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Abstract
Background: Accurate identification of splice sites in DNA sequences plays a key role in the
prediction of gene structure in eukaryotes. Already many computational methods have been
proposed for the detection of splice sites and some of them showed high prediction accuracy.
However, most of these methods are limited in terms of their long computation time when applied
to whole genome sequence data.

Results: In this paper we propose a hybrid algorithm which combines several effective and
informative input features with the state of the art support vector machine (SVM). To obtain the
input features we employ information content method based on Shannon's information theory,
Shapiro's score scheme, and Markovian probabilities. We also use a feature elimination scheme to
reduce the less informative features from the input data.

Conclusion: In this study we propose a new feature based splice site detection method that shows
improved acceptor and donor splice site detection in DNA sequences when the performance is
compared with various state of the art and well known methods.

Background
Over the past decades, the scientific community has expe-
rienced a major growth in numbers of sequence data.
With the emergence of novel and efficient sequencing
technology, DNA sequencing is now much faster.
Sequencing of several genomes including the human
genome have been completed successfully. This massive
amount of sequence data demands sophisticated tools for
the analysis of data.

Identifying genes accurately is one of the most important
and challenging tasks in bioinformatics and it requires the
prediction of the complete gene structure. Identification
of splice sites is the core component of eukaryotic gene
finding algorithms. Their success depends on the precise
identification of the exon-intron structure and the splice
sites. Most of the eukaryotic protein coding genes are char-
acterized by exons and introns. Exons are the protein cod-
ing portion of a gene and they are segmented with
intervening sequences of introns. The border between an
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exon and an intron is known as the splice site. The splice
site upstream of an intron is called the donor splice site
(in the direction 5' to 3') and one that is downstream of
an intron is the acceptor splice site (in the direction 3' to
5'). The consensus sequence refers to the nucleotides,
which are conserved or most frequently observed in a par-
ticular position. The acceptor and donor splice sites with
consensus AG (corresponding to the end of an intron)
and GT (corresponding to the beginning of an intron)
dinucleotides respectively are known as canonical splice
sites. Approximately 99% of the splice sites are canonical
[1]. As AG and GT represent possible acceptor and donor
splice sites, every AG and GT in a DNA sequence is a can-
didate acceptor or donor splice site and they need to be
classified as either a real (true) splice site or a pseudo
(false) splice site.

Over the years many computational methods have been
proposed for the identification of splice sites. Most of
those methods are designed to identify the apparent con-
sensus AG and GT in the splicing junction. These methods
can be largely classified into probabilistic methods [2-8],
neural network and support vector machine methods [9-
19], and methods based on discriminant analysis [20,21].
Neural networks and support vector machines (SVM)
learn the complex features of neighbourhoods surround-
ing the consensus AG/GT dinucleotides by a complex
non-linear transformation. Probabilistic models estimate
position specific probabilities of splice sites by computing
likelihoods of candidate signal sequences. The discrimi-
nant analysis uses several statistical measures to evaluate
the presence of specific nucleotides, recognizing the splice
sites without explicitly determining the probability distri-
butions [18].

In DNA sequences, true consensus AG/GT dinucleotides
are outnumbered by many false AG/GTs. However, nucle-
otides surrounding true AG/GTs show a certain nucleotide
dependency and sequential relationship compared to
those surrounding false AG/GTs. There are several meth-
ods which are particularly designed to capture this rela-
tionship and to identify true splice sites among numerous
false ones. Weight matrix methods (WMM) and methods
based on Markov models are popular methods of this cat-
egory. WMM was successfully adopted in methods like
NetPlantGene [22] and NNSplice [10]. Salzberg et al. and
Zhang et al. [2,6], used a linear first order Markov model
(MM1) also known as the weight array method (WAM)
and they have achieved a good splice site prediction accu-
racy. MM1 only utilizes first order sequential relationship.
It is desirable to use a higher order Markov model to cap-
ture the higher order and extended sequential relation-
ship. However, the computational complexity increases
polynomialy with the increase of the order of the Markov
model, and also higher order Markov models require a

