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Abstract

Background: Quality control is a necessary step of any Next Generation Sequencing analysis. Although customary,
this step still requires manual interventions to empirically choose tuning parameters according to various quality
statistics. Moreover, current quality control procedures that provide a “good quality” data set, are not optimal and
discard many informative nucleotides. To address these drawbacks, we present a new quality control method,
implemented in UrQt software, for Unsupervised Quality trimming of Next Generation Sequencing reads.

Results: Our trimming procedure relies on a well-defined probabilistic framework to detect the best segmentation
between two segments of unreliable nucleotides, framing a segment of informative nucleotides. Our software only
requires one user-friendly parameter to define the minimal quality threshold (phred score) to consider a nucleotide to
be informative, which is independent of both the experiment and the quality of the data. This procedure is
implemented in C++ in an efficient and parallelized software with a low memory footprint. We tested the
performances of UrQt compared to the best-known trimming programs, on seven RNA and DNA sequencing
experiments and demonstrated its optimality in the resulting tradeoff between the number of trimmed nucleotides
and the quality objective.

Conclusions: By finding the best segmentation to delimit a segment of good quality nucleotides, UrQt greatly
increases the number of reads and of nucleotides that can be retained for a given quality objective. UrQt source files,
binary executables for different operating systems and documentation are freely available (under the GPLv3) at the
following address: https://lbbe.univ-lyon1.fr/-UrQt-.html.
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Background
Next Generation Sequencing (NGS) technologies produce
calling error probabilities for each sequenced nucleotide
[1]. These probabilities, encoded as phred scores [2], are
often high at the heads and tails of the reads, indicating
low-quality nucleotides [3]. The presence of these unreli-
able nucleotides can result inmissing or wrong alignments
that can either increase the number of false negatives
and false positives in subsequent analyses or can pro-
duce false k-mers in de novo assembly, increasing both the
complexity of an assembly and the chance of producing
misassemblies [4]. To remove these unreliable nucleotides
and only work with informative nucleotides, most NGS
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data analyses start with a quality control (QC) step before
any downstream analysis.
There are three types of approaches to address low-

quality nucleotides. Classical QC strategies begin by
removing an arbitrary number of nucleotides at the head
and tail of each read, with tools such as the fastx_trimmer
from the FASTX-Toolkit [5], after visualization of the per
nucleotide sequence quality with tools such as FastQC
[6]. Then, only reads of high quality are retained by other
filters; for example, all reads with a given percentage
of their length below a given phred score are excluded,
using tools such as the fastq_quality_filter from FASTX-
Toolkit. More recent approachesmodify incorrectly called
nucleotides by superimposing reads to each other and
removing low frequency polymorphisms. This kind of
approach often works using motifs of k nucleotides or k-
mer to modify low frequency motifs based on the most
frequent ones. However, this type of approach requires
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potentially high sequencing coverage (15x in the case
of Quake [7] and 100x in the case of ALLPATHS-LG
[8]) and cannot be applied to non-uniform sequencing
experiments, such as RNA sequencing (RNA-Seq). Other
approaches trim unreliable nucleotides at the head and tail
of each read.With these approaches, one wants to find the
best trade-off between removing unreliable nucleotides
and keeping the longest reliable or informative subse-
quence for the entire read. Current trimming approaches
rely on two types of algorithms: the running sum algo-
rithm and the window-based algorithm (for a review see
[4]). However, these algorithms only return good local cut-
ting points for each read when it is necessary to find a
good global cutting point to get the best trade-off between
removing unreliable nucleotides and losing too much
information. Moreover, most of these QC strategies rely
heavily on manually chosen parameters that are difficult
to interpret and cannot be easily automatized.
In the present work, we have developed the program

UrQt to trim unreliable nucleotides at the heads and tails
of NGS reads based on their phred scores. We define an
informative segment as a segment whose nucleotides are
on average informative and an informative nucleotide as
a nucleotide with a quality score above a specified quality
threshold. Our approach takes advantage of the expected
shape of the calling error probability along each read
(abruptly decreasing for the first nucleotides and slowly
increasing with the size of the reads) to find the best parti-
tion between two segments of unreliable nucleotides to be
trimmed –the head and the tail of the reads– and a central
informative segment. UrQt implements an unsupervised
segmentation algorithm to find the best trimming cut-
points in each read by maximum likelihood. We use a
probabilisticmodel to handlemore naturally the trimming
problem than other procedures using window-based or
running sum algorithms [4]. Moreover, UrQt requires no
data-dependent parameters and takes advantage of mod-
ern multicore achitectures, which makes it particularly
interesting to be routinely applied for NGS reads in fastq

or fastq.gz format [9] and attractive for the development
of future analytical pipelines.

