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Abstract

Background: Biomedical knowledge bases (KB’s) have become important assets in life sciences. Prior work on KB
construction has three major limitations. First, most biomedical KBs are manually built and curated, and cannot keep
up with the rate at which new findings are published. Second, for automatic information extraction (IE), the text genre
of choice has been scientific publications, neglecting sources like health portals and online communities. Third, most
prior work on IE has focused on the molecular level or chemogenomics only, like protein-protein interactions or
gene-drug relationships, or solely address highly specific topics such as drug effects.

Results: We address these three limitations by a versatile and scalable approach to automatic KB construction. Using
a small number of seed facts for distant supervision of pattern-based extraction, we harvest a huge number of facts in
an automated manner without requiring any explicit training.
We extend previous techniques for pattern-based IE with confidence statistics, and we combine this recall-oriented
stage with logical reasoning for consistency constraint checking to achieve high precision. To our knowledge, this is
the first method that uses consistency checking for biomedical relations. Our approach can be easily extended to
incorporate additional relations and constraints.
We ran extensive experiments not only for scientific publications, but also for encyclopedic health portals and online
communities, creating different KB’s based on different configurations. We assess the size and quality of each KB, in
terms of number of facts and precision. The best configured KB, KnowLife, contains more than 500,000 facts at a
precision of 93% for 13 relations covering genes, organs, diseases, symptoms, treatments, as well as environmental
and lifestyle risk factors.

Conclusion: KnowLife is a large knowledge base for health and life sciences, automatically constructed from
different Web sources. As a unique feature, KnowLife is harvested from different text genres such as scientific
publications, health portals, and online communities. Thus, it has the potential to serve as one-stop portal for a wide
range of relations and use cases. To showcase the breadth and usefulness, we make the KnowLife KB accessible
through the health portal (http://knowlife.mpi-inf.mpg.de).
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Introduction
Large knowledge bases (KB’s) about entities, their prop-
erties, and the relationships between entities, have
become an important asset for semantic search, ana-
lytics, and smart recommendations over Web contents
and other kinds of Big Data [1,2]. Notable projects are
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DBpedia [3], Yago [4], and the Google Knowledge Graph
with its public core Freebase (freebase.com).
In the biomedical domain, KB’s such as the Gene Ontol-

ogy, the Disease Ontology, the National Drug File -
Reference Terminology, and the Foundational Model of
Anatomy are prominent examples of the rich knowledge
that is digitally available. However, each of these KB’s is
highly specialized and covers only a relative narrow topic
within the life sciences, and there is very little interlinkage
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between the KB’s. Thus, in contrast to the general-domain
KB’s that power Web search and analytics, there is no way
of obtaining an integrated view on all aspects of biomed-
ical knowledge. The lack of a “one-stop” KB that spans
biological, medical, and health knowledge, hinders the
development of advanced search and analytic applications
in this field.
In order to build a comprehensive biomedical KB, the

following three bottlenecks must be addressed.

Beyond manual curation. Biomedical knowledge is
advancing at rates far greater than any single human can
absorb. Therefore, relying on manual curation of KB’s is
bound to be a bottleneck. To fully leverage all published
knowledge, automated information extraction (IE) from
input texts is mandatory.

Beyond scientific literature. Besides scientific publica-
tions found in PubMed Medline and PubMed Central,
there are substantial efforts on patient-oriented health
portals such as Mayo Clinic, Medline Plus, UpToDate,
Wikipedia’s Health Portal, and there are also popu-
lar online discussion forums such as healthboards.com
or patient.co.uk. All this constitutes a rich universe of
information, but the information is spread across many
sources, mostly in textual, unstructured and sometimes
noisy form. Prior work on biomedical IE has focused on
scientific literature only, and completely disregards the
opportunities that lie in tapping into health portals and
communities for automated IE.

Beyond molecular entities. IE from biomedical texts
has strongly focused on entities and relations at themolec-
ular level; a typical IE task is to extract protein-protein
interactions. There is very little work on comprehensive
approaches that link diverse entity types, spanning genes,
diseases, symptoms, anatomic parts, drugs, drug effects,
etc. In particular, no prior work on KB construction has
addressed the aspects of environmental and lifestyle risk
factors in the development of diseases and the effects of
drugs and therapies.

Background
The main body of IE research in biomedical informatics
has focused on molecular entities and chemogenomics,
like Protein-Protein Interactions (PPI) or gene-drug rela-
tions. These efforts have been driven by competitions
such as BioNLP Shared Task (BioNLP-ST) [5] and BioCre-
ative [6]. These shared tasks come with pre-annotated
corpora as gold standard, such as the GENIA cor-
pus [7], the multi-level event extraction (MLEE) corpus
[5], and various BioCreative corpora. Efforts such as
the Pharmacogenetics Research Network and Knowledge
Base (PharmGKB) [8], which curates and disseminates

knowledge about the impact of human genetic variations
on drug responses, or the Open PHACTS project [9], a
pharmacological information platform for drug discov-
ery, offer knowledge bases with annotated text corpora to
facilitate approaches for these use cases.
Most IE work in this line of research relies on supervised