large number of training samples. The maximal depend-
ence decomposition (MDD) algorithm was proposed by
Burge et al. [23] to overcome these limitations. MDD is a
decision tree process and models the dependency
between adjacent nucleotides. To take the advantages of
both MDD and Markov models, Pertea et al. [4] proposed
the GeneSplicer method which combines MDD and sec-
ond order Markov models (MM2). GeneSplicer showed
an improved splice site detection performance. More
recently, Rajapakse et al. [17] proposed a complex splice
site detection method by combining mostly second order
Markov models with backpropagation neural networks
(BPNN). This method showed an improved performance
over GeneSplicer, however, BPNN is already computa-
tionally expensive and this method requires a larger
sequence window. In contrast, a machine learning tech-
nique such as SVM has the advantage of inferring an opti-
mal classifier from the training data. SVM has been used
to classify splice site data with limited success [9,12,14-
16].

Most of the existing splice site detection methods focused
on the improvement of classification performance. How-
ever other studies suggest that, considering the increasing
growth of sequence data, the focus of new methods
should be towards developing faster methods [24-27]. In
our previous work we showed an improved splice site
detection performance by using several preprocessing
methods including WMM0/MM0, WMM1, MM1 with
SVM [18]. However, the training time and the number of
input features to SVM is a major concern. SVM performs
better when it is trained with the most important and
meaningful features. So, the reduction of less important
features may improve both the classification performance
and training time of SVM. In this paper, we propose a fea-
ture selection strategy which reduces the less important
features from the input data. We also combine the well
studied information content method based on Shannon's
information theory [28-30] and the Shapiro's score
method [31] to extract meaningful information from
sequence that can potentially identify splice sites. Our
method showed an improved splice site detection per-
formance when compared to the existing methods in
terms of classification accuracy and training time.

Results
Classification performance comparison
Our hybrid algorithm combines several effective and
informative input features with the state of the art support
vector machine (SVM). To obtain the input features we
employ information content method based on Shannon's
information theory, Shapiro's score scheme, and Marko-
vian probabilities. We also use the F-score feature elimina-
tion scheme to reduce the less informative features from
the input data. We use the publicly available NN269 [10]
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splice site dataset to evaluate the performance of our
method. The MM1 parameters are calculated from the
dataset and F-score method (refer to the method section)
is applied to reduce the number of MM1 parameters,
which is referred as Reduced MM1 SVM method. We also
calculate the information content and Shapiro's score
from the dataset and use the proposed the IC Shapiro SVM
method, which is a linear combination of information
content and Shapiro's score. We compare the performance
of our methods with MM1 SVM method as proposed [18].
To evaluate the classification performance we use several
performance evaluation methods such as the sensitivity,
specificity, receiver operating characteristics curve (ROC),
and the area under ROC (AUC) as described in the
method section.

Figure 1 shows the classification performance of different
models for NN269 acceptor splice site data. The perform-
ance of the proposed Reduced MM1 SVM and IC Shapiro
SVM is compared with the original MM1 SVM model [18].
As shown in Figure 1, the Reduced MM1 SVM model with
GRBF kernel produces the best classification performance
for acceptor splice sites. Reduced MM1 SVM with polyno-
mial kernel produces the second best performance. MM1
SVM with polynomial kernel method [18], produces the
third best performance while the performance of IC Sha-
piro SVM with polynomial kernel is not as good as others.
Even though, Reduced MM1 SVM with GRBF kernel
shows the best classification performance, from the ROC
curve we can see all the models perform very closely and
hence, to get a better measure of the classification per-
formance we calculated the AUC covered by each model
from the ROC. Computational speed is another impor-
tant issue for the algorithms applied in this problem. In
this regard, we also calculate the training time required for
each classification models. For all our simulations we
used an Intel P4 3.2 GHz system with 1 GB RAM. Both the
AUC and training time for each of the models are shown
in Table 1. Figure 2 shows the best two models for accep-
tor splice site identification in terms of best accuracy
(Reduced MM1 SVM with GRBF kernel) and best training
time (IC Shapiro SVM with polynomial kernel).

As shown in Table 1, Reduced MM1 SVM with GRBF ker-
nel produces the best performance with an AUC area of
0.9741. Reduced MM1 SVM with polynomial kernel pro-
duces the second best performance with an AUC of
0.9695 while MM1 SVM with polynomial kernel [18] has
an AUC of 0.9674. Though IC Shapiro SVM with polyno-
mial kernel has an AUC of 0.9628, which is marginally
worse than the best performing model, it produces the
fastest training time. Table 2 shows the improvement of
performance in terms of AUC and training time as com-
pared to MM1 SVM Polynomial [18].