Implementation
In this section, we present the probabilistic model that we
use to find the best position to trim a read to increase
its quality without removing more nucleotides than nec-
essary. We also present an extension of this model for
homopolymer trimming.
A read is defined as a vector (n1, . . . , nm) of m

nucleotides associated with a vector of phred scores
(q1, . . . , qm). We want to find the best cut-point k1 ∈
[1,m] in a read of length m between an informative seg-
ment for nucleotide ni, i ∈ [1, k1] and a segment of unre-
liable quality for nucleotide ni, i ∈ [k1 + 1,m] (Figure 1).
Then, having found k1, we want to find the best cut-point
k2 ∈ [1, k1] between a segment of unreliable quality for
nucleotide ni, i ∈ [1, k2 − 1] and an informative segment
for nucleotide ni, i ∈ [k2, k1]. Given the shape of the call-
ing error probability distribution, there is less signal to
find k1 (the probability slowly increases at the extremity of
the read) than k2 (abruptly decreases). Therefore, we want
to have the highest number of nucleotides to support the
choice of k1 when k2 can be found with a subsequence of
the read (Figure 1).
With q the quality value of a nucleotide, the probability

for this nucleotide to be correct is defined by:

pa (q) = 1 − 10
−q
10 (A)

which gives, for example, a probability pa (q) = 0.99 for
a phred q = 20 [2]. However, in QC, the word “informa-
tive” is typically defined as a phred score above a certain
threshold and not the probability of calling the correct
nucleotide. From a probabilistic point of view, we need
to discriminate informative nucleotides (with pa (q) ≥
pa (t) and t a given threshold) from other nucleotides,
rather than discriminate fairly accurate nucleotides (with
pa (q) ≥ 0.5) from the others. Therefore, we propose to
define the probability of having an informative nucleotide
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Figure 1 Quality trimming. Position of the cut-points k1 and k2 in a read. After trimming, the retained part corresponds to the section with a green
background, which indicates an informative segment of nucleotides between k1 and k2.
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as pb (q, t) = 1 − 2
−q
t with t the minimal phred score

acceptable to be informative. This definition shifts the
probability function such that for q = t, we have
pb (q, t) = 0.5. Therefore, at the threshold t, nucleotides
with pb (q, t) ≥ 0.5 are informative and the others are
not. With t = 3.0103, we go back to the classical phred
function (Figure 2) in which pb (q, t) = pa (q).
With the function pb (q, t), low phred scores are associ-

ated with a low probability to be correct (pb (0, t) = 0),
but for t ≤ 20 a high phred score does not correspond to
a high probability to be correct (for example, pb (40, 20) =
0.75). Therefore, from a probabilistic point of view, unre-
liable nucleotides will have more weight than informative
ones. To associate a high phred score with a high probabil-
ity of having an informative nucleotide, we constrain this
probability to reach 1 for a phred score of 45 by using the
following spline function (Figure 2):

p (q, t) =
{
1 − 2

−q
t if q ≤ max(20, t),

B (q�, p1, p2, 1, 1) otherwise
(B)

with B (q�, p1, p2, p3, p4) the cubic Bezier curve starting at
p1 toward p2 and arriving at p4 coming from the direction
of p3 for q� ∈ [0, 1]. We have p1 = 1 − 2−max(20,t)/t , p2 =

g (1/3 × (45 − max(20, t))) with g (q) the tangent to the
function 1 − 2

−q
t in max(20, t). We scale the Bezier curve

to the interval [t, 45] with q� = (q − t) / (45 − t). The con-
straint max(20, t) ensures that d

dq�B (q�, p1, p2, p3, p4) < 0
for q� ∈ [0, 1] (see Figure 2).
With the maximum likelihood framework, finding the

position of the cut-point between a segment of infor-
mative nucleotides (q > t) and a segment of unreliable
nucleotides (q < t) consists in estimating k1 by:

k̂1 = argmax
k

k∏
i=1

1
k
f0 (ni, t)

m∏
i=k+1

1
m − k − 1

f1 (ni, t)

