
Gunderson and Ho BMC Bioinformatics 2014, 15:371
http://www.biomedcentral.com/1471-2105/15/371

METHODOLOGY ARTICLE Open Access

An efficient algorithm to explore liquid
association on a genome-wide scale
Tina Gunderson and Yen-Yi Ho*

Abstract

Background: The growing wealth of public available gene expression data has made the systemic studies of how
genes interact in a cell become more feasible. Liquid association (LA) describes the extent to which coexpression
of two genes may vary based on the expression level of a third gene (the controller gene). However, genome-wide
application has been difficult and resource-intensive. We propose a new screening algorithm for more efficient
processing of LA estimation on a genome-wide scale and apply its use to a Saccharomyces cerevisiae data set.

Results: On a test subset of the data, the fast screening algorithm achieved > 99.8% agreement with the exhaustive
search of LA values, while reduced run time by 81–93%. Using a well-known yeast cell-cycle data set with 6,178 genes,
we identified triplet combinations with significantly large LA values. In an exploratory gene set enrichment analysis,
the top terms for the controller genes in these triplets with large LA values are involved in some of the most
fundamental processes in yeast such as energy regulation, transportation, and sporulation.

Conclusion: In summary, in this paper we propose a novel, efficient algorithm to explore LA on a genome-wide
scale and identified triplets of interest in cell cycle pathways using the proposed method in a yeast data set. A
software package named fastLiquidAssociation for implementing the algorithm is available through
http://www.bioconductor.org.
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Background
Large-scale gene expression data provide snapshots of
transcription activity at a genome-wide scale. There is a
growing wealth of gene expression data available in public
databases (such as the Gene Expression Omnibus) and as
well as the capability for easily generating additional data
using high-throughput technologies.
Manymethods for the statistical analysis of gene expres-

sion data exist [1]. Initially data analyses for differential
expression focuse on a single gene at a time [2-4]. These
one-gene-at-a-time analyses separate data into groups
depending on the phenotypic status and perform gene-
by-gene analysis. However recently the focus has shifted
to higher order coexpression patterns (i.e. correlations of
the expression levels of two or more genes) with the belief
that they may reflect more fully the complex interactions
between genes [5-11].
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One type of multi-dimensional differential expression
analysis is called liquid association. Liquid association
(LA) describes the extent to which coexpression of two
genes (X1,X2) may vary based on the expression level of
a third gene (X3), with the third gene being viewed as a
controller gene that can represent the pathway status or
the cellular state [7]. Liquid association has been demon-
strated to be useful in identifying disease candidate genes
for multiple sclerosis and performing dimension reduc-
tion for candidate genes in survival studies [12,13]. Li’s
work [7] applied LA in two distinct ways. The first fixed
a controller gene (i.e. the gene in the X3 position) or a
small subset of controller genes and searched for pairs of
genes (X1,X2) that showed significant liquid association
while the second method reversed this process, specify-
ing one or both of the pair of genes (X1,X2) and searching
for a controller gene (X3) that regulates their correlation
[7,8,12].
Software is available to assist in the calculation of indi-

vidual liquid association triplets as in Li’s work, and
one study has performed brute-force exhaustive searches
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for liquid association [14]; however neither of these
approaches are efficient for genome-wide use. Compu-
tational analyses for LA on a genome-wide scale have
proven more intractable due to the issue of dimensional-
ity, with the number of possible combinations increasing
exponentially in a situation where the number of samples
is already greatly exceeded by the number of genes poten-
tially of interest. For example, in a typical microarray with
6,000 genes, there are more than 1.079 × 1011 all possible
triplet combinations need to be examined in a exhaus-
tive search. In other words, assuming each LA calculation
took one one-thousandth of a second, the full calculation
of all possible values when performed in sequence would
still take approximately 3.4 years. Obviously a different
approach is needed. Thus in this paper, we develop a fast-
screening algorithm with an R software package available
for applying liquid association in a genome-wide scale
search and implement it in a yeast data set.

