameterization method (PM).
The classical PM was created for numerical solutions of
optimal control problems [27]. The central idea of the
method relies on a simple approximation mechanism.
The whole time domain of a continuous admissible input
is partitioned into several subintervals, and the input for
each subinterval is approximated by a piecewise constant
function. The dynamic log gains with respect to the con-
tinuous admissible input can be computed based on the
partial derivations of dependent variables with respect to
the piecewise constant input [28-30].

In this paper, we present an algorithm with an adaptive
step size control that can be used for computing the solu-
tion and dynamic sensitivities of an autonomous ODE
system simultaneously. This algorithm is the modified
collocation method, proposed by Wang [6], with an adap-
tive step size control approach. Although our algorithm is
one of the decouple direct methods in computing
dynamic sensitivities of an ODE system, the step size
determined by model equations can be used on the com-
putations of the time profile and dynamic sensitivities
with moderate accuracy even when sensitivity equations
are more stiff than model equations. In the algorithm, the
modified collocation method is used to transform model
and sensitivity equations into algebraic equations, and the
approximated solution is solved by an iteration method.
This algorithm can be extended easily to solve problems
of mixed differential and algebraic equations (DAEs) by
combing algebraic equations with that transferred from
differential equations. In our algorithm for computing
dynamic sensitivities of an ODE system, the model equa-
tions and sensitivity equations are solved alternatively in
two stages. First, the model equations are advanced from
ti to ti + η using the iteration method, where η is the step
size decided by model equations based on the fixed-point
theorem. Second, the solution of model equations at ti +
η and the same step size are used to propagate the sensi-
tivity equations from ti to ti + η. For dynamic systems with
continuous time-dependent admissible input, the
dynamic log gains are computed based on the parameter-
ization techniques. The PM is used to approximate the
original infinite-dimensional problem by a finite dimen-
sional one with piecewise constant input. The dynamic
log gain for this approximation problem is defined as the
percentage change of a dependent variable in response to
an infinitesimal percentage change for each piecewise
constant input.

To show this algorithm can perform dynamic sensitivity
analysis on very stiff ODE systems with moderate accu-
racy, it is implemented and applied to two sets of chemi-
cal reactions: pyrolysis of ethane and oxidation of
formaldehyde. The accuracy of this algorithm is demon-
strated by comparing the dynamic parameter sensitivities
from this new method and that from the direct method
with Rosenbrock stiff integrator based on the indirect
method. The same dynamic sensitivity analysis is per-
formed on an ethanol fed-batch fermentation system with
a time-varying feed rate to evaluate the applicability of the
algorithm to realistic models with time-dependent admis-
sible input.

Results and discussion
To illustrate the accuracy of our algorithm, it is imple-
mented and applied to stiff chemical mechanisms for the
pyrolysis of ethane as well as the oxidation of formalde-
hyde. These systems have been shown to be unstable
using both the DM and the Green's function method [15].
The same dynamic sensitivity analysis is performed on an
ethanol fed-batch fermentation system with a time-vary-
ing feed rate to evaluate the applicability of the algorithm
to realistic models with time-dependent admissible input.

Pyrolysis of ethane
The chemical mechanism for the pyrolysis of ethane is a
very stiff system and consists of seven species in five reac-
tions. The chemical reactions and rate constants are
shown in Table 1 and are described by GMA model equa-
tions as follows:

where [x] is the concentration of species x and ki is the rate
constant. The initial concentration of C2H6 is 5.951 × 10-6

mol/cm3 and all other initial concentrations are zeros. All
sets of sensitivity coefficients with respect to all rate con-
stants and initial conditions are computed simultane-
ously without any difficulty using our algorithm with a
tolerance of 10-7. The normalized sensitivity coefficients
for the pyrolysis of ethane at 1 s and 20 s calculated by our
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algorithm are shown in Table 2. The results obtained by
the indirect method (IDM) according to the finite differ-
ence approximation and the direct method with Rosen-
brock stiff integrator (R/DM) [24] are also given in Table
2 for comparison. The results of our algorithm are of
equal accuracy to R/DM in comparison to the IDM and
the maximum relative error is 0.58%.