(C)

with f0 (ni, t) the probability that the nucleotide ni comes
from the segment of informative nucleotides and f1 (ni, t)
the probability that the nucleotide ni comes from the seg-
ment of unreliable nucleotides for a given t. Such that:

f0 (ni, t) = p (qi, t)
∏
N∈�

Pr(N)1(ni=N) (D)

f1 (ni, t) = (1 − p (qi, t))
1
4

(E)
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Figure 2 Probability-phred functions. p (q, t) according to the choice of t. The white, dark grey, light grey and black dots represent respectively the
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with 1(ni = N) an indicator variable such that 1(ni =
N) = 1 if the nucleotide ni is equal to N and 0 oth-
erwise, Pr(N) = ∑k

i=1 1 (ni = N) /k the probability to
observe the nucleotideN between 1 and k, and� the stan-
dard IUB/IUPAC dictionary [10]. Pr(N)N∈� and k1 are
estimated with the complete data framework of the EM
algorithm [11]. After finding k̂1, we apply the same proce-
dure on the interval [ 1, k̂1] to estimate the best cut-point
k2 between a segment of unreliable nucleotides ahead of
a segment of informative nucleotides. This double binary
segmentation ensures to provide the best two cut-points
for a given read [12].
For p (q, t) = pa (q), we can interpret the segment of

informative nucleotides as a segment for which on average
we are confident that a given nucleotide is the correct one,
whereas the segment of unreliable nucleotides is com-
posed of uninformative nucleotides in which on average
any of the four nucleotides can be present at a given
position. The cut-point k1 maximizes the probability that
the nucleotides ni, i ∈ [1, k1] are informative and that
nucleotides ni, i ∈ [k1,m] are not.
With our model, trimming nucleotides of unreliable

quality is somewhat similar to removing homopolymers
from the extremities of the reads. The task of removing
homopolymers, such as polyA tails in RNA-Seq exper-
iments, is not trivial, because the quality of a given
nucleotide decreases both at the end of the read and with
the size of the homopolymer. Therefore, because the num-
ber of incorrectly called nucleotides increases, we are less
likely to observe As at the end of the polyA tail. UrQt
implements a procedure for the unsupervised trimming of
polyN with a straightforward modification of equation (E)
such that:

f1 (ni, t) = pa (qi, t)1(ni=A)

(
(1 − pa (qi, t))

1
4

)1(ni �=A)

(F)

in which we can replace A by any letter of the stan-
dard IUB/IUPAC dictionary. With this definition of f1, we

consider the calling error probability of the nucleotide at
position i if ni = A or if ni �= A, the probability that the
nucleotide could have been an A.

Results and discussion
To assess the performance of our approach, we com-
pared the performance of UrQt to other publicly available
programs on different NGS data sets (see Table 1). The
quality of the data generated during an NGS experiment
can vary greatly depending on the type of data (DNA or
RNA) and the sequencing pipeline. To analyze these two
types of data on the same genome, we chose paired-end
RNA and paired-end DNA sequencing experiments from
the species Drosophila melanogaster. For this species, the
DNA sample quality quickly drops at the end of the reads
(see Additional file 1), and the RNA sample presents
a large variability of quality among its reads. We also
included in our analysis four other data sets from four
different species which are the same ones as used in the
comparative study of Del Fabbro et al. [4]. One single-
end RNA sample from the species Homo sapiens of poor
overall quality and one single-end RNA sample of good
overall quality from the species Arabidopsis thaliana. For
the DNA sample, we used one paired-end sample from
the species Prunus persica of excellent overall quality
and one paired-end DNA sample from the species Sac-
charomyces cerevisiae of average quality. Finally, we also
included one paired-end RNA sample from the species
Homo sapiens of overall good quality. The seven data sets
(Table 1) were downloaded from theNCBI website. Rather
than using the complete data set, we uniformly sampled
500,000 reads from each experiment using the software
fastq_sampler.py (available at https://github.com/
l-modolo/fastq_sampler), to speed-up the compu-
tation and work with comparable reads number for each
sample.
For testing purposes, we choose the better trimming

programs, according to their performances in the study
of Del Fabbro et al. [4] and representing both running
sum algorithms (Cutadapt [13], which implement the
algorithm proposed for BWA [14]) and sliding-windows