Methods
Data set
We used the yeast dataset described in [15]. Yeast is a
model organism for studying complex gene interdepen-
dencies due to its short generation time, ease of culture,
and that yeast’s fundamental biological processes are con-
served among all eukaryotes, which allows us to apply
the increased understanding obtained to other organisms
[16]. The raw data set is publically available at the Yeast
Cell Cycle Analysis Project website and was also avail-
able in [15]. The data set contains the gene expression
measures for 6,178 yeast genes under 73 normal growth
conditions and was intended to represent a comprehen-
sive catalog for transcripts that vary periodically within
the cell cycle [15].

Methods for estimating liquid association
Li [7] used E(X1X2|X3) to measure the co-expression of
X1 and X2, and ultimately results in an estimation of
LA(X1,X2|X3) = E(X1X2X3), with the standard error
obtainable by bootstrap [7]. Ho et al. [17] noted that Li’s
measure does not account for instances where the condi-
tional means and variances of X1 and X2 may depend on
X3 and proposed a new measure named modified liquid
association (MLA). Compared to Li’s original measure,
MLA is able to consider more intricate co-dependencies
among these variables and was proven to be more robust
for data analysis applications [17]. Hence in the following
analysis, we appliedMLA to assess themagnitude of liquid
association.
To estimate MLA, both a robust direct estimate and

a trivariate conditional normal model (CNM) framework
were proposed in [17]. For instances where the CNM does
not fit the data well, the more robust direct estimate with
bootstrapping standard error can be used.

The focus of the paper is to develop a screening algo-
rithm which would make it faster to perform a genome-
wide analysis of a data set to check for evidence of
dependent coexpression. Our algorithm named fast liq-
uid association (fastLA) seeks to reduce the number of
triplets needing to be examined in depth in two steps:
(1) screening and (2) model fitting and estimation. As
illustrated in Figure 1, after proper preprocessing, in the
screening step triplets unlikely to have a significant LA
value were removed. The screening step relies on the
|ρdiff | score, with ρdiff defined as:

ρdiff = ρhigh − ρlow, (1)

Figure 1 A process map of the fastLA algorithm.
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where ρhigh is the Pearson correlation when the third con-
troller gene (X3) is high (in the top tertile) and ρlow is the
correlation when X3 is low (in the bottom tertile). ρdiff
is a suitable screening measure for liquid association for
the following reasons: (1) in the situation when X3 is dis-
cretized into three values: −1, 0, 1 by tertile binning, ρdiff
equals to the liquid association measure by definition:

LA = change in coexpression
change in X3

= change in ρ

change in X3

= ρhigh − ρmedium

1 − 0

+ρmedium − ρlow
0 − (−1)

= ρhigh − ρlow,

where ρmedian is the correlation when X3 is in the middle
tertile. Triplet combinations that exhibit large ρdiff value
are likely to manifest large liquid association. (2) ρdiff can
be computed much more quickly through matrix algebra
than MLA estimation.
After the first screening step, triplet combinations with

a large |ρdiff | value were retained for further model fit-
ting and estimation. As illustrated in Figure 1, during the
second step of the algorithm, themagnitude of liquid asso-
ciation is estimated through the CNM if the model fits
the triplet data well. Two versions for estimating MLA
using the CNM are available, a full and simple version of
the model, depending on which model fits the triplet data
better. In the case when the CNM model does not ade-
quately describe the data, the robust estimation can be
used instead. More detail about the CNM and robust esti-
mation procedure are described in [17]. Gene set enrich-
ment analysis using Gene Ontology [18] were performed
for the top triplet combinations identified in the yeast
dataset [15].