Oxidation of formaldehyde
The formaldehyde oxidation mechanism is a larger sys-
tem, involves 15 species in 25 reactions. The chemical
reactions and rate constants are shown in Table 3 and are
described by GMA model equations as follows:

where [x] is the concentration of species x and ki is the rate
constant. The initial concentrations in mol/cm3 are
[CH2O] = 1.124 × 10-7, [O2] = 2.109 × 10-6, [CO] = 4.699
× 10-6, [M ] = 1.1772 × 10-5, and all other initial concen-
trations are zeros. Sensitivity coefficients with respect to
all rate constants and initial conditions are computed suc-
cessfully using our algorithm with a tolerance of 10-9. The
normalized sensitivity coefficients for O and H2O at 0.005
s calculated by our algorithm are presented in Table 4. The

results obtained by IDM and the direct method with
Rosenbrock stiff integrator (R/DM) are also given in Table
4 for comparison. Our results are in good agreement with
the R/DM in comparison to the IDM, and the maximum
relative error is 0.25%. The discrepancies between the
results of our algorithm and the R/DM method are suffi-
ciently small to prove that this new method is capable of
performing dynamic sensitivity analysis for stiff differen-
tial equations as accurate as direct methods.

Ethanol fed-batch fermentation
The dynamic sensitivity analysis of an ethanol fed-batch
fermentation process, a real dynamic biological system
never reaching a steady state, is used to elucidate the
applicability of our algorithm. Wang et al. [31] built a
mathematical kinetic model of fermentation for ethanol
and glycerol production using Saccharomyces diastaticus
LORRE 316, which is a high ethanol tolerance yeast. The
mathematical kinetic model for the fed-batch process con-
sists of the dynamic behavior of biomass, glucose, ethanol
and glycerol, and its dynamic mass balance equations are
expressed as follows:

where x is the concentration of cell mass, s is the concen-
tration of glucose, p1 is the concentration of ethanol, p2 is

the concentration of glycerol, V is the working volume of

the fermenter, tf is the final fermentation time, τ = t/tf is the
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Table 1: The mechanism for ethane pyrolysis.

Reaction Rate constants

C2H6 → CH3 + CH3 1.14 × 10-2

CH3 + C2H6 → CH4 + C2H5 1.19 × 106

C2H5 → C2H4 + H 1.57 × 103

H + C2H6 → H2 + C2H5 9.72 × 108

H + H → H2 6.99 × 1013

The initial concentration of C2H6 is 5.951 × 10-6 mol/cm3 and all other 
initial concentrations are zeros. Units for rate constants are mol, cm, 
s and the temperature is 923 K.
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Table 2: Sensitivity coefficients for ethane pyrolysis.

Species xi ∂ ln [xi]/∂ k1 at 1 s ∂ ln [xi]/∂k1 at 20 s

IDM R/DM our algorithm IDM R/DM our algorithm

CH3 1.000 1.000 0.99986 1.000 1.000 1.00000

CH4 0.976 0.976 0.97625 0.644 0.644 0.64350

C2H4 0.680 0.680 0.68039 0.324 0.323 0.32348

C2H5 0.662 0.662 0.66149 -0.209 -0.210 -0.20950

C2H6 -0.044 -0.044 -0.04425 -0.819 -0.819 -0.81896

H 0.478 0.478 0.47783 0.091 0.091 0.09053

H2 0.602 0.602 0.60214 0.221 0.221 0.22098

A tolerance of 10-8 is used for R/DM. A fourth-order adaptive Rosenbrock algorithm is used for integration and ± 5% variations of k1 are used in the 
computation of the sensitivities w.r.t. k1 using indirect method.

Table 3: The mechanism for formaldehyde oxidation.