learning, like Support Vector Machines [10-13] or Proba-
bilistic Graphical Models [14,15]. The 2012 i2b2 challenge
aimed at extracting temporal relations from clinical nar-
ratives [16]. Unsupervised approaches have been pursued
by [17-20], to discover associations between genes and
diseases based on the co-occurrence of entities as cues
for relations. To further improve the quality of discovered
associations, crowdsourcing has also been applied [21,22].
Burger et al. [23] uses Amazon Mechanical Turk to val-
idate gene-mutation relations which are extracted from
PubMed abstracts. Aroyo et al. [24] describes a crowd-
sourcing approach to generate gold standard annotations
for medical relations, taking into account the disagree-
ment between crowd workers.
Pattern-based approaches exploit text patterns that con-

nect entities. Many of them [25-28] manually define
extraction patterns. Kolářik et al. [29] uses Hearst patterns
[30] to identify terms that describe various proper-
ties of drugs. SemRep [31] manually specifies extraction
rules obtained from dependency parse trees. Outside the
biomedical domain, sentic patterns [32] leverage com-
monsense and syntactic dependencies to extract sen-
timents from movie reviews. However, while manually
defined patterns yield high precision, they rely on expert
guidance and do not scale to large and potentially noisy
inputs and a broader scope of relations. Bootstrapping
approaches such as [33,34] use a limited number of seeds
to learn extraction patterns; these techniques go back to
[35,36]. Our method follows this paradigm, but extends
prior work with additional statistics to quantify the confi-
dence of patterns and extracted facts.
A small number of projects like Sofie/Prospera [37,38]

and NELL [39] have combined pattern-based extraction
with logical consistency rules that constrain the space of
fact candidates. Nebot et al. [40] harness the IE meth-
ods of [38] for populating disease-centric relations. This
approach uses logical consistency reasoning for high pre-
cision, but the small scale of this work leads to a very
restricted KB. Movshovitz-Attias et al. [41] used NELL to
learn instances of biological classes, but did not extract
binary relations and did not make use of constraints
either. The other works on constrained extraction tackle
non-biological relations only (e.g., birthplaces of peo-
ple or headquarters of companies). Our method builds
on Sofie/Prospera, but additionally develops customized
constraints for the biomedical relations targeted here.
Most prior work in biomedical Named Entity Recog-

nition (NER) specializes in recognizing specific types of
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entities such as proteins and genes, chemicals, diseases,
and organisms. MetaMap [42] is the most notable tool
capable of recognizing a wide range of entities. As for
biomedical Named Entity Disambiguation (NED), there
is relatively little prior work. MetaMap offers limited
NED functionality, while others focus on disambiguating
between genes [43] or small sets of word senses [44].
Most prior IE work processes only abstracts of Pubmed

articles; few projects have considered full-length articles
from Pubmed Central, let alone Web portals and online
communities. Vydiswaran et al. [45] addressed the issue
of assessing the credibility of medical claims about dis-
eases and their treatments in health portals. Mukherjee
et al. [46] tapped discussion forums to assess statements
about side effects of drugs. White et al. [47] demonstrated
how to derive insight on drug effects from query logs of
search engines. Building a comprehensive KB from such
raw assets has been beyond the scope of these prior works.

Contributions
We present KnowLife, a large KB that captures a wide
variety of biomedical knowledge, automatically extracted
from different genres of input sources. KnowLife’s novel
approach to KB construction overcomes the following
three limitations of prior work.

Beyond manual curation. Using distant supervision in
the form of seed facts from existing expert-level knowl-
edge collections, the KnowLife processing pipeline is able
to automatically learn textual patterns and harvest a large
number of relational facts from such patterns. In con-
trast to prior work on IE for biomedical data which relies
on extraction patterns only, our method achieves high
precision by specifying and checking logical consistency
constraints that fact candidates have to satisfy. These con-
straints are customized for the relations of interest in
KnowLife, and include constraints that couple different
relations. The consistency constraints are available as sup-
plementary material (see Additional file 1). KnowLife is
easily extensible, since new relations can be added with lit-
tle manual effort and without requiring explicit training;
only a small number of seed facts for each new relation is
needed.

Beyond scientific literature. KnowLife copes with input
text at large scale – considering not only knowledge
from scientific publications, but also tapping into previ-
ously neglected textual sources like Web portals on health
issues and online communities with discussion boards.
We present an extensive evaluation of 22,000 facts on how
these different genres of input texts affect the resulting
precision and recall of the KB. We also present an error
analysis that provides further insight on the quality and
contribution of different text genres.

Beyond molecular entities. The entities and facts in
KnowLife go way beyond the traditionally covered level of
proteins and genes. Besides genetic factors of diseases, the
KB also captures diseases, therapies, drugs, and risk fac-
tors like nutritional habits, life-style properties, and side
effects of treatments.
In summary, the novelty of KnowLife is its versatile,

largely automated, and scalable approach for the compre-
hensive construction of a KB – covering a spectrum of
different text genres as input and distilling a wide variety
facts from different biomedical areas as output. Cou-
pled with an entity recognition module that covers the
entire range of biomedical entities, the resulting KB fea-
tures a much wider spectrum of knowledge and use-cases
than previously built, highly specialized KB’s. In terms
of methodology, our extraction pipeline builds on exist-
ing techniques but extends them, and is specifically cus-
tomized to the life-science domain. Most notably, unlike
prior work on biomedical IE, KnowLife employs logical
reasoning for checking consistency constraints, tailored to
the different relations that connect diseases, symptoms,
drugs, genes, risk factors, etc. This constraint check-
ing eliminates many false positives that are produced by
methods that solely rely on pattern-based extraction.
In its best configuration, the KnowLife KB contains a

total of 542,689 facts for 13 different relations, with an
average precision of 93% (i.e., validity of the acquired
facts) as determined by extensive sampling with man-
ual assessment. The precision for the different relations
ranges from 71% (createsRisk: ecofactor ×
disease) to 97% (sideEffect: (symptom ∪
disease) × drug). All facts in KnowLife carry prove-
nance information, so that one can explore the evidence
for a fact and filter by source. We developed a web portal
that showcases use-cases from speed-reading to semantic
search along with richly annotated literature, the details
of which are described in the demo paper [48].