As shown in Table 2, the best acceptor splice site detection
performance is produced by Reduced MM1 SVM with
GRBF kernel which is 0.69% superior then MM1 SVM
with polynomial kernel. However, Reduced MM1 SVM
GRBF requires much longer training time (more than
100%) than MM1 SVM Polynomial. Reduced MM1 SVM
Polynomial improves the performance by 0.21% and it
also 2.11% faster than MM1 SVM Polynomial. Finally, IC
Shapiro SVM Polynomial is just 0.47% worse then MM1
SVM Polynomial, however, it shows a significant
improvement in the training time and is 88.21% faster
than MM1 SVM Polynomial.

Figure 3 shows the classification performance of different
models in terms of NN269 donor splice site dataset. The
performance of all the models developed in this paper is
compared with MM1 SVM Polynomial model [18]. As
shown in Figure 3, the Reduced MM1 SVM model with
GRBF kernel produces the best classification performance
for donor splice sites. Reduced MM1 SVM with polyno-
mial kernel produces the second best performance. Per-
formance of all the models is very close except IC Shapiro
SVM with polynomial kernel. The performance of the
models shows the similar trend as that of acceptor splice
site classification. We also calculate AUC and the training
time required for each of the models which are shown in
Table 3. Figure 4 shows the two best methods in terms of
classification accuracy (Reduced MM1 SVM GRBF) and
training time (IC Shapiro SVM Polynomial).

Table 1: AUC and training time for different models for NN269 acceptor splice sites.

Model SVM kernel AUC Training time until convergence (hh.mm.ss)

Reduced MM1 SVM (Best in terms of accuracy) GRBF 0.9741389 00.22.17

Reduced MM1 SVM Polynomial 0.9695822 00.10.48

MM1 SVM [18] Polynomial 0.9674048 00.11.02

IC Shapiro SVM (Best In terms of Time) Polynomial 0.96287 00:01:18
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As shown in Table 3, Reduced MM1 SVM with GRBF ker-
nel is the best model for donor splice site classification
with an AUC area of 0.9790. Reduced MM1 SVM Polyno-
mial is marginally worse then Reduced MM1 SVM GRBF
and produces the second best performance with an AUC

of 0.9764 while MM1 SVM with polynomial kernel [18]
has an AUC of 0.9761. Following the same trend, IC Sha-
piro SVM Polynomial also produces the fastest training
time. Table 4 shows the improvement of performance in
terms of AUC and training time as compared to MM1
SVM Polynomial [18].

As shown in Table 4, Reduced MM1 SVM GRBF margin-
ally produces the best acceptor splice site detection per-
formance which is 0.29% superior then MM1 SVM with
polynomial kernel. However, it requires much longer
training time (more than 100%) than MM1 SVM Polyno-
mial. Reduced MM1 SVM Polynomial performs almost
equally as well as MM1 SVM Polynomial, though it is
5.31% faster. Finally, IC Shapiro SVM Polynomial is
almost 1% worse then MM1 SVM Polynomial, however, it
shows a significant improvement in the training time and
is 70.26% faster than MM1 SVM Polynomial. All the
parameters regarding the SVM implementations with
GRBF and Polynomial kernels are provided in Additional
file 1: Table S1.

Discussions
One of the biological machineries involved in the splicing
process is known as the Spliceosome, which binds in a
splice site after determining the information available in
that site. Information content and Shapiro's score are two
well known methods to determine the information in
splice sites [29,30]. Previously we have used other meth-
ods such as first order Markov model (MM1), first order
weight matrix model (WMM1) and zero order Markov/
Weight matrix model (MM0/WMM0) to capture such
information [18]. However, our results in this paper show
that information content and Shapiro's score are more
capable of capturing more meaningful information than
those methods we have used previously, which justifies
the use of these methods to extract features. Our method
based on information content and Shapiro's score is also
proved to be much faster.