Reaction Rate constants

HCO + O2 → HO2 + CO 6.02 × 1010

HO2 + CH2O → H2O2 + HCO 3.43 × 1010

H2O2 + M → 2OH + M 4.01 × 106

OH + CH2O → H2O + HCO 9.64 × 1013

OH + H2O2 → H2O + HO2 3.07 × 1012

H2O2 → H2O2(wall) 1.05 × 102

HO2 → HO2(wall) 1.05 × 101

HO2 + HO2 → H2O2 + O2 1.81 × 1012

OH + CO → CO2 + H 1.99 × 1011

HO2 + CO → CO2 + OH 7.23 × 108

H + CH2O → H2 + HCO 1.63 × 1012

H + O2 → OH + O 3.32 × 1010

H + O2 + M → HO2 + M 3.63 × 1015

HO2 + M → H + O2 + M 2.83 × 105

O + H2 → OH + H 1.82 × 1011

O + CH2O → OH + HCO 6.02 × 1013

H + H2O2 → HO2 + H2 7.83 × 1011

H + H2O2 → H2O + OH 3.55 × 1012

O + H2O2 → OH + HO2 6.02 × 1010

HCO → H + CO 4.60 × 10-12

OH + H2 → H2O + H 6.02 × 1012

CH2O + O2 → HCO + HO2 1.75 × 104

H + HO2 → 2OH 3.01 × 1012

H + HO2 → H2O + O 3.01 × 1013

H + HO2 → H2 + O2 2.71 × 1013

The initial concentrations in mol/cm3 are [CH2O] = 1.124 × 10-7, [O2] = 2.109 × 10-6, [CO] = 4.699 × 10-6, [M] = 1.1772 × 10-5 and all other initial 
concentrations are zeros. Units for rate constants are mol, cm, s and the temperature is 952 K.



BMC Bioinformatics 2008, 9(Suppl 12):S17 http://www.biomedcentral.com/1471-2105/9/S12/S17
normalized fermentation time, sF is the feed concentration

of glucose, F is the feed rate,  is the ethanol yield fac-

tor, and  is the glycerol yield factor. The unstruc-

tured kinetic models for the specific cell growth and
product formation are respectively expressed as follows:

Using a batch fermentation model, Wang et al. obtained
the optimal values of 19 parameters [31]. The initial and
feed concentrations of glucose are set to 10 and 200 g/L,
the initial concentration of biomass is set to 2 g/L, and the
starting working volume is set to 1.5 L in the computa-
tions of optimal feed rate and optimal fermentation time
to maximize the ethanol production rate J = p1V/tf under
some physical constraints, e.g., the residual glucose
restriction s(tf) ≤ sr for reducing the separation cost, sr is the
concentration of the desired residual glucose. The optimal
final fermentation time is 12.836 hours and the optimal
feed rate F* for the fed-batch fermentation model [31] is
as follows:

Figure 1 shows the computational time profile of the eth-
anol fed-batch fermentation model with the optimal feed
rate.

Our algorithm is applied to the ethanol fed-batch fermen-
tation model using the initial conditions as described
above. All dynamic sensitivities with respect to 22 param-
eters (including sF, F and tf) and initial conditions, and the

dynamic log gains with respect to time-varying feed rate
are computed simultaneously without any difficulty. Fig-
ure 2 shows the dynamic relative sensitivities with respect

to μm, , , and sF. When the maximum specific

growth rate μm is increasing, the rate of consuming glucose

is increasing such that the concentration of residue glu-
cose is decreasing. This situation is compatible with the
trend in Figure 2(a). The increases in the ethanol and glyc-
erol yield factor cause the increases in the production of
ethanol and glycerol, and more glucose remains at the
final time. As Figures 2(b) and 2(c) show, to increase the
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Table 4: Sensitivity coefficients for formaldehyde oxidation.

Rate constant ∂ ln [HO2]/∂ki ∂ ln [O]/∂ki

IDM R/DM our algorithm IDM R/DM our algorithm

k2 0.683 0.683 0.68255 0.827 0.827 0.82719
k3 0.700 0.700 0.69986 0.835 0.835 0.83486
k4 -0.210 -0.209 -0.20917 -1.160 -1.156 -1.15579
k8 -0.306 -0.306 -0.30569 -0.296 -0.296 -0.29599
k9 0.210 0.210 0.20962 1.156 1.156 1.15628
k10 0.164 0.164 0.16373 1.031 1.031 1.03065
k11 -0.121 -0.121 -0.12087 -0.660 -0.659 -0.65906
k12 0.188 0.188 0.18848 0.979 0.979 0.97926
k13 -0.327 -0.327 -0.32713
k16 -1.002 -1.000 -0.99990
k22 0.686 0.685 0.68536 0.742 0.742 0.74169

A tolerance of 10-15 is used for R/DM. A fourth-order adaptive Rosenbrock algorithm is used for integration and ± 5% variations of ki are used in the 
computation of the sensitivities w.r.t. ki using indirect method.
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production of ethanol and glycerol by improving the eth-
anol yield factor is better than by increasing the glyverol
yield factor. Figure 2(d) shows that if the feed concentra-
tion of glucose is increasing, the cell growth and the pro-
duction of ethanol and glycerol are increasing. Under this
condition, S. diastaticus LORRE 316 is unable to com-
pletely consume glucose to produce ethanol during the
fermentation time and more glucose remains at the final
time.