Methods
Our method for harvesting relational facts from text
sources is designed as a pipeline of processing stages;
Figure 1 gives a pictorial overview. A fact is a triple con-
sisting of two entities e1, e2 and a relation R between them;
we denote a fact by R(e1, e2). In the following, we describe
the input data and each stage of the pipeline.

Input sources
Dictionary We use UMLS (Unified Medical Language
System) as the dictionary of biomedical entities. UMLS is
a metathesaurus, the largest collection of biomedical dic-
tionaries containing 2.9 million entities and 11.4 million
entity names and synonyms. Each entity has a semantic
type assigned by experts. For instance, the entities IL4R
and asthma are of semantic types Gene or Genome and
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Figure 1 Overview of the KnowLife KB and processing pipeline.

Disease or Syndrome, respectively. The UMLS dictionary
enables KnowLife to detect entities in text, going beyond
genes and proteins and covering entities about anatomy,
physiology, and therapy.

Relations KnowLife currently supports 13 binary rela-
tions between entities, each with a type signature con-
straining its domain and range (i.e., its left and right argu-
ment types). Table 1 shows that, for instance, the relation
affects only holds between diseases and organs, but not

Table 1 KnowLife relations, their type signatures, and
number of seeds

Relation Domain Range Seed facts

Affects Disease Organ 23

Aggravates Ecofactor Disease 21

Alleviates Drug Disease 18

Causes Disease Disease 70

ComplicationOf Disease Disease 5

Contraindicates Drug Disease 26

CreatesRisk Ecofactor Disease 103

Diagnoses Device Disease 29

Interacts Drug Drug 9

IsSymptom Symptom or Disease Disease 69

ReducesRisk Drug or Behavior Disease 24

SideEffect Symptom or Disease Drug 12

Treats Drug Disease 58

between diseases and drugs. Each type signature consists
of multiple fine-grained semantic types defined by UMLS;
specifics for all relations are provided as supplementary
material (see Additional file 2).

Seed facts. A seed fact R(e1, e2) for relation R is a
triple presumed to be true based on expert state-
ments. We collected 467 seed facts (see Table 1)
from the medical online portal uptodate.com, a highly
regarded clinical resource written by physician authors.
These seed facts are further cross-checked in other
sources to assert their veracity. Example seed facts
include isSymptom(Chest Pain,Myocardial Infarction)

and createsRisk(Obesity,Diabetes).

Text Corpus. A key asset of this work is that we tap
into different genres of text; Table 2 gives an overview.
PubMed documents are scientific texts with specialized
jargon; they have been the de-facto standard corpus for
biomedical text mining. We took all PubMed documents
published in 2011 that are indexed with disease-, drug-,
and therapy-related MeSH (Medical Subject Heading)
terms. We further prune out documents from inapplica-
ble journals such as those not in the English language,
or those about medical ethics. Web portals and encyclo-
pedic articles are collaboratively or professionally edited,
providing credible information in layman-oriented lan-
guage. Examples include uptodate.com, mayoclinic.com,
and the relevant parts of en.wikipedia.org. In contrast, dis-
cussion forums of online communities, where patients and
physicians engage in discussions (often anonymously),

http://uptodate.com
http://uptodate.com
http://mayoclinic.com
http://en.wikipedia.org
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Table 2 Overview of KnowLife’s input corpus

Genre Source Documents Sentences

Scientific Publications
PubMed Medline 580,892 5,875,006

PubMed Central 12,532 2,765,580

Encyclopedic Articles

Drugs.com 31,837 7,586,236

Mayo Clinic 2,166 570,325

Medline Plus 3,076 197,055

RxList 2,515 1,102,791

Wikipedia Health 20,893 787,148

Social Sources
Healthboards.com 752,778 37,270,371

Patient.co.uk 44,610 1,081,420

Total 1,451,299 57,235,932

have a colloquial language style, sometimes even slang.
We tap into all three genres of text to demonstrate not
only the applicability of our system, but also the amount
of information buried in all of them. We use the Stan-
ford CoreNLP software to preprocess all texts, such that
they are tokenized, split into sentences, tagged with parts-
of-speech, lemmatized, and parsed into syntactic depen-
dency graphs.