Results
Validation
Similar to the approach applied by both Li [7] and Ho et al.
[17], we first performed a normal quantile transformation

of the data so that marginally each variable was normally
distributed. This approach could also help to reduce the
number of potential outliers in the data. In addition, each
gene was also standardized to have mean 0 and variance
1. We removed any genes with greater than 30% missing
values. This reduced the number of genes being tested to
5,721. We randomly pick 50 genes and 250 genes from
the yeast data set to determine agreement between ρdiff

and liquid association estimates
(
̂MLA

)
. The results are

shown in Figure 2; in the plot on the left, the correlation
between ρdiff and ̂MLA is 0.968 in the 50 gene subset;
0.960 in the 250 gene subset as illustrated by the plot in the
middle; 0.990 for simulated data frommultivariate normal
distribution with mean 0 and identify variance-covariance
matrix on the right. When absolute values were not taken,
there was 100% agreement in sign. We performed simple
linear regression: |ρdiff | = α+β∗|̂MLA|. Interestingly, the
β estimates are approximately 2.69, 2.68, and 2.75 respec-
tively in the 50 subset, 250 subset, and simulated data
from multivariate normal distribution. This value com-
pares well to the possible maximum values for |ρdiff | (2.0)
and |̂MLA| (√

2/π
)
as 2/

√
2/π = 2.507.

Using the 250 genes subset, we performed the fastLA
and an exhaustive analysis in order to perform a speed
comparison as well as to test for sensitivity. Based on sen-
sitivity analyses, the data was separated into three bins
for the model-based estimate of MLA to minimize mean
squared error according to Ho et al. [17]. Testing was per-
formed at |ρdiff | = 0.3 and 0.5. The proportion of the
top |̂MLA| 10,000 triplet sets found using fastLA versus
those found using exhaustive liquid association analysis
was > 99% for both |ρdiff | = 0.3 and 0.5 (at matches
of 99.98% and 99.87% respectively). The proportion of
the top |̂MLA| 10,000 triplets missed by varying values of
|ρdiff | are shown in Figure 3.
By narrowing the triplets with |ρdiff | > 0.5, we reduced

the number of the triplet combinations needed to be
examined from 7,719,000 to 918,688 triplets (11.9% of all
triplet combinations) in the 250 gene subset analysis. In

Figure 2 Comparison for all triplets of | ̂MLA| vs. |ρdiff |. The plot for 50 gene subset is on the left, 250 gene subset in the middle, and simulated
data from multivariate normal distribution with mean 0 and identify variance-covariance matrix on the right.
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Figure 3 The percent missed in the top | ̂MLA| 10,000 triplets in
the 250 gene subset by increasing values of |ρdiff |.

the middle plot of Figure 2, only two out of 7,719,000
triplets (rank 80 and 2680 among all triplets) have
|MLA| > 0.4 (≈ 50% of maximum MLA value) and
are missed by ρdiff > 0.5 screening criteria. Because of
discretizing X3, there is a small reduction of resolution
for measuring MLA using ρdiff in these two cases. How-
ever, the reduction in run time was substantial due to a
much smaller number of triplets needed to be examined
after the screening. Compared to the exhaustive analysis,
the relative run time required for completion using the
fastLA algorithm was 19.1% when using |ρdiff | = 0.3 as
the cut-off threshold and 6.51% when using |ρdiff | = 0.5
(run times 2876 seconds and 979 seconds respectively vs.
15046 seconds using the exhaustive search). Processing
was performed on servers at theMinnesota Supercomput-
ing Institute on two-socket, quad-core 2.8 GHz Intel Xeon
X5560 Nehalem EP processors with 22 GB of RAM.

We set |ρdiff | = 0.5 and implemented the fastLA algo-
rithm in the yeast dataset. After the first screening step,
1.179 × 1010 (12.6%) triplets out of 9.357 × 1010 triplets
remained in the second step. The results were sorted
using the model-based estimation for liquid association.
The top 10 triplet combinations are shown in Table 1
sorted by p-value [19], and a fuller list of the top 10,000
triplets is presented in the Additional file 1. In Table 1, the
model column represents the way the p-value was derived
(F= results from full CNMmodel, S= results from simple
CNM model). For genes where the function is character-
ized, the RefSeq gene symbol is reported. For those genes
whose function has not yet been characterized, the open
reading frame ID was reported instead. In addition, we
analyzed the data separately by four synchronization con-
ditions in which the yeast experiments were performed.
The box plots of gene expression, and the top 100 triplets
with large MLA values in each synchronization condi-
tion are provided in the Additional files 2, 3, 4, 5, and 6
respectively.
In saccharomyces cerevisiae, there are 171 genes with

transcription factor specificities that show DNA binding
ability and have at least 1 identified motif according to
the yeast transcription factor compendium [20]. In the top
342 triplet combination with p value < 10−8, 10 (5.8%)
of the 171 genes were reported as the controller gene
(X3) in the list. These 10 genes are provided in Additional
file 7.