The relative sensitivity with respect to tf is shown in Figure
3(a). As expected, an increase in tf causes a low relative
increase in the concentration of cell mass and a high rela-
tive decrease in the concentration of residue glucose. Fig-
ures 3(b), 3(c) and 3(d) show the dynamic relative
sensitivities with respect to the initial conditions x, s, and

V. When the initial concentration of cell mass increases,
the residue glucose decreases, and the production of etha-
nol will increase a little, but the production of glycerol
will decrease a little at the final fermentation time. Start-
ing the fermentation process with more glucose will cause
more glucose to remain and the production of ethanol
and glycerol to increase a little at the final fermentation
time as shown in Figure 3(c). Figure 3(d) shows that if the
initial working volume is increasing, all concentrations of
cell mass, glucose, ethanol, and glycerol are decreasing at
the final fermentation time.

We are interested in the ethanol production rate J in the

fermentation process. The effects on J with respect to μm,

, , sF, and tf  are shown in Figure 4. To increaseYp s1 / Yp s2 /

Dynamic behavior of the ethanol fed-batch fermentation modelFigure 1
Dynamic behavior of the ethanol fed-batch fermentation model. Time profiles of cell mass (x), glucose (s), ethanol 
(p1), glycerol (p2), and the working volume (V) for the ethanol fed-batch fermentation computed using the optimal feed rate F* 
and the feed glucose of 200 g/L. The horizontal scale is in normalized fermentation time (t/tf).
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J, it is clear that an increase in  or sF will have more

impact than an equal relative increase in  or μm. The

negative value of relative sensitivity for J with respect to tf
means a decrease in the fermentation time will get a
higher J at the expense of more residual glucose. Though
the relative sensitivity of J with respect to sF is higher than

that with respect to  at the final fermentation time,

by increasing sF to increase J will cause more glucose left at

the final time and increase the cost to separate the residue
glucose and the ethanol product. We can make a conclu-

sion that to increase J by increasing  will be a better

choice than increasing sF or , and decreasing the fer-

mentation time.

The feed rate F(t) of the fed-batch fermentation model is
a time-dependent input control variable, so that the com-
putation of the effect on J with respect to F(t) is an infinite
dimensional problem. The fermentation time is divided
into ten equal time partitions, and the optimal feed rate
F* for the fed-batch fermentation model [31] is approxi-
mated by ten piecewise constant functions.  The ten input
control parameters, denoted by Fi, i = 1,..., 10, are shown

Yp s1 /

Yp s2 /

Yp s1 /

Yp s1 /

Yp s2 /

Dynamic relative sensitivities with respect to μm, , , and sFFigure 2
Dynamic relative sensitivities with respect to μm, , , and sF. (a) relative sensitivities with respect to μm; (b) 

relative sensitivities with respect to ; (c) relative sensitivities with respect to ; (d) relative sensitivities with respect 

to sF. The horiziontal scale is in normalized fermentation time (t/tf).

Yp s1 / Yp s2 /

Yp s1 / Yp s2 /
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in equation (1). The proposed algorithm computes the
dynamic log gains based on the parameterization
method. All dynamic log gains with respect to Fi, i = 1,...,
10, are computed (data not shown here) with the param-
eter sensitivities simultaneously. The dynamic log gains of
J with respect to Fi, i = 1,..., 10, are computed by

Due to the optimal values of Fi, i = 6,..., 10 are equal to or
very close to 0, The dynamic log gains of J with respect to
them are small and can be ignored. The dynamic log gains
of J with respect to Fi, i = 1,..., 5, are shown in Figure 5. The
effects on J are in decreasing order from F1 to F5. Increas-
ing the feed rate at an early stage will get a higher J at the

final fermentation time than that at a later stage without
considering the residual glucose.

Conclusion
To deeply study the dynamic behavior of a biological sys-
tem, one of the methods is to model it as a mathematical
model. The most used mathematical model for simulating
biological systems is the ODE model. The essential task
for modeling and simulating a biological system is to find
the solution of an ODE model efficiently and accurately.
We present an algorithm with an adaptive step size con-
trol that can be used for computing the solution and
dynamic sensitivities of an ODE system simultaneously.
Instead of using error control to decide the step size in
solving the model equations, our algorithm computes the
step size based on the fixed-point theorem and the same
step size can be used in solving the sensitivity equations.

