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Abstract

Background: OMICs technologies allow to assay the state of a large number of different features (e.g., mRNA
expression, MiRNA expression, copy number variation, DNA methylation, etc.) from the same samples. The objective
of these experiments is usually to find a reduced set of significant features, which can be used to differentiate the
conditions assayed. In terms of development of novel feature selection computational methods, this task is challenging
for the lack of fully annotated biological datasets to be used for benchmarking. A possible way to tackle this problem is
generating appropriate synthetic datasets, whose composition and behaviour are fully controlled and known a priori.

Results: Here we propose a novel method centred on the generation of networks of interactions among different
biological molecules, especially involved in regulating gene expression. Synthetic datasets are obtained from ordinary
differential equations based models with known parameters. Our results show that the generated datasets are well
mimicking the behaviour of real data, for popular data analysis methods are able to selectively identify existing
interactions.

Conclusions: The proposed method can be used in conjunction to real biological datasets in the assessment of data
mining techniques. The main strength of this method consists in the full control on the simulated data while retaining

community at http://neuronelab.unisa.it/?p=1722.

coherence with the real biological processes. The R package MVBioDataSim is freely available to the scientific
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Background

OMICs technologies allow the comprehensive and paral-
lel measurement of multiple molecular events (e.g., DNA
modifications, RNA transcription and protein translation)
in the same samples. Exploiting such complex and rich
data is needed in the frame of systems biology for build-
ing global models able to explain complex phenotypes.
In order to get useful information, the data must first be
mined in search of relevant subsets of features, but clas-
sical feature selection methods can potentially fail as they
classically test a feature at the time, not considering their
potential interactions. Likewise, single-data layers (views)
analysed separately could provide incomplete and frag-
mented information. On the contrary, multi-view leaning
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approaches take into account the different views simul-
taneously to reconstruct the underlying structure of the
data. They can be benchmarked on real and synthetic
datasets. A common problem with real datasets is that
they are not fully understood and well annotated, whereas
the synthetic data, although under full control, may be too
simplistic to efficiently simulate the complex regulatory
interactions among the molecules.

Different approaches for simulating biological data have
been proposed. A first method consists in generating syn-
thetic data with multivariate distributions similar to those
observed on the real datasets [1-3]. New data can be
generated using models that incorporate phenotypic vari-
ation, additive and multiplicative noise, transcriptional
activity or inactivity, and/or block-correlation structures.

An alternative method focuses on generating data from
synthetic transcriptional regulatory networks (TRNs).
The main idea is to generate regulatory networks that
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include different types of biological interactions and
produce biologically plausible synthetic gene expression
data. An important point of these simulation methods
is the computational technique used to quantitatively
model the network interactions. A common technique
for this purpose is based on solving a set of ordinary
differential equations (ODEs) that explicitly model the
variation of concentration of gene products. In [4-7], dif-
ferent models for the definition of the interactions are
proposed.

In [5,6], interaction networks are sampled from existing
ones. Starting from a given real network and a seed node
of the network, a new network is constructed by sampling
the modules of the real network. The main drawback of
this method is that the number of possible networks that
can be generated is limited by the size of the original net-
work used for sampling. In [4], network topologies are
generated based on different theoretical random network
models. The main disadvantage of these models is that
none of them can reproduce the characteristic of hierar-
chical modularity of TRNs. In [7], a hierarchical modular
network is generated reproducing modules on different
scales [8]. Starting with a network without connections,
nodes are connected to each other following the patterns
of known modules at different scales.

Once the topology is defined, interactions among the
regulators are modelled by ODEs. In [4] interactions
among regulators are modelled as the product of sev-
eral Hill equations, one for each regulator. In [7] com-
plex interactions among regulators like cooperation and
competition are modelled with continuous Boolean logic
functions.

None of these simulators is able to produce multi-view
data, but provide a valuable source of techniques to be
used for this purpose.

The state of a cell is regulated by a series of complex
biological processes like protein synthesis, which is reg-
ulated by different control structures. The transcription
factors (TF) are proteins that bind to specific regions
of the genome regulating, together with other molecular
signals such as histone modifications and DNA methy-
lation, the transcription rate of the genes [9]. At the
post-transcriptional level, microRNA (miRNA), whose
transcription is also regulated similarly to the other genes,
repress the protein expression [10].

A priori knowledge on the targeting patterns of TFs
and miRNAs can be used, for instance, to produce net-
work models of interaction. TRNs can be modelled as
graphs in which nodes represent genes and edges repre-
sent the interactions between genes, such as activation
or repression. Since the flow of information follows a
precise direction, these graphs are directed. TRNs can
be characterized by a set of global and local topological
properties.
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Similarly to other networks, also in TRNs, the degree
distribution follows a power-law decay P (k) ~ k=¢
with 2 < « < 3 [11,12]. This distribution is charac-
teristic of the scale-free networks, in which the degree
of a node is independent on the size (scale) of the
network.