We also use the F-score feature ranking measure to select
the most meaningful features and use it to eliminate less
important features. We use the F-score measure to reduce
MM1 parameters and when compared with MM1 SVM
method [18], we find that Reduced MM1 SVM method
based on reduced MM1 parameters performs better in
terms of classification accuracy as shown in Figures 1, 2, 3,
and 4. The performance of IC Shapiro SVM is marginally
worse then the best performing methods. However, it
shows much faster training time than others as IC Shapiro
SVM uses much less number of features. This IC and Sha-
piro's score scheme and their integration as a set of fea-
tures is an important step towards faster splice site
identification and can be effectively used in the splice site
detection for the whole genome where vast amount of

ROC curve showing the classification performance of differ-ent models for NN269 acceptor splice site dataFigure 1
ROC curve showing the classification performance of differ-
ent models for NN269 acceptor splice site data.

0 10 20 30 40 50
80

85

90

95

100

1 - Specificity

S
en

si
tiv

ity

Four best acceptor splice site models

Reduced MM1 SVM GRBF
Reduced MM1 SVM Polynomial
MM1 SVM Polynomial
IC Shapiro SVM Polynomial

ROC curve showing the classification performance of best two models in terms of accuracy and training time for NN269 acceptor splice site dataFigure 2
ROC curve showing the classification performance of best 
two models in terms of accuracy and training time for 
NN269 acceptor splice site data.
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sequences data is available. However, it is worthwhile to
further investigate this method to improve its classifica-
tion accuracy.

Conclusion
Modern sequencing techniques can produce a massive
amount of data in short time and the number of sequence
data is almost exponentially increasing. Fast splice site
detection is very useful when we consider the very large
volumes of available data for the training and testing of a
method. To cope with such a large volume of data we also
need faster methods. The fast splice site detection method
we propose in this paper can also be applied to identify
other signals in the sequence such as promoters and trans-
lation initiation sites.

Methods
Proposed models
We propose several models for the identification of accep-
tor and donor splice sites. Corresponding to the two types
of splice sites, the splice site classification problem is sub-
divided into two classification problems: acceptor splice
site classification and donor splice site classification. Two
separate models are constructed for the identification of
acceptor splice sites and donor splice sites respectively.

All the proposed models consist of two phases. In phase
one, sequence features are extracted, and in phase two, a
support vector machine is trained with the selected fea-

tures. Sequence features are extracted using first order
Markov model (MM1), information content (IC), and
Shapiro's score method (SS). The IC score and SS score for
each splice site sequence are calculated and linearly com-
bined together as one input to the SVM. The proposed
models are listed in Table 5.

Markov model
Markov model can be regarded as a finite state machine
with Markov property. Let us consider a sequence of ran-
dom variables X1, X2,..... Xn which takes on values from a
finite state space A = {A1, A2,... An}. If the probability of
transition from state Ai at time n to state Aj at time n +1
depends only on Ai, and not any previous history of proc-
ess, then the process is said to have the Markov property
or to be a Markov model or Markov chain.

DNA sequences can be represented by a Markov chain
where each nucleotide represents a state in the Markov
chain and whose observed state variables are drawn from
the alphabet ΩDNA = {A, C, G, T}. If we consider a
sequence of length l: {s1, s2,...., sl}, where si ∈ {A, C, G, T},
∀i ∈ {1,...., l}, then the nucleotide Si is the outcome of the
i th state variable of the Markov model, and state transi-
tion is only allowed from state i to its adjacent state i +1.
Hence, the model consists of states ordered in a series. It
evolves from state si to si+1 and emits symbols from the
alphabet ΩDNA, where each state is characterized by a posi-
tion-specific probabilistic parameter. Assuming a Markov

Table 2: AUC and training time improvement for different models compared to MM1-SVM method for NN269 acceptor splice sites.

Model SVM kernel AUC Training time until 
convergence (mm.ss)

Performance 
Improvement

Time Improvement

MM1 SVM [18] Polynomial 0.9674 11.02 - -

Reduced MM1 SVM (Best in 
terms of accuracy)

GRBF 0.9741 22.17 0.69% -101.96%

Reduced MM1 SVM Polynomial 0.9695 10.48 0.2171% 2.11%

IC Shapiro SVM (Best In terms 
of Time)

Polynomial 0.9628 01:18 -0.4755% 88.21%

Table 3: AUC and training time for different models for NN269 donor splice sites.