∂
∂

= ∂
∂

+ ∂
∂

ln
ln

ln
ln

ln
ln

.
J
Fi

p
Fi

V
Fi

1

Dynamic relative sensitivities with respect to tf, x(0), s(0), and V(0)Figure 3
Dynamic relative sensitivities with respect to tf, x(0), s(0), and V(0). (a) relative sensitivities with respect to tf; (b) rel-
ative sensitivities with respect to the initial value of x; (c) relative sensitivities with respect to the initial value of s; (d) relative 
sensitivities with respect to the initial value of V. The horizontal scale is in normalized fermentation time (t/tf).
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Dynamic sensitivity analysis is a useful tool to investigate
the behavior of dynamic systems. In the direct methods
for solving the dynamic sensitivities, sensitivity equations
and model equations are coupled and solved together at
the expense of more computation time. In contrast, sensi-
tivity equations and model equations are solved sepa-
rately in the decouple direct methods. The DDMs are
more efficient than the DMs due to the dimension of
ODEs. The chief disadvantage of DDMs is the require-
ment of error control on both model equations and sensi-
tivity equations. Our algorithm with an efficient step
control approach based on the fixed-point theorem is
used to address the disadvantage of DDMs. Analogous to
the DMs, the same step size obtained by model equations
is used on both model and sensitivity equations. It has
been implemented and applied to well-known stiff prob-
lems with the same accuracy compared to the direct
method with Rosenbrock stiff integrator (R/DM). As our
algorithm is one of the DDMs, it has the efficiency of the
DDMs and the same accuracy of the DMs as presented in

the section describing the results. By combining the effi-
ciency and accuracy, our algorithm is an excellent method
for computing dynamic parameter sensitivities in stiff
problems.

We extend the scope of classical dynamic sensitivity anal-
ysis to the investigation of dynamic log gains of models
with time-dependent admissible input. The parameteriza-
tion method is used to approximate the infinite-dimen-
sional computation problem for dynamic log gains in
models with time-dependent admissible input by a classi-
cal finite-dimensional computation problem of dynamic
log gains. Then, all dynamic log gains and parameter sen-
sitivities can be obtained simultaneously from our algo-
rithm. Appropriate parameterization allows one to obtain
a more efficient way to compute the dynamic log gains
with respect to a continuous time-dependent input than
that by finite difference approximation. Finally, the new
proposed algorithm is applied to the ethanol fed-batch
fermentation system, a real dynamic biological system

Dynamic relative sensitivities of JFigure 4
Dynamic relative sensitivities of J. The relative sensitivities of ethanol production rate with respect to μm, , , 

sF, and tf. The horizontal scale is in normalized fermentation time (t/tf).

Yp s1 / Yp s2 /
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which never reaches a steady state, with a time-varying
feed rate for elucidating the applicability to realistic mod-
els with time-dependent admissible input. Through the
dynamic sensitivity analysis of the ethanol fed-batch fer-
mentation model, we conclude that to get a higher etha-
nol production rate by increasing the ethanol yield factor
is a good choice.

Methods
A dynamic biological system is always modeled as a non-
linear ODE system:

where x(t) ∈ �n is a vector of dependent variables, y(t) ∈
�m is a vector of independent variables, θ ∈ �p is a vector
of parameters, v ∈ �q is a vector of fluxes between the var-

iables, N ∈ �(n+m) × q is the stoichiometric matrix describ-
ing the interconnecting fluxes, x0 and y0 are initial
concentrations of x and y respectively. Using a different
kinetic description for v results in a different mathemati-
cal model. In the Michaelis-Menten model, each element
vi of v is of the form

where xj is the substrate,  is the maximum flux for vi,

and Ki is the half-saturated flux for vi. For the GMA sys-

tems, the kinetic equation for vi is expressed as a power-

law function

d
d
x

Nv x y x x y y
t

t t= = =( ( ), ( ); ), ( ) , ( ) ,θ 0 00 0 (2)

v
Vi

maxx j
Ki x j

i qi =
+

=, , ..., ,1 (3)

Vi
max

Dynamic log gains of J w.r.t. F(t)Figure 5
Dynamic log gains of J w.r.t. F(t). The dynamic log gains of ethanol production rate with respect to Fi, i = 1,..., 5. The hori-
zontal scale is in normalized fermentation time (t/tf).
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where xj ∈ x for j ≤ n, xj ∈ y for j > n, γi is the rate constant,
and gij is the kinetic order for each xj. Equation (2) can be
expressed concisely as:

where the function f is assumed to be continuous and dif-
ferentiable in all its arguments x, y,and θ. This assumption
on f is satisfied for both of equations (3) and (4).