Results of GO analysis
Weperformed gene set enrichment analysis usingGO [18]
for the 342 triplet combinations with p value< 10−8, both
for the genes in the X3 position (328 unique genes) and
for all genes in the triplets (905 unique genes) using a sig-
nificance level α = 0.05 for the analyses. The conditional
Fisher’s exact test was used to account for the hierarchi-
cal structures in GO. We reported the top 15 GO terms
using biological process ontology in Table 2 and 3. The full

Table 1 Top 10 triplets by p-value

X1/X2 X2/X1 X3 ρdiff ˆMLA Wald p-value p-adj Model

1 SKN1 GAS2 YGR149W 1.335 0.417 49.050 2.501E-12 5.332E-05 F

2 YCRX13W YFL052W STL1 1.234 0.417 47.600 5.217E-12 5.332E-05 F

3 UBC5 RTG2 MLH2 -1.325 -0.471 46.720 8.194E-12 5.332E-05 F

4 RSM28 YLR281C PLB1 1.042 0.405 46.470 9.290E-12 5.332E-05 F

5 SRO77 SNQ2 TFC3 -1.029 -0.406 46.280 1.023E-11 5.332E-05 F

6 YIM2 THI80 MUP1 1.204 0.437 46.110 1.118E-11 5.332E-05 F

7 YIL169C YJL193W AIM45 1.171 0.431 45.250 1.737E-11 7.100E-05 F

8 SIZ1 MCM16 AXL1 1.368 0.449 43.700 3.826E-11 1.368E-04 F

9 PYC2 HKR1 YPR170C -1.199 -0.434 43.390 4.489E-11 1.427E-04 F

10 SEO1 YPL113C RSC4 -1.162 -0.410 43.030 5.389E-11 1.541E-04 F
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Table 2 Top 15 GO terms for X3 analysis using biological processes ontology

GOBPID Pvalue OddsRatio ExpCount Count Size Term

1 GO:1901137 6.38E-03 1.94 11.74 21 208 Carbohydrate derivative biosynthetic process

2 GO:0016072 6.75E-03 1.87 13.32 23 236 rRNA metabolic process

3 GO:0005979 8.07E-03 10.12 0.45 3 8 Regulation of glycogen biosynthetic process

4 GO:0018202 8.07E-03 10.12 0.45 3 8 Peptidyl-histidine modification

5 GO:0051180 8.07E-03 10.12 0.45 3 8 Vitamin transport

6 GO:0001402 1.16E-02 8.43 0.51 3 9 Signal transduction involved in filamentous growth

7 GO:0015986 1.16E-02 8.43 0.51 3 9 ATP synthesis coupled proton transport

8 GO:0032885 1.16E-02 8.43 0.51 3 9 Regulation of polysaccharide biosynthetic process

9 GO:0072348 1.97E-02 4.50 1.07 4 19 Sulfur compound transport

10 GO:0043269 2.09E-02 6.32 0.62 3 11 Regulation of ion transport

11 GO:0006506 2.15E-02 3.52 1.64 5 29 GPI anchor biosynthetic process

12 GO:0009303 2.15E-02 3.52 1.64 5 29 rRNA transcription

13 GO:0000462 2.21E-02 2.24 4.86 10 86 Maturation of SSU-rRNA from tricistronic rRNA
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

14 GO:0016579 2.35E-02 4.22 1.13 4 20 Protein deubiquitination

15 GO:0000479 2.61E-02 2.90 2.31 6 41 Endonucleolytic cleavage of tricistronic rRNA
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

list of enriched GO terms in biological process, molecular
function and cellular component ontology are reported
in the Additional files 8, 9, 10, 11, 12, and 13. Pathways
composed of fewer than five genes are not reported in the
analysis.
Given that the Spellmen et al. experiments created

nutrient-depleted conditions for growth, it is biologi-
cally feasible to see that for the controller position (X3),
many top terms are involved energy regulation such

as carbohydrate derivative, glycogen, and polysaccharide
biosynthesis described in Table 2. Glycogen in yeast is
formed during periods where carbon, nitrogen, phos-
phorus or sulfur is limited [21]. In addition, several top
terms are related to transportation of cellular molecules
such as vitamin, sulfur compound, and ion. Furthermore,
GPI-anchor protein biosynthesis could be related to cell
wall formation for sporulation during nutrient-depleted
environment.