Table 1 NGS data sets used for testing

Accession Species Sample Paired-end Read size Reference
number type (bp) genome

SRR002073 Homo sapiens RNA no 33 hg19

SRR521463 Homo sapiens RNA yes 75 hg19

SRR420813 Arabidopsis thaliana RNA no 83 TAIR10

SRX150254 Prunus persica DNA yes 100 1.22

SRR452441 Saccharomyces cerevisiae DNA yes 100 EF4

SRR988074 Drosophila melanogaster DNA yes 101 5.41

SRR919326 Drosophila melanogaster RNA yes 101 5.41

https://github.com/l-modolo/fastq_sampler
https://github.com/l-modolo/fastq_sampler
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algorithms (Trimmomatic [15] and Sickle [16]). The dif-
ferent programs were compared on two points: the overall
quality of the resulting trimmed data set and the number
of reads mapped on the corresponding reference genome
with Bowtie2 [17] for different quality thresholds. For the
analyses presented in this work, we used the latest avail-
able versions of Cutadapt (version 1.4.1), Trimmomatic
(version 0.32) and Sickle [16] (version 1.290). The value
of the quality threshold t for the three programs, corre-
sponded respectively to the parameter –t for UrQt, –q
for Cutadapt and Sickle and SLIDINGWINDOW:4:t for
Trimmomatic. All the other parameters were set to default
values, except for the minimum read length that was set
to 1 bp. All quality figures were generated with FastQC [6]
and the quality statistics were computed using R [18] and
the FASTX-Toolkit [5].

Consistency of the trimming procedures
It is expected that the quality in the trimmed data set will
increase with the quality threshold up to a certain satu-

ration point. We computed the median quality (phred) in
the trimmed data for different quality thresholds (Figure 3,
and Additional file 2 for the seven data sets). We observed
from this comparison that except for UrQt, all other pro-
grams failed to produce a stable relationship between the
chosen quality threshold and the resulting median quality
score across different samples. For example, we observed
a logarithmic-like relationship between the quality thresh-
old and the median for data sets of overall poor quality,
such as the H. sapiens data of overall poor quality, and
an exponential-like relationship for data sets of overall
good quality, such as the A. thaliana and the S. cerevisiae
data (Figure 3). These different types of relationships indi-
cate that an increase of the threshold does not have the
same effect from one data set to another, and that this
effect also depends on the value of the threshold. However,
with UrQt, we observe a stable relationship between the
threshold and the median quality that is representative of
more consistent cutting-points. With a stable relationship
between the threshold and the quality of the trimmed data

Figure 3 Quality of the trimmed data for each software. Performances of different trimming algorithms in terms of the median quality (phred) of
the resulting trimmed data set for different quality thresholds. The choices of t correspond to the parameter –t for UrQt, –q for Cutadapt and Sickle
and SLIDINGWINDOW:4:t for Trimmomatic. The black line corresponds to raw (untrimmed) data, and R1 and R2 correspond to the two ends of
paired-end data.
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set, it is thus possible to set the quality threshold before-
hand according to a targeted quality and independently of
the data.

Optimality of the trimming procedures
Although increasing the quality of a data set by trimming
nucleotides of poor quality is easy, the remaining diffi-
culty lies in minimizing the information (nucleotides) lost
in the process. A simple metric to evaluate this trade-off
is the number of trimmed reads that can be mapped on
the corresponding reference genome. With better qual-
ity information after trimming, we expect an increase of
the number of mapped reads, whereas by removing too
many nucleotides, we expect less information and thus a
decrease in the number of mapped reads. For the map-
ping procedure, we used Bowtie2 [17] (version 2.2.2) (with
default parameters and the –very-sensitive option) and
the genome indexes available from the igenome project
(see Table 1 and Additional file 3 for the version). For
the paired-end data, each end was mapped independently.

We examined the number of mapped reads on the corre-
sponding reference genomes (Table 1) for different quality
thresholds (Figure 4 and Additional file 4 for the seven
data sets). The same mapping procedure was also per-
formed using BWA [14] (version 0.7.10) (with default
parameters) (Additional file 3). We observed that UrQt
was the only software that consistently increased the num-
ber of mapped reads for all data sets. The other programs
provided the desired effect only for data sets of over-
all poor quality, such as for the single-end H. sapiens
data (SRR002073), and produced worse results than those
obtained by mapping the raw data for data sets of better
quality (Figure 4). For the single-end H. sapiens data, we
observed that UrQt better respected the chosen threshold,
thus producing worst results than the other programs for
the low quality threshold. For example, with this dataset
and a threshold of 5, we expect a large number of reads
with an average quality slightly above 5 which are diffi-
cult to map. This respect of the threshold can also be seen
for the paired-end H. sapiens data (SRR521463) or the D.