Entity recognition
The first stage in the KnowLife pipeline identifies sen-
tences that may express a relational fact. We apply entity
recognition to every sentence: a sentence with one or
more entities is relevant for further processing. To effi-
ciently handle the large dictionary and process large input
corpora, we employ our own method [49], using string-
similarity matching against the names in the UMLS dic-
tionary. This method is two orders of magnitude faster
than MetaMap [42], the most popular biomedical entity
recognition tool, while maintaining comparable accuracy.
Specifically, we use locality sensitive hashing (LSH) [50]
with min-wise independent permutations (MinHash) [51]
to quickly find matching candidates. LSH probabilistically
reduces the high-dimensional space of all character-level
3-grams, while MinHash quickly estimates the similarity
between two sets of 3-grams. A successful match pro-
vides us also with the entity’s semantic type. If multiple
entities are matched to the same string in the input text,
we currently do not apply explicit NED to determine the
correct entity. Instead, using the semantic type hierarchy
of UMLS, we select the most specifically typed entities.
Later in the consistency reasoning stage, we leverage the
type signatures to futher prune out mismatching entities.
At the end of this processing stage, we have marked-up
sentences such as

• Anemia is a common symptom of sarcoidosis.
• Eventually, a heart attack leads to arrythmias.

• Ironically, a myocardial infarction can also lead to
pericarditis.

where myocardial infarction and heart attack are syn-
onyms representing the same canonical entity.

Pattern gathering
Our method extracts textual patterns that connect two
recognized entities, either by the syntactic structure of
a sentence or by a path in the DOM (Document Object
Model) tree of a Web page. We extract two types of
patterns:

Sentence-level Patterns: For each pair of entities in a
sentence, we extract a sequence of text tokens connect-
ing the entities in the syntactic structure of the sentence.
Specifically, this is the shortest path between the enti-
ties in the dependency graph obtained from parsing the
sentence. However, this path does not necessarily con-
tain the full information to deduce a relation; for instance,
negations are not captured or essential adjectives are left
out. Therefore, for every captured word the following
grammatical dependencies are added: negation, adjecti-
val modifiers, and adverbial modifiers. The resulting word
sequence constitutes a sentence-level pattern. An example
is shown in Figure 2(a).

Document-structure Patterns: InWeb portals likeMayo
Clinic or Wikipedia, it is common that authors state med-
ical facts by using specific document structures, like titles,
sections, and listings. Such structures are encoded in the
DOM tree of the underlying HTML markup. First, we
detect if the document title, that is, the text within the
<h1> tag in terms of HTML markup, is a single entity.
Next, we detect if an entity appears in an HTML listing,
that is, within an <li> tag. Starting from the <h1> tag, our
method traverses the DOM tree downwards and deter-
mines all intermediate headings, i.e. <h2> to <h6> tags,
until we reach the aforementioned <li> tag. The document
title serves as left-hand entity, the intermediate headings
as patterns, and the <li> text as right-hand entity. These
are candidates for a relation or an entity argument in a
relational fact. Figure 2(b) shows an example.

Pattern analysis
The goal of the pattern analysis is to identify the most
useful seed patterns out of all the pattern candidates
gathered thus far. A seed pattern should generalize the
over-specific phrases encountered in the input texts, by
containing only the crucial words that express a relation
and masking out (by a wildcard or part-of-speech tag)
inessential words. This way we arrive at high-confidence
patterns.
We harness the techniques developed in the Prospera

tool [38]. First, an itemset mining algorithm is applied
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Figure 2 Pattern gathering in KnowLife. (a) Sentence-level pattern: Dependency graph of a sentence with recognized entities anemia and
sarcoidosis. By computing the shortest path (bold lines) between the two entities, the word sequence symptom of is extracted. This sequence is
extended by an adjectival modifier (amod) which results in the extracted pattern common symptom of. (b) Document-structure pattern: The entity
Diclofenac is found within the document title and Belching within an <li> element. Take Diclofenac as the left-hand entity. By traversing the DOM
tree downwards and coming across the heading Side Effects, we extract the heading’s text as a pattern. Further traversal leads us to Belching, which
yields the right-hand entity for the pattern.

to find frequent sub-sequences in the patterns. The sub-
sequences are weighed by statistical analysis, in terms of
confidence and support. We use the seed facts and their
co-occurrences with certain patterns as a basis to compute
confidence, such that the confidence for a pattern q in a
set of sentences S is defined as

confidence(q) =
|{s ∈ S | ∃(e1, e2) ∈ SX(Ri) q, e1, e2 occur in s}|

|{s ∈ S | ∃(e1, e2) ∈ SX(Ri) ∪ CX(Ri) q, e1, e2 occur in s}|
where SX(Ri) is the set of all entity tuples (e1, e2) appear-
ing in any seed fact with relation Ri and CX(Ri) is the set
of all entity tuples (e1, e2) appearing in any seed fact with-
out relation Ri. The rationale is that the more strongly
a pattern correlates with the seed-fact entities of a par-
ticular relation, the more confident we are that the pat-
tern expresses the relation. The patterns with confidence
greater than a threshold (set to 0.3 in our experiments) are
selected as seed patterns.
Each non-seed pattern p is then matched against the

seed pattern set Q using Jaccard similarity to compute a
weight w associating p with a relation.

w = max{Jaccard(p, q) × confidence(q) | q ∈ Q}
The pattern occurrences together with their weights and
relations serve as fact candidates. Table 3 shows sample
seed patterns computed from seed facts. The table also

gives examples for automatically acquired patterns and
facts.