Table 3 Top 15 GO terms for full triplet analysis using biological processes ontology

GOBPID p-value OddsRatio ExpCount Count Size Term

1 GO:0006335 2.72E-03 21.39 0.79 4 5 DNA replication-dependent nucleosome assembly

2 GO:0006096 4.37E-03 3.11 4.74 11 30 Glycolysis

3 GO:0009071 7.13E-03 10.69 0.95 4 6 Serine family amino acid catabolic process

4 GO:0000266 1.46E-02 7.13 1.11 4 7 Mitochondrial fission

5 GO:0015677 1.46E-02 7.13 1.11 4 7 Copper ion import

6 GO:0042938 1.46E-02 7.13 1.11 4 7 Dipeptide transport

7 GO:0009205 1.95E-02 1.59 21.51 31 136 Purine ribonucleoside triphosphate metabolic
process

8 GO:0071470 2.18E-02 2.44 5.06 10 32 Cellular response to osmotic stress

9 GO:0001079 2.55E-02 5.34 1.27 4 8 Nitrogen catabolite regulation of transcription from
RNA polymerase II promoter

10 GO:0051180 2.55E-02 5.34 1.27 4 8 Vitamin transport

11 GO:0006184 2.82E-02 1.76 12.18 19 77 GTP catabolic process

12 GO:0006446 2.84E-02 2.88 3.16 7 20 Regulation of translational initiation

13 GO:0032889 2.94E-02 3.82 1.90 5 12 Regulation of vacuole fusion, non-autophagic

14 GO:0000154 2.97E-02 3.21 2.53 6 16 rRNA modification

15 GO:0006000 3.07E-02 8.01 0.79 3 5 Fructose metabolic process
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The results from the analyses using the full triplet set
trend toward functions of energy regulation, and trans-
port of molecules as shown in Table 3. Glycolysis is
related to the utilization of glucose. In addition, regula-
tion of lipid, carbohydrate, hexose, purine ribonucleotide
could also be involved in energy regulation process. The
findings presented by GO analysis could suggest feasible
biological hypotheses; however, liquid association mea-
sure describes ‘association” between gene triplet, but it
does not necessary confers “causation.” Further functional
experiments will be needed to validate the top triplets
identified with large MLA values.

Discussion
In the data analysis, we set |ρdiff | = 0.5. There are a
few considerations about setting the threshold value for
|ρdiff |. The maximum value is theoretically 2 (as ρdiff =
ρhigh − ρlow and −1 ≤ ρX1,X2 ≤ 1). For general use, too
high a value for |ρdiff | risks missing those triplets whose
MLA values are not fully reflected by the more simplis-
tic correlation, while too low a value approaches testing
all possible triplets and forfeits any increase in testing
efficiency. We set the default value at 0.5 (25% of the real-
izable correlation difference) as we found > 99.98% of

the triplets with a large MLA were captured by setting
|ρdiff | = 0.5 in the validation subset. If we increase the
threshold for the |ρdiff | cutoff, we could further decrease
time without substantial loss in sensitivity. Of the top
10,000 triplets, only 128 would have been missed using
a cutoff of |ρdiff | = 1.0. However, this would have sub-
stantially decreased the number of triplets that needed to
be checked for MLA estimates, which in turn would have
helped decrease memory usage and overall processing
time.
In the algorithm, ρdiff is calculated based on the differ-

ence between a “high” versus “low” subset of the data for
each gene in the controller position. Initially the median
(after removal of any data with a missing value in the
X3 position) was used as the demarcation between the
high and low subsets. However, we found that the central
points diluted the ρdiff estimate and decreased sensitiv-
ity. The algorithm was respecified to split the data into
three parts based on the X3 values, with high being the
top third and low being the bottom third in our analysis.
By using the upper and lower tertiles for Z expression, the
values of ρdiff increase in triplets with large liquid associ-
ation and hence increase the sensitivity to identify triplets
with large MLA values. Based on data obtained in the