Figure 4 Remaining information in the trimmed data for each software. Mapping performances for different quality threshold. The choice of t
corresponds to the parameter –t for UrQt, –q for Cutadapt and Sickle and SLIDINGWINDOW:4:t for Trimmomatic. The black line corresponds to raw
(untrimmed) data, and R1 and R2 correspond to the two ends of paired-end data.
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melanogaster RNA data (SRR919326) and a low threshold
of 5 where UrQt is the only program that produces results
comparable to the raw data (see Additional file 4).
For data sets of excellent quality, such as P. persica

(see Additional file 4), all the trimming programs except
for UrQt deteriorated the mapping performances com-
pared with the ones obtained by mapping the raw data.
This result provides additional evidence of better trim-
ming cut-points identified by UrQt compared with the
ones found by other procedures that remove too many
nucleotides for data sets of excellent quality.
When considering the output of a mapping software, we

can discriminate between reads, which map to a unique
position and reads, which map to multiple positions. The
number of reads mapping at multiple positions depends
on three factors: the number of reads associated with rep-
etition, the sensitivity of the mapping procedure (we can
expect more reads mapping at multiple positions when
allowing for more missmatches and gaps), and the infor-
mation contained in the reads. Thus with trimming pro-
cedures, the information loss of over-trimming could lead
to an increase of the number of reads mapping at multi-
ple positions. This over-trimming effect can be seen with
Cutadapt, Trimmomatic and Sickle for high threshold val-
ues (superior to 20) (see Additional file 3 for the results
with Bowtie2 and BWA). However, with UrQt, the num-
ber of reads mapping to unique position increase with the
choice of the threshold which is also consistent with bet-
ter cut-point. These results hold for every dataset with the
exception of the H. sapiens RNA sample of poor overall
quality (SRR002073) for which removing a large number
of uninformative nucleotides also correspond to removing
a large number of reads.
Overall, the results obtained with UrQt correspond to

the expected results for a trimming procedure and a given
quality threshold in opposition to the other programs in
our test panel (see Additional file 3 and 5). The out-
put of UrQt depends on the choice of t that defines an
informative sequence for which we expect nucleotides to
have a phred score above this threshold. Contrary to cur-
rent methods in which the choice of the threshold is set
according to the quality of the data, the UrQt –t parame-
ter only depends on the goal of the analysis (SNP calling,
de novo-assembly, mapping, etc.).

Conclusions
UrQt is a new tool for the key QC step of any NGS data
analysis to trim low-quality nucleotides and polyA tails
from reads in fastq or fastq.gz format with an efficient
C++ implementation. By finding the best segmentation to
delimit a segment of informative nucleotides, UrQt greatly
increases the number of reads and of nucleotides that
can be retained for a given quality objective. Using this
software should provide a significant gain for many NGS

applications. Moreover, the consistency of our trimming
procedure with the quality of the trimmed data set for a
given quality threshold, will allow for better automation of
the trimming step in a pipeline. We also provide a galaxy
wrapper for UrQt to facilitate its integration in existing
pipelines developed on this platform [19-21]. Finally, with
our simple probabilistic model for the trimming of NGS
data, we hope that users will have a better grasp on the
quality threshold –t to obtain the largest trimmed data set
with the required quality.

Availability and requirements
Project name: UrQt
Project home page: https://lbbe.univ-lyon1.
fr/-UrQt-.html
Operating system(s): Platform independent
Programming language: C++
Other requirements: zlib and c++0x compiler
License: GNU GPLv3
Any restrictions to use by non-academics: GNU GPLv3

Additional files

Additional file 1: Quality analysis of the seven NGS samples. Quality
analysis of the seven NGS samples (Table 1) with the FastQC software.

Additional file 2: Quality of the trimmed data for each programs.
Performances of different trimming algorithms in terms of the median
quality (phred) of the resulting trimmed data set for different quality
thresholds. The choice of t corresponds to the parameter –t for UrQt, –q for
Cutadapt and Sickle and SLIDINGWINDOW:4:t for Trimmomatic. The black
line corresponds to raw (untrimmed) data, and R1 and R2 correspond to
the two ends of paired-end data. This figure complements the Figure 3
with the seven data sets (Table 1).

Additional file 3: Mapping performances for the four tested
programs.Mapping performances for different quality threshold with the
four tested programs and the seven NGS sample (Table 1). Mapping results
with Bowtie2 [17] and BWA [14].

Additional file 4: Remaining information in the trimmed data for
each programs.Mapping performances for different quality threshold.
The choice of t correspond to the parameter –t for UrQt, –q for Cutadapt
and Sickle, and SLIDINGWINDOW:4:t for Trimmomatic. The black line
corresponds to raw (untrimmed) data, and R1 and R2 correspond to the
two ends of paired-end data. This figure complements the Figure 4 with
the seven data sets (Table 1).

Additional file 5: Quality analysis of the seven NGS samples for the
four tested programs. Quality analysis of the output of the four programs
for the seven NGS samples and different quality thresholds (Table 1) with
the FastQC [6] software.
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