Consistency reasoning
The pattern analysis stage provides us with a large set of
fact candidates and their supporting patterns. However,
these contain many false positives. To prune these out
and improve precision, the last stage of KnowLife applies
logical consistency constraints to the fact candidates and
accepts only a consistent subset of them.
We leverage two kinds of manually defined semantic

constraints: i) the type signatures of relations (see Table 1)
for type checking of fact candidates, and ii) mutual exclu-
sion constraints between certain pairs of relations. For
example, if a drug has a certain symptom as a side effect,
it cannot treat this symptom at the same time. These rules
allow us to handle conflicting candidate facts. The reason-
ing uses probabilistic weights derived from the statistics
of the candidate gathering phase.
To reason with consistency constraints, we follow the

framework of [37], by encoding all facts, patterns, and
grounded (i.e., instantiated) constraints into weighted
logical clauses. We extend this prior work by comput-
ing informative weights from the confidence statistics
obtained in the pattern-based stage of our IE pipeline.
We then use a weighted Max-Sat solver to reason on the
hypotheses space of fact candidates, to compute a con-
sistent subset of clauses with the largest total weight.
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Table 3 Examples of seed facts and seed patterns as well as automatically acquired patterns and facts

Seed facts Seed patterns Relations Confidences Patterns Harvested facts

causes(Tuberculosis, Pericarditis)
progress

createsRisk 0.5 which progresses to causes(Pericarditis, Tamponade)

createsRisk(Obesity,Diabetes) causes 0.5 still progressing to createsRisk(Wart, Skin carcinoma)

createsRisk(Obesity, Asthma)
risk factor createsRisk 1.0

children risk factors createsRisk(Wood Dust, Asthma)

createsRisk(Malaria, Stillbirth)
have risk factors createsRisk(Golf , Tendinitis)

known risk factors createsRisk(GB virus C,Hepatitis)

isSymptom(Pain, Crohn Disease)
occur

affects 0.67 occurs anywhere affects(Hashimoto′s, Thyroid Gland)
affects(Pericarditis,Heart) isSymptom 0.33 occurs patients isSymptom(Anemia, Sarcoidosis)

Due to the NP-hardness of the weighted Max-Sat prob-
lem, we resort to an approximation algorithm that com-
bines the dominating-unit-clause technique [52] with
Johnson’s heuristic algorithm [53]. Suchanek et al. [37]
has shown that this combination empirically gives very
good approximation ratios. The complete set of consis-
tency constraints is in the supplementary material (see
Additional file 1).

Results and discussion
We ran extensive experiments with the input corpora
listed in Table 2, and created different KB’s based on differ-
ent configurations. We assess the size and quality of each
KB, in terms of their numbers of facts and their preci-
sion evaluated by random sampling of facts. Tables 4 and 5
give the results, for different choices of input corpora and
different configurations of the KnowLife pipeline, respec-
tively. Recall is not evaluated, as there is no gold standard
for fully comprehensive facts. To ensure that our findings

are significant, for each relation, we computed the Wilson
confidence interval at α = 5%, and kept evaluating facts
until the interval width fell below 5%. An interval width
of 0% means that all the facts were evaluated. Four differ-
ent annotators evaluated the facts, judging them as true
or false based on provenance information. As for inter-
annotator agreement, 22,002 facts were evaluated; the
value of Fleiss’ Kappa was 0.505, which indicates a mod-
erate agreement among all four annotators. The complete
set of evaluated facts is in the supplementary material (see
Additional file 3).

Impact of different text genres
We first discuss the results obtained from the different
text genres: i) scientific (PubMed publications), ii) ency-
clopedic (Web portals like Mayo Clinic or Wikipedia), iii)
social (discussion forums). Table 4 gives, column-wise, the
number of facts and precision figures for four different
combinations of genres.

Table 4 Evaluation of different text genres

Relation Precision Harvested facts

Encyclopedic Scientific Encyclopedic + Encyclopedic + Encyclopedic Scientific Encyclopedic + Encyclopedic +
sources sources scientific scientific + sources sources scientific scientific +

sources social sources sources social sources

Affects 0.855±0.047 0.762±0.049 0.825±0.047 0.767±0.048 1,278 450 2,388 5,053

Aggravates 0.810±0.041 0.459±0.044 0.829±0.049 0.785±0.049 130 371 432 708

Alleviates 0.953±0.039 0.735±0.048 0.786±0.046 0.736±0.048 903 4,433 4,530 6,790

Causes 0.904±0.039 0.674±0.049 0.801±0.049 0.792±0.049 28,119 19,203 47,463 62,407

Complication 0.917±0.039 0.397±0.049 0.897±0.041 0.869±0.046 1,011 1,475 1,524 1,566

Contraindicates 0.874±0.048 0.710±0.000 0.961±0.030 0.908±0.048 512 49 1,808 1,831

CreatesRisk 0.878±0.047 0.569±0.049 0.720±0.040 0.620±0.049 4,407 24,695 18,508 32,211

Diagnoses 0.964±0.035 0.839±0.049 0.860±0.048 0.840±0.047 813 5,920 4,832 9,743

Interacts 0.964±0.035 0.709±0.000 0.965±0.034 0.957±0.034 164,912 103 164,912 164,912

IsSymptom 0.891±0.042 0.482±0.050 0.858±0.048 0.694±0.048 4,878 2,320 6,395 11,017

ReducesRisk 0.797±0.045 0.637±0.046 0.762±0.048 0.751±0.049 1,712 4,684 4,489 5,865

SideEffect 0.956±0.038 0.826±0.000 0.964±0.035 0.971±0.026 270,600 139 270,709 271,416

Treats 0.850±0.048 0.581±0.045 0.898±0.041 0.566±0.048 11,915 9,318 14,699 35,803