Figure 4 Triplets with lack of fit to the conditional normal model (CNM). The X1, X2 genes form the axes and the title lists the X3 gene.
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verification process, we used this specification of the algo-
rithm in this analysis. Furthermore, the splitting of X3 can
be easily modified for other analysis; however, in practice,
we suggest to have between 15 to 30 samples as recom-
mended by Ho et al. [17] samples in each bin to achieve
stable estimates of ρ.
During the course of parameter estimations using the

CNM models, we identified a subset of triplets where the
CNM does not fit the data well. In total, of the 2.8605 ×
107 triplets that were tested using the full model, 23,830
triplets can not be adequately described by the CNM full
model.
Of these 23,830 triplets, 21,935 (92.0%) triplets were

estimated using the simple CNMmodel, and 1,895 (7.95%)
were estimated using the robust method. After investi-
gating these triplets, we identified the following possible
explanations for why they are not appropriately fit by the
CNM: (1) The distribution of X1,X2 is not bivariate nor-
mal with respect to X3, (2) The change in ρX1X2|X3 is
non-linear with respect to X3, or (3) The model’s reliance
on Pearson correlation makes it more sensitive to out-
liers. None of the triplets tested using the direct estimate
method were found to be of sufficiently low adjusted p-
value to be included in the set of the top gene triplet
combinations. Figure 4 provides example scatter plots of
triplets that do not fit the CNM well. The first row is an
example of non-linear changes in correlation with regards
to the value of the X3 gene. The second row provides an
illustration of the bins’ susceptibility to outliers, in the
that correlation for both the leftmost and center plots
would be changed without the single outlier on the left.
In these cases, the robust estimation procedure is more
appropriate to assess the magnitude of liquid association.
A concern that has been raised in regards to using

Hypergeometric-based tests is the problem of defining the
gene universe. When a larger gene universe is used, it in
general will tend to (assuming all other variables remain
the same) have the effect of making the p-value seemmore
significant [4]. Given the genome-wide scope and nature
of our testing (in that a priori, we had no way of distin-
guishing which genes might be found to be “interesting”
and thus all genes were equally likely to be selected), it was
decided that all analyzed genes would be included in the
gene universe for analysis and the results interpreted con-
servatively. While the data used from Spellman et al. were
obtained from cDNA arrays and thus more likely to have
prior rationale of biological plausibility for probe inclu-
sion, for commercial chips performing some non-specific
filtering prior to analysis may help reduce the size of the
gene universe and manage to avoid the issue.

Conclusion
We proposed the fastLA algorithm for exploring liquid
association in a genome-wide scale. Some modifications

of the fast liquid association algorithm could be: (1) For
binary traits, ρdiff can be used as the liquid association
measure. Our algorithm can be easily adapted to the
binary case, (2) Use a rank-based correlation statistic.
Using non-parametric correlation would make the model
more robust to outliers and potential violations of the
assumption that the variables are bivariately normally dis-
tributed; however, rank-based correlation statistic could
be less statistically powerful comparing to the Pearson
correlation.
On the basis of the results of this study, it appears

that ρdiff would be an appropriate screening metric for
MLA in use for exploratory genome-wide searches and
that both metrics are suitable for identifying triplets of
interest. Given the high correlation observed between
ρdiff and MLA and the increased speed of calculation
of ρdiff due to its matrix manipulation to perform the
estimate, this would significantly reduce both process-
ing time and memory requirements. While there remain
reservations that ρdiff may not be suitable for a compre-
hensive identification of triplets of significant p-values,
nevertheless it is a fast and efficient screening tool to
identify potentially significant gene triplets using liquid
association.
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