Model SVM kernel AUC Training time until convergence (hh.mm.ss)

Reduced MM1 SVM (Best in terms of accuracy) GRBF 0.9790232 00:20:04

Reduced MM1 SVM Polynomial 0.9764903 00:09:30

MM1 SVM Polynomial 0.9761952 00:10:02

IC Shapiro SVM (Best In terms of Time) Polynomial 0.9665982 00:02:59
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chain of order k, the likelihood of a sequence given the
model is:

Where, the Markovian probability Pi(si) = P(si|si-1, si-2,....,
si-k) denotes the conditional probability of a nucleotide at
location i given the k predecessors. In the current applica-
tion we use a first order Markov model to model the
sequences and hence, k = 1.

Information content
Information content of splice sites was calculated based
on Shannon's information theory [28]. Entropy Shannon
defined the information in an event i, to be -log pi where,
pi is the probability that the event i occurs. The informa-
tion contained in a splice site can be computed by sum-
ming up the information contents (Ri, bits)of given
nucleotides from individual positions, using the weight
matrix generated from the frequency of each nucleotide at
each position [29,30]. The individual information con-
tent of each individual splice site was calculated using the
following equation [29,30]:

where, f(b, l) is the probability of base b at position l.

We first generated an individual information weight
matrix from the frequencies of each nucleotide at each
position to calculate the information content (Ri, bits) of
each splice site sequence. The individual information
weight matrix can be calculated by the following equation
[29]:

Riw(b, l) = 2 + log2 f(b, l) (3)

The information content of each splice site was calculated
by summing up Riw(b, l) at each position of the splice site
sequences. The relationship between Riw(b, l) and Rsequence
(l) is provided in Additional file 2.

Shapiro's score
Shapiro et al. [31] proposed a method to score the
strength of splice sites based on percentage of each nucle-
otide at each position. First they create a frequency matrix
of nucleotides in each of the positions of the splice site
sequence. Shapiro's score for acceptor splice site is given
by the equation [31]:

SSacceptor = 100*((t1-l1)/(h1-l1) + (t2-l2)/(h2-l2))/2
(4)

where, t1 is the sum of best 8 of 10 nucleotide percentages
at position -13 to -4

l1 is the sum of lowest 8 of 10 nucleotide percentages at
position -13 to -4

P s s s P s sl i i i
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ROC curve showing the classification performance of differ-ent models for NN269 donor splice site dataFigure 3
ROC curve showing the classification performance of differ-
ent models for NN269 donor splice site data.
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ROC curve showing the classification performance of best two models in terms of accuracy and training time for NN269 donor splice site dataFigure 4
ROC curve showing the classification performance of best 
two models in terms of accuracy and training time for 
NN269 donor splice site data.
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h1 is the sum of highest 8 of 10 percentages at position -
13 to -4

t2 is the sum of best nucleotide percentages at position -3
to + 1

l2 is the sum of lowest nucleotide percentages at position
-3 to + 1

h2 is the sum of highest nucleotide percentages at position
-3 to +1

Similarly, Shapiro's score for donor splice site is given by
the equation [31]:

SSdonor = 100*(t - min)/(max - min) (5)

where, t is the sum of percentages at position -3 to + 7

min is the sum of lowest percentages at position -3 to + 7

max is the sum of highest percentages at position -3 to + 7

Sequence feature elimination based on F-score
Sequence feature elimination is an important step
towards the classification task. Classifiers like neural net-
works, SVM's etc. perform better when they are trained
with meaningful input data. Redundant data often causes
misclassification and hence, the reduction of classifica-
tion performance. So it is desirable to eliminate the less

important features from the input data and to select those
features that can potentially discriminate between true
and false class. According to Dror et al. [32], there are
three potential benefits of feature selection: improving the
performance of the classifier, producing a cost-effective
classifier, and providing a better understanding of the
problem.