Aggregated∗ 0.951 0.630 0.933 0.892 491,190 73,160 542,689 609,322

*Precision values are averaged and numbers of harvested facts are summed.
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Table 5 Evaluation of the impact of different components

Relation Precision Harvested facts

Full pipeline Without Without Without Full pipeline Without Without Without
encyclopedic + document statistical consistency encyclopedic + document statistical consistency
scientific sources structure analysis reasoning scientific sources structure analysis reasoning

Affects 0.825±0.047 0.882±0.044 0.821±0.048 0.171±0.051 2,388 2,350 4,088 29,477

Aggravates 0.829±0.049 0.833±0.036 0.598±0.049 0.592±0.053 432 431 592 1,730

Alleviates 0.786±0.046 0.778±0.050 0.320±0.049 0.289±0.062 4,530 4,387 18,142 16,943

Causes 0.801±0.049 0.800±0.046 0.631±0.048 0.490±0.069 47,463 30,563 66,833 91,784

Complication 0.897±0.041 0.781±0.048 0.376±0.050 0.739±0.050 1,524 700 4,812 2,955

Contraindicates 0.961±0.030 0.914±0.043 0.122±0.049 0.630±0.059 1,808 365 26,298 15,279

CreatesRisk 0.720±0.040 0.750±0.044 0.386±0.047 0.406±0.067 18,508 17,282 77,158 48,159

Diagnoses 0.860±0.048 0.887±0.044 0.802±0.049 0.303±0.063 4,832 4,002 7,467 35,326

Interacts 0.965±0.034 0.858±0.046 0.953±0.047 0.941±0.049 164,912 392 200,935 187,201

IsSymptom 0.858±0.048 0.691±0.050 0.625±0.049 0.328±0.064 6,395 2,920 9,543 29,776

ReducesRisk 0.762±0.048 0.729±0.050 0.228±0.046 0.406±0.067 4,489 4,043 11,023 14,729

SideEffect 0.964±0.035 0.938±0.048 0.941±0.046 0.879±0.050 270,709 924 270,427 338,645

Treats 0.898±0.041 0.784±0.050 0.549±0.050 0.402±0.067 14,699 14,057 23,473 45,439

Aggregated∗ 0.933 0.784 0.777 0.707 542,689 82,416 720,791 857,443

*Precision values are averaged and numbers of harvested facts are summed.

Generally, combining genres gave more facts at a lower
precision, as texts of lower quality like social sources intro-
duced noise. The combination that gave the best balance
of precision and total yield was scientific with encyclope-
dic sources, with a micro-averaged precision of 0.933 for a
total of 542,689 facts. We consider this the best of the KB’s
that KnowLife generated.
The best overall precision was achieved when using

encyclopedic texts only. This confirmed our hypothesis
that a pattern-based approach works best when the lan-
guage is simple and grammatically correct. Contrast this
with scientific publications which often exhibit convo-
luted language, and online discussions with a notable frac-
tion of grammatically incorrect language. In these cases,
the quality of patterns degraded and precision dropped.
Incorrect facts stemming from errors in the entity recog-
nition step were especially rampant in online discussions,
where colloquial language (for example,meds, or short for
medicines) led to incorrect entities (acronym for Micro-
cephaly, Epilepsy, and Diabetes Syndrome).
The results vary highly across the 13 relations in our

experiments. The number of facts depends on the extent
to which the text sources express a relation, while pre-
cision reflects how decisively patterns point to that rela-
tion. Interacts and SideEffect are prime examples: the
drugs.com portal lists many side effects and drug-drug
interactions by the DOM structure, which boosted the
extraction accuracy of KnowLife, leading to many facts
at precisions of 95.6% and 96.4%, respectively. Facts for
the relations Alleviates, CreatesRisk, and ReducesRisk, on

the other hand, mostly came from scientific publications,
which resulted in fewer facts and lower precision.
A few relations, however, defied these general trends.

Patterns of Contraindicates were too sparse and ambigu-
ous within encyclopedic texts alone and also within
scientific publications alone. However, when the two gen-
res were combined, the good patterns reached a critical
mass to break through the confidence threshold, giv-
ing rise to a sudden increase in harvested facts. For the
CreatesRisk and ReducesRisk relations, combining ency-
clopedic and scientific sources increased the number of
facts compared to using only encyclopedic texts, and
increased the precision compared to using only scientific
publications.
As Table 4 shows, incorporating social sources brought

a significant gain in the number of harvested facts, at a
trade-off of lowered precision. As [46] pointed out, there
are facts that come only from social sources and, depend-
ing on the use case, it is still worthwhile to incorporate
them; for example, to facilitate search and discovery appli-
cations where recall may be more important. Morever,
the patterns extracted from encyclopedic and scientific
sources could be reused to annotate text in social sources,
so as to identify existing information.
Taking a closer look at the best experimental setting, we

see that scientific and encyclopedic sources in KnowLife
contribute to a different extent to the number of harvested
facts. Table 6 shows the number of fact occurrences in
our input sources. Recall that a fact can occur in multi-
ple sentences in multiple text sources. Our experiments
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Table 6 Number of fact occurrences in text sources

Genre Source Fact occurrences

Scientific Publications
PubMed Medline 39,266

PubMed Central 6,979

Encyclopedic Articles

Drugs.com 461,130

Mayo Clinic 35,300

Medline Plus 6,559

RxList 5,818

Wikipedia Health 17,588

show that encyclopedic articles are more amenable for
harvesting facts than scientific publications.