For a model described by a nonautonomous dynamic sys-
tem as follows:

we let xn+1 = t and dxn+1/dt = 1, equation (6) can be rewrit-
ten as equation (5) with x(t) ∈ �n+1. This is an (n + 1)-
dimensional autonomous dynamic system. Similarly, an
n-dimensional time dependent equation is a special case
of an (n+ 1)-dimensional autonomous dynamic system.
Using this trick, we can always remove any time depend-
ence by adding an extra dimension to the system. Thus,
without loss of generality, we will consider the autono-
mous dynamic systems expressed by equation (5) unless
stated otherwise.

ODE solver
Given a set of ODEs expressed as equation (5) and a set of
time points T = {ti|i = 1,..., k}. An ODE solver is to find the
value of x(ti), ti ∈ T for a given θ. Many ODE solvers with
variable step size control can be used to solve equation
(5). Wang [6] proposed a modified collocation method
with Lagrange polynomials as shape functions to trans-
form ODEs into algebraic equations. The whole time
domain of the problem is divided into a number of non-
overlapping intervals [ti-1, ti], i = 1,..., k. The unified formu-
las of the modified collocation method for the subinterval
[tj-1, tj], ti-1 ≤ tj-1 <tj ≤ ti, can be expressed as

where ηj is the step size in time tj, Î is an identity-like

matrix, and the coefficient matrices D and  depend on
the shape functions. The accuracy and efficiency of collo-
cation methods depend largely on the degree of shape
functions. The modified collocated equations with piece-

wise linear polynomials transformed from equation (5)

for each subinterval [tj-1, tj], ti-1 ≤ tj-1 <tj ≤ ti have the same

formulas as the modified Euler method:

Instead of solving the ODEs in equation (5) directly, we
find the solution of algebraic equations in equation (8)
step-by-step for each time interval [ti-1, ti], i = 1,..., k. The
solution obtained from equation (8) is a good approxi-
mation solution of ODEs in equation (5) when the step
size ηj is small enough. How to decide the step size is an
important problem for all ODE solvers. A larger step size
can cause the solution to be inaccurate and divergent, and
a smaller step size is inefficient for the computations.
Wang [6] uses the Newton-Raphson method with step
length restriction to solve equation (8). The restricted step
size is fixed and computed by trial and error. To overcome
this drawback, we propose an adaptive step size control
approach based on the Banach fixed point theorem for the
modified collocation method in this paper. We will show
that this approach can determine the step size automati-
cally and efficiently when computing the solutions and
dynamic sensitivities of equation (5) simultaneously.

The Banach fixed point theorem and some terminologies
for describing the theorem are defined below.

Definition 1. Metric space [32]

A metric space (X, d) is a set X where a notion of distance
d (called a metric) between elements of the set is defined.

Definition 2. Cauchy sequence [32]

A sequence (xn) in a metric space (X, d) is said to be
Cauchy if for every ε > 0 there is a positive integer N such
that for all natural numbers m, n > N, the distance d(xm,
xn) is less than ε.

Definition 3. Complete metric space [32]

A metric space (X, d) in which every Cauchy sequence has
a limit in X is called complete.

Theorem 4. Banach fixed point theorem [32]

Let (X, d) be a non-empty complete metric space. A mapping ψ:
X → X is called a contraction on X if there is a nonnegative real
number q < 1 such that for all a, b in X

d(ψ(a), ψ(b)) ≤ q·d(a, b). (9)
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The contraction ψ on X admits one and only one fixed point x*
∈ X such that ω (x*) = x*.

We now show how to decide the step size ηj in equation
(8) based on the Banach fixed point theorem. Equation
(8) is an implicit expression of x, and it can be rewritten as

where c = x(tj-1)+0.5ηjf(x(tj-1), y(tj-1); θ) is a constant vec-
tor. When the values of independent variable y and θ are
given, the solution of x = g(x) can be found by an iteration
process. A sequence of values of x(tj) is obtained using the
iterative rule. If xi(tj) tends to a limit x*(tj) when i → ∞, it
is the answer of x = g(x) and called a fixed point of the
function g(x). Let X be the set of xi(tj), i = 1,..., ∞ and d(a,
b) = ||a - b||p where a and b are arbitrary xi(tj) and ||·||p is
the p-norm. Then (X, d) forms a non-empty complete met-
ric space. If g is a contraction on X, the Banach fixed point
theorem guarantees the existence of a fixed point and the
convergence of the iteration process to that fixed point. By
the equation (9) and the definition of distance function d,
for a, b ∈ X we obtain

||g(a) - g(b)||p ≤ q||a - b||p, q < 1. (11)