In this work, we select most informative acceptor and
donor splice site features, and we used the F-score feature
selection criteria also employed by Golub et al. [33] and
Dror et al [32]. For each feature xj, j = 1, 2,...., N, we calcu-

late the mean  (for positive/true class) and  (for

negative/false class), standard deviation  (for positive/

true class) and  (for negative/false class). The F-score

F(xj) is calculated by:

Support vector machine
The SVM is a statistical machine learning algorithm ini-
tially proposed by Vapnik [34-37] and applied to a wide
range of pattern recognition problems
[9,12,15,35,37,38]. It uses a hypothetical space of linear
functions in a high dimensional feature space trained with

μ j
+ μ j

−

σ j
+

σ j
−

F x
j j

j j
j( ) =

+ − −

+ − −

μ μ

σ σ
(6)

Table 4: AUC and training time improvement for different models compared to MM1-SVM method for NN269 donor splice sites.

Model SVM kernel AUC Training time until 
convergence (mm.ss)

Performance 
Improvement

Time Improvement

MM1 SVM Polynomial 0.9761 10:02 - -

Reduced MM1 SVM (Best in 
terms of accuracy)

GRBF 0.9790 20:04 0.297% -100%

Reduced MM1 SVM Polynomial 0.9764 09:30 0.0102% 5.31%

IC Shapiro SVM (Best In terms 
of Time)

Polynomial 0.9665 02:59 -0.9835% 70.26%

Table 5: Proposed models and their description.

Model Description

Reduced MM1 SVM Polynomial Only reduced MM1 parameters and SVM with polynomial kernel

Reduced MM1 SVM GRBF Only reduced MM1 parameters and SVM with GRBF kernel

IC Shapiro SVM Polynomial Information content, Shapiro's score and SVM with polynomial kernel
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a learning algorithm based on optimization theory. A
SVM selects a small number of critical boundary samples
(known as support vectors) from each class and builds a
linear discriminant that separates them as widely as possi-
ble. In the case that no linear separation is possible, the
'kernel' technique is applied to map the training samples
into a higher-dimensional space, and to learn a separator
in that space [39]. SVM classification is an optimization
problem given by:

0 ≤ αi ≤ C, i = 1,..., l, (9)

where, l is the number of training examples, K is the kernel
function, x is the input vectors, y is either -1 or +1 repre-
senting two different classes, α is the variable to be opti-
mized and C is a trade-off parameter for generalization
performance [35,36]. Each α corresponds to one particu-
lar training example and after the training process, only a
subgroup of α will have non-zero values. This subgroup of
α and their corresponding training examples are called the
support vectors. In this study, two separate SVM classifiers
are required, one for acceptor and one for donor. The class
labels y in the two classifiers would then indicate true (y =
+1) or false sites (y = -1) for acceptor and donor accord-
ingly. Given a query DNA segment z, the trained SVM clas-
sifies based on the decision function:

where v is the set of support vectors.

Dataset
To evaluate the performance of the proposed models, we
used publicly available NN269 [10] splice site dataset. The
dataset is divided into two groups namely: the acceptor
splice sites and the donor splice sites. It contains 1324
confirmed true acceptor splice sites, 5552 false acceptor
sites, 1324 confirmed true donor sites, and 4922 false
donor sites collected from 269 human genes. The pseudo
or false acceptor/donor splice sites are those having AG/
GT in the splicing junction but not a real acceptor or
donor splice site according to the annotation. Acceptor
splice sites have a window of 90 nucleotides (-70 to +20)
with the consensus nucleotides AG at positions -69 and -

70. This window includes the last 70 nucleotides of an
intron and the first 20 nucleotides of the succeeding exon.
On the other hand, donor splice sites have a window of 15
nucleotides (-7 to +8) with the consensus nucleotides GT
at positions +1 and +2. This window includes the last 9
nucleotides of an exon and the first 6 nucleotides of the
succeeding intron. The acceptor and donor splice site
datasets are divided into a unique training and test data-
set. The test datasets do not contain any sequence which
is in training dataset. The training dataset contains 1116
true acceptor, 1116 true donor, 4672 false acceptor, and
4140 false donor sites. The test data set contains 208 true
acceptor sites, 208 true donor sites, 881 false acceptor
sites, and 782 false donor sites.

Model learning
The learning of the model is designed in two phases.
Phase one consists of estimation of Markov parameters,
scoring information content of sequences, and calculation
of Shapiro's score. In phase two SVM is trained with poly-
nomial and Gaussian kernels.