Impact of different components
In each setting, only one component was disabled, and
the processing pipeline ran with all other components
enabled. We used the KnowLife setting with scientific
and encyclopedic sources, which, by and large, performed
best, as the basis for investigating the impact of differ-
ent components in the KnowLife pipeline. To this end, we
disabled individual components: DOM tree patterns, sta-
tistical analysis of patterns, consistency reasoning – each
disabled separately while retaining the others. This way we
obtained insight into how strongly KnowLife depends on
each component. Table 5 shows the results of this ablation
study.

No DOM tree patterns: When disregarding patterns on
the document structure and solely focusing on textual
patterns, KnowLife degrades in precision (from 93% to
78%) and sharply drops in the number of acquired facts
(from ca. 540,000 to 80,000). The extent of these gen-
eral effects varies across the different relations. Relations
whose patterns are predominantly encoded in document
structures – once again Interacts and SideEffect – exhibit
the most drastic loss. On the other hand, relations like
Affects, Aggravates, Alleviates, and Treats, are affected
only to a minor extent, as their patterns are mostly found
in free text.

No statistical pattern analysis: Here we disabled the
statistical analysis of pattern confidence and the frequent
itemset mining for generalizing patterns. This way, with-
out confidence values, KnowLife kept all patterns, includ-
ing many noisy ones. Patterns that would be pruned in
the full configuration led to poor seed patterns; for exam-
ple, the single word causes was taken as a seed pattern for
both relations SymptomOf and Contraindicates. Without
frequent itemset mining, long and overly specific patterns
also contributed to poor seed patterns. The combined
effect greatly increased the number of false positives, thus
dropping in precision (from 93% to 77%). In terms of

acquired facts, not scrutinizing the patterns increased the
yield (from ca. 540,000 to 720,000 facts).
Relations mainly extracted from DOM tree patterns,

such as Interacts and SideEffect, were not much affected.
Also, relations like Affects and Diagnoses exhibited only
small losses in precision; for these relations, the co-
occurrence of two types of entities is often already suf-
ficient to express a relation. The presence of consistency
constraints on type signatures also helped to keep the
output quality high.

No consistency reasoning: In this setting, neither
type signatures nor other consistency constraints were
checked. Thus, conflicting facts could be accepted, lead-
ing to a large fraction of false positives. This effect was
unequivocally witnessed by an increase in the number
of facts (from ca. 540,000 to 850,000) accompanied by a
sharp decrease in precision (from 93% to 70%).
The relations Interacts and SideEffect were least affected

by this degradation, as they are mostly expressed in
the via document structure of encyclopedic texts where
entity types are implicitly encoded in the DOM tree
tags (see Figure 2). Here, consistency reasoning was not
vital.

Lessons learned: Overall, this ablation study clearly
shows that all major components of the KnowLife pipeline
are essential for high quality (precision) and high yield
(number of facts) of the constructed KB. Each of the three
configurations where one component is disabled suffered
substantial if not dramatic losses in either precision or
acquired facts, and sometimes both. We conclude that
the full pipeline is a well-designed architecture whose
strong performance cannot be easily achieved by a simpler
approach.

Error analysis
We analyzed the causes of error for all 760 facts annotated
as incorrect from the experimental setting using the full
information extraction pipeline and all three text genres.
This setting allows us to compare the utility of the differ-
ent components as well as the different genres. As seen in
Table 7, we categorize the errors as follows:

Preprocessing: At the start of the pipeline, incorrect sen-
tence segmentation divided a text passage into incomplete
sentences, or left multiple sentences undivided. This in
turn lead to incorrect parsing of syntactic dependency
graphs. In addition, there were incorrectly parsed DOM
trees in Web portal documents. Not surprisingly, almost
all preprocessing errors came from encyclopedic and
social sources due to their DOM tree structure and poor
language style, respectively.
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Table 7 Error analysis (number of facts in brackets)

Percentage based on text genre

Percentage Cause of error Encyclopaedic Scientific Social
sources sources sources

8.16% (62) Preprocessing 38.71% (24) 3.23% (2) 58.06% (36)

27.24% (207) Entity Recognition 13.04% (27) 45.41% (94) 41.55% (86)

32.11% (244) Entity Disambiguation 12.30% (30) 26.23% (64) 61.48% (150)

1.97% (15) Coreferencing 13.33% (2) 13.33% (2) 73.33% (11)

13.68% (104) Nonexistent Relation 23.08% (24) 29.81% (31) 47.12% (49)

9.21% (70) Pattern Relation Duality 24.29% (17) 27.14% (19) 48.57% (34)

3.29% (25) Swapped left and right-hand entity 28.00% (7) 24.00% (6) 48.00% (12)

3.03% (23) Negation 17.39% (4) 21.74% (5) 60.87% (14)

1.32% (10) Factually Wrong 40.00% (4) 10.00% (1) 50.00% (5)

Entity Recognition: Certain entities were not correctly
recognized. Complex entities are composed of multiple
simple entities; examples include muscle protein break-
down recognized as muscle protein and breakdown, or
arrest of cystic growth recognized as arrest and cystic
growth. Paraphrasing and misspelling entities cause their
textual expressions to deviate from dictionary entries.
Idiomatic expressions were incorrectly picked up as enti-
ties. For instance, there is no actual physical activity in the
English idiom in the long run.