We suppose that g(x) is a continuous and differentiable
function on X. By the generalized mean value theorem
and the definition of matrix norm, we have

Comparing equations (11) with (12), we obtain

where ||·||p is the p-norm of a matrix. By substitution of
the term on the right of the equal sign in equation (10) for
g, equation (13) can be rewritten as

This equation is used to compute the maximum ηj with p
= 2 when the process of finding the solution of equation
(8) is in progress. The Jacobian matrix ∂f/∂x in equation
(14) must be evaluated at each time tj. The computation
of the Jacobian matrix can be done by evaluating the ana-
lytic formula of the partial derivative of f with respect to x
which is user-provided, or by the finite difference approx-
imation. For the GMA systems, the model equations are

expressed in power-law and the value of the Jacobian
matrix can be straightforwardly obtained using the ana-
lytic formula as follows:

where N is the stoichiometric matrix, vi is the ith element
of v ∈ �q and gij is the kinetic order for each xj ∈ x in vi. For
efficiency, we approximate the value of 2-norm of the
Jacobian matrix ∂f/∂x by ||∂f/∂x||Δ, where n is the dimen-
sion of x and ||∂f/∂x||Δ is the maximum absolute value of
the element of the Jacobian matrix. The proposed algo-
rithm AMCM, Adaptive Modified Collocation Method, is
shown as follows

Algorithm AMCM

Input:

1. A set of n ordinary differential equations  = f(x, y)
with n dependent variables xi, i = 1,..., n and m independ-

ent variables yi, i = 1,..., m.

2. Two order sets x0 = {xi(t0)|i = 1,..., n} of initial values of
x and y0 = {yi(t0)|i = 1,..., m} of initial values of y.

3. An order set T = {t1,..., tk} of sampling points, ti, 1 ≤ i ≤
k is the sampling time of the solution of each ODE, k is the
number of sampling points.

4. A tolerance ε

Output: The set of solutions of dependent variables at
each sampling time.

• For each sampling time ti in T.

1. ηj ← ti - ti-1, dt ← 0, xc ← x(ti-1), yc ← y(ti-1)

2. Repeat the following steps until dt = ti - ti-1.

(a) xp ← xc, yp ← yc

(b) Evaluate the Jacobin matrix 

(c) Compute the upper bound μ of the value of ||A||2 by
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(d) If μ * ε ≥ 1, it means the ODEs are stiff, then exit this
algorithm.

(e) If μ * ηj > 1, then update ηj with 0.9/μ

(f) Call iteration algorithm to compute the value of xc

stepped forward ηj from xp.

(g) If the iteration algorithm succeeds in computing xc,
then dt ← dt + ηj and ηj ← ti - ti-1 - dt, otherwise exist this
algorithm.

3. x(ti) ← xc, y(ti) ← yc.

• return x(ti), i = 1,..., k.

End of Algorithm AMCM

Algorithm Iteration

Input:

1. A set of n ordinary differential equations  = f(x, y).

2. x(t), y(t), ηj and the iteration limitation.

Output: x(t + ηj).

1. Evaluate the value of f(x(t), y(t)).

2. x(t + ηj) ← x(t) + f(x(t), y(t)) * ηj.

3. y(t + ηj) ← y(t) + f(x(t), y(t)) * ηj.

4. Repeat the following steps until the iteration limitation
is reached or the value of x(t + ηt) converges.

(a) Evaluate the value of f(x(t + ηj), y(t + ηj)).