All the training sequences were aligned with respect to the
consensus sequence for the estimation of the Markov
parameters. We only use the true training sequences to
create the Markov model. The estimates of the MM1 are
the ratios of the frequencies of each dinucleotide in each
sequence position as shown in the following equation
[18].

For a sequence of length n there are n-1 position specific
probabilistic parameters [18]. As the length of the accep-
tor splice site is 90 nucleotides there are 89 MM1 parame-
ters and for 15 nucleotide long donor splice site there are
14 MM1 parameters. We reduce the size of the MM1
parameters based on the F-score. We empirically selected
the F-score value 0.20. There are many inputs with an f-
score value less than 0.20 as shown in Figure 5 and 6.
However, their inclusion did not significantly improve the
performance and increased the computational complexity
and training time. As the f-score shows the position-spe-
cific discrimination between true and false splice sites, a
higher F-score value indicates a better discrimination
between true and false splice sites and conveys more infor-
mation to the SVM. Based on the F-score values, position
specific MM1 parameters are reduced from 89 to 19 for
acceptor splice sites and from 14 to 9 MM1 parameters for
donor splice sites. Based on the above discussion we pro-
pose several models which are listed in Table 5.

Maximize K x xi jL y yi i j i j
i j

l

i

l
= − ( )

== ∑∑ α α α1
2 11

, ,
,
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s  t. . α i i
i

l
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i
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A position specific nucleotide background matrix is
required for the calculation of information content and
Shapiro's scores. A generalized frequency matrix of the
splice site regions of the whole genome is preferable as it
gives the most reasonable statistics of the occurrence of
nucleotides in the splice site. However, we only use the
NN269 true training data to construct the frequency
matrix. As we compared the performance of MM1 SVM
[18] with that of IC Shapiro SVM, it is required that the
same training data be used to create MM1 parameters,
information content and Shapiro's scores. To calculate the
information content score the individual information
content weight matrix Riw (b, l) is created from the nucle-
otide background matrix following equation (2) (refer to
the method section). Then the information content is cal-
culated by summing up Riw (b, l) of the specified positions.
Similarly the nucleotide background matrix is used to cal-

culate the Shapiro's score for acceptor and donor splice
sites following equations (3) and (4) respectively.

We used the leave one out cross validation technique is
applied to determine the splice site prediction accuracy
and to compare the predictive accuracy with other meth-
ods. The cross validation is performed by randomly parti-
tioning the data into five independent subsets. Each of the
subsets does not share any repeating sequences. Each
model was trained by selecting four of the subsets (train-
ing data) and was tested on the remaining one. Finally, we
took the average of the five prediction accuracies as the
final prediction measure of the model.

Performance measures
The classification performance of the models is measured
in terms of their sensitivity (SN), and specificity (SP). Sen-
sitivity, also known as true positive rate (TPR), is defined

F-Score analysis of NN269 acceptor splice siteFigure 5
F-Score analysis of NN269 acceptor splice site.
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as the percentage of correct prediction of true sites while
specificity is the correct prediction of false sites as defined
below:

Where, TP, TN, FP, and FN stand for true positive rate, true
negative rate, false positive rate, and false negative rate.
They are defined in Table 6[40].

Also receiver operator curve (ROC) is drawn using the sen-
sitivity and specificity values. ROC analysis is an effective
and widely used method for assessing the classification
performance [40]. When a ROC is created from the sensi-
tivity (the y axis) and specificity (the x axis) of a model,
the closer a curve follows the left-hand border and then

the top of the border of the ROC plot, the more accurate
the model is (refer to Figure 3, 4, 5 and 6). We also calcu-
late the area under ROC curve (AUC), as classification per-
formance of some of the models are very close and may
not clearly distinguish performance of two models when
we view them in the ROC curve. However, AUC accurately
measure the total ROC area covered by a model.

Sensitivity S
TP

TP FN
Specificity S

TN
TN FPN P( ) =

+
( ) =

+

F-Score analysis of NN269 donor splice siteFigure 6
F-Score analysis of NN269 donor splice site.

Table 6: Definition of TP, TN, FP and FN

Predicted positive Predicted negative

Real positive true positives, TP false negatives, FN

Real negative true negatives, TN false positives, FP
Page 10 of 12
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