Entity Disambiguation: Selecting an incorrect entity
out of multiple matching candidates caused this error,
primarily due to two reasons. First, the type signatures
of our relations were not sufficient to futher prune out
mismatching entities during fact extraction. Second, col-
loquial terms not curated in the UMLS dictionary were
incorrectly resolved. For example,meds for medicines was
disambiguated as the entity Microcephaly, Epilepsy, and
Diabetes Syndrome.

Coreferencing: Due to the lack of coreference resolution,
correct entities were obscured by phrases such as this
protein or the tunnel structure.

Nonexistent relation: Two entities might co-occur
within the same sentence without sharing a relation.
When a pattern occurrence between such entities was
nevertheless extracted, it resulted in an unsubstantiated
relation.

Pattern Relation Duality: A pattern that can express
two relations was harvested but assigned to an incorrect
relation. For example, the pattern mimic was incorrectly
assigned to the relation isSymptom.

Swapped left and right-hand entity: The harvested fact
was incorrect because the left- and right-hand
entities were swapped. Consider the example fact

isSymptom(Anemia, Sarcoidosis), which can be expressed
by either sentence:

1. Anemia is a common symptom of sarcoidosis.
2. A common symptom of sarcoidosis is anemia.

In both cases, the same pattern is a common symptom of is
extracted. In sentence 2, however, an incorrect fact would
be extracted since the order in which the entities occur is
reversed.

Negation: This error was caused by not detecting nega-
tion expressed in the text. The word expressing the nega-
tion may occur textually far away from the entities, as in
It is disputed whether early antibiotic treatment prevents
reactive arthritis, and thus escaped our pattern gathering
method. In other cases, the negation phrase will require
subtle semantic understanding to tease out, as in Except
for osteoarthritis, I think my symptoms are all from heart
disease.

Factually Wrong: Although our methods successfully
harvested a fact, the underlying text evidence made a
wrong statement.

Lessons learned: Overall, this error analysis confirms
that scientific and encyclopedic sources contain well-
written texts that are amenable to a text mining pipeline.
Social sources, with their poorer quality of language style
as well as information content, were the biggest contribu-
tor in almost all error categories. Errors in entity recogni-
tion and disambiguation accounted for close to 60% of all
errors; overcoming them will require better methods that
go beyond a dictionary, and incorporate deeper linguistic
and semantic understanding.

Coverage
The overriding goal of KnowLife has been to create a ver-
satile KB that spans many areas within the life sciences. To
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illustrate which areas are covered by KnowLife, we refer
to the semantic groups defined by [54]. Table 8 shows the
number of acquired facts for pairs of the thirteen different
areas inter-connected in our KB. This can be seen as an
indicator that we achieved our goal at least to some extent.
The predominant number of facts involves entities of

the semantic group Disorders, for two reasons. First, with
our choice of relations, disorders appear in almost all type
signatures. Second, entities of type clinical finding are
covered by the group Disorders, and these are frequent in
all text genres. However, this type also includes diverse,
non-disorder entities such as pregnancy, which is clearly
not a disorder.

Conclusions
Application benefit
To showcase the usefulness of KnowLife, we developed a
health portal (http://knowlife.mpi-inf.mpg.de) that allows
interactive exploration of the harvested facts and their
input sources. The KnowLife portal supports a number of
use cases for different information needs [48]. A patient
may wish to find out the side effects of a specific drug,
by searching for the drug name and browsing the Side-
Effect facts and their provenance. A physician may want
to “speed read” publications and online discussions on

Table 8 Top-20 pairs of inter-connected biomedical areas
within KnowLife

Biomedical areas Connections

Disorders Chemicals 310482

Chemicals Chemicals 190160

Disorders Disorders 36677

Disorders Procedures 14169

Chemicals Physiology 5397

Disorders Genes 3831

Disorders Living Beings 2539

Chemicals Drugs 2455

Disorders Anatomy 2895

Disorders Devices 792

Disorders Activities 592

Disorders Drugs 511

Disorders Objects 505

Chemicals Procedures 544

Disorders Physiology 370

Procedures Physiology 123

Procedures Living Beings 99

Disorders Geographical Areas 82

Genes Physiology 51

Disorders Phenomena 50

treatment options for an unfamiliar disease. Provenance
information is vital here, as the physician would want to
consider the recency and authority of the sources for cer-
tain statements. The health portal also provides a function
for on-the-fly annotation of new text from publications or
social media, leveraging known patterns to highlight any
relations found.

Future work
In the future, we plan to improve the entity recogni-
tion to accommodate a wider variety of entities beyond
those in UMLS. For instance, colloquial usage (meds for
medicines) and composite entities (amputation of right
leg) are not yet addressed. Entities within UMLS also
require more sophisticated disambiguation. For instance,
the text occurrence stress may be correctly distinguished
between the brand name of a drug and the psychological
feeling.
Finally, we would like to address the challenge of min-

ing and representing the context of harvested facts. Binary
relations are often not sufficient to expressmedical knowl-
edge. For example, the statement Fever is a symptom of
Lupus Flare during pregnancy cannot be suitably repre-
sented by a binary fact.
We plan to cope with such statements by extracting

ternary and higher-arity relations, with appropriate exten-
sions of both pattern-based extraction and consistency
reasoning.
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