(b) x(t + ηj) ← x(t) + 0.5 * ηj * (f(x(t), y(t)) + f(x(t + ηj),
y(t + ηj)))

5. If the iteration limitation is reached, then exit this algo-
rithm; otherwise, return x(t + ηj).

End of Algorithm Iteration

Dynamic sensitivity Solver
For a model described by equation (5), the absolute
parameter sensitivity s(xi, θj) of dependent variable xi ∈ x
with respect to parameter θj ∈ θ is defined as

where xi(t; θj + Δθj) is the ith component of the solution of
equation (5) with an increment Δθj on the jth parameter.
The function xi(t; θj + Δθj) can be expanded into a Taylor
series as follows:

where 0 <ξ < 1. If Δθj is sufficiently small, the last term of
equation (16) can be truncated, leading to a linear
approximation of xi(t; θj + Δθj). Substituting the linear
approximation of xi(t; θj + Δθj) into equation (15) leads to

This is defined as the first-order local sensitivity of xi with
respect to θj [33]. The relative parameter sensitivity S(xi, θj)
of xi with respect to θj is defined as

Similar to the parameter sensitivity, the absolute log gain
l(xi, yj) and log gain L(xi, yj) of xi ∈ x with respect to yj ∈ y
are expressed respectively as follows:

Once the local sensitivity is known, the calculation of the
relative sensitivity is straightforward. So, for briefing, we
limit our explanation on the absolute sensitivity only
below.

The absolute dynamic sensitivity of xi with respect to θj is
given as

where fi is the ith element of f [34]. The absolute dynamic
log gain of xi with respect to yj is similar to equation (17)
by replacing θj, s(xi, θj) with yj, l(xi, yj) respectively when
yj(t) is a constant. In the case which yj(t) is a continuous
time-dependent function, the whole time domain of yj(t)
is partitioned into Nu time intervals (tk-1, tk), k = 1,..., Nu.
Function yj(t) is parameterized by the piecewise constant
functions ωk(t), k = 1,..., Nu, as follows:
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where uk, k = 1,..., Nu, are constant input control parame-
ters and

The continuous time-dependent function yj(t) is approxi-
mated by equation (18).  The dynamic log gain l(xi, yj) of
infinite dimension is transferred into Nu dynamic log
gains of dimension one with respect to the input control
parameters, and expressed as.

where j = 1,..., Nu.

We extended the proposed algorithm AMCM to compute
the dynamic sensitivities. The dynamic sensitivities with
respect to parameters (include the initial conditions) and
absolute dynamic log gains can be computed simultane-
ously. Let u be the vector of input control parameters and
r be an Nr dimensional vector of constants which contains
constant independent variables in y and the input control
parameters in u. When all components of y are constant,
the vector r is equal to y. Let z be an n + p + Nr dimensional
vector which contains model parameters θ, initial condi-
tions of dependent variables x0 and constant input in r.  Φ
indicates a matrix of size n × (n + p + Nr) which contains
the absolute sensitivities with respect to model parameters
and initial conditions, and the absolute log gains with
respect to constant independent variables and input con-
trol parameters. z and Φ have the following form:

The model equations are rewritten as

The sensitivity equations in matrix form can be derived by
applying the chain rule to the derivative of Φ:

Let ϕi be the ith column vector of Φ and zi be the ith element
of z. The matrix sensitivity equations in equation (19) are
rearranged into a vector of linear ODEs:

Where

In order to find the solution of equation (20), the whole
time domain is divided into a number of non-overlapping
time intervals [ti-1, ti], i = 1,..., k.  The sensitivity equations
in equation (20) are transformed to algebraic equations
using modified collocation method with piecewise linear
polynomials as shape functions for each subinterval [tj-1,
tj], ti-1 ≤ tj-1 <tj ≤ ti:
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where ηj is the step size in time tj. This equation can be
rewritten as:

where the constant vector

The value of w(tj) can be evaluated if the values of x(tj)
have been computed when solving equation (8) by the
ODE solver. The value of the M(tj) in equation (22) must
be calculated before the solution of equation (21) can be
obtained by an iteration method. When the value of the
Jacobian matrix ∂f/∂x in time tj is known, the value of the
M(tj) can be obtained straightforwardly. There is no
requirement for computing the value of the Jacobian
matrix here due to it has been computed for step size con-
trol when solving equation (8) by the ODE solver.

Equation (22) is similar to equation (10), we can apply
the fixed point theorem to ϕ = h(ϕ) to get the maximum
ηj satisfying the following condition

According to the definition of the matrix norm, it is easy
to verify that ||M||p = ||∂f/∂x||p and we have

Equation (23) is the same as equation (14), so the same
criterion is used to determine the step size ηj for comput-
ing the time course and sensitivity profile with the guaran-
tee of convergence and existence of a fixed point. The
dynamic sensitivities can be obtained directly by solving
equation (21) after the time profile of x has been com-
puted and the step size ηj has been decided by the ODE
solver.
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