Another global characterization of TRNs is the cluster-
ing coefficient. For each node of the network it is defined
as

n

where n is the number of connections between the
neighbours and k is the number of neighbours. Studies
have confirmed that the clustering coefficient in TRNs
depends only on the degree of the nodes and it is dis-
tributed again as a power-law C (k) ~ k=1 [8,13,14].
Both these two properties specify that genes with low
degree have a higher clustering coefficient than nodes
highly connected leading to a hierarchical network of sep-
arated modules of genes interconnected by high-degree
genes.

On a local scale genes organize in modules. The most
significantly frequent patterns of connections between
genes of a module are called motifs [15] each with
different dynamical proprieties, such as self-regulation,
feed-forward and feed-back loops and dense overlapping
regulons [15,16] (Figure 1). The most frequent motifs
that comprehend miRNAs and TFs interactions are the
feedback and feed forward loops [17-19].

Methods
Intuitively, network construction is based on an iterative
procedure. The key idea is to construct a regulatory net-
work starting from a graph without edges in which each
node represent a gene or a miRNA and to add connec-
tions between nodes imitating some well known motif
randomly chosen. Every time a motif is constructed into
the network, all the participating nodes are removed from
the graph. Regulating genes of the constructed motifs are
kept in a separate set of nodes, namely, H. When the
graph remains without nodes, a new graph is constructed
with the nodes stored in H again with no edges. The
procedure then restarts. This iterative method goes on
until there are no nodes. The reinsertion of the regulat-
ing genes ensures the creation of a modular hierarchy of
nodes.

The methods here proposed have been implemented as
an R [20] package freely available from (Additional file 1)
http://neuronelab.unisa.it/?p=1722.

Network topology
The idea of creating a modular hierarchical network
by replicating the same module at different scales was
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Figure 1 Motifs of interactions. Graphical representation of the interactions between genes and miRNAs. Arrows are for activation, blunt edges are
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for repression.

proposed in [8]. In [7] this replication procedure was
extended by constructing a network using a set of motifs
instead of a single one replicated at different scales. In
this work, this idea is further extended with the addi-
tion of the interactions among TFs and miRNAs with
the objective of synthesizing multi-view biological data.
A set of motifs containing both TF-TF, miRNA-TF, and
TF-miRNA interactions are defined based on [11,15,17],
and recursively used as local templates to construct
a network that satisfies the condition of hierarchical

modularity.
The procedure starts with a network N = (Vy, Ey) of
n genes and m miRNAs, with n + m = |Vy|, and with-

out edges Exy = #. In each step a pool of random motifs
is generated. For each motif a score S is computed. This
score measures the reduction in the difference between
the degree distribution specified by the user and the cur-
rent degree distribution. The score is the sum over a set of
sub-scores

Sap= >

iegenes(Vy)
jegenes(Vr)

Sgi+ Y

iemirnas(Vy)
jemirnas(Var)

Smij (2)

Each sub-score indicates the advantage of connect-
ing node i in Vy as each node j in Vj;. For each

i € genes(Vy)andj € genes(Vy), the sub-score is
given by

VNl
Sgij = Z Sgijk (3)
k=1
Where Sgjj is calculated by
. \d} — il
Sy = sian (1 = pel =1 —figl) - ——— @)
k

in which d}; is the portion of nodes with degree k that is
sampled from a power-law with parameter o specified as
input by the user; py is the current portion of nodes with
degree k and f};; is the portion of nodes with degree k if
node i gets the connections of node ;.

The sign (-) factor determines whether adding the con-
nections of node j to node i is a good decision (sign () >

P_
0) or not (sign (-) < 0). The factor ld"dippkl determines the

magnitude of the advantage or disadvailtage of edge addi-
tions to N, normalized by the number of desired nodes of
degree k.

Sub-scores for nodes i € mirnas (Vy) andj € mirnas
(V) are computed differently since miRNA-gene inter-
actions respect different properties. The final portion of
nodes regulated by a miRNA is denoted by 4}, that is
sampled from an exponential distribution of parameter A
given as input [18]. Whereas the desired number of nodes
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that regulate a miRNA is sampled by a power-law as in the
previous case.

Globally considered,
|mirnas(Vy)|
Smyj = Z Sml]k + SmZit (5)
k=1
with
__ in
St = sign (1} — pif| — 142~ fi2]) - Tpk ©)
k
and
|de _ outl
st = sign (15 — pp| — 1df — fg1) - z &
(7)

Given the score for each motif in the pool a motif is
selected by sampling a distribution proportional to the
scores. The selected motif is used as a template. A subset
of nodes of the current network N are sampled using the
sub-scores Sg;; and Sm;; and are connected as the nodes in
the motif.

During each edge addition, a set of parameters is gen-
erated in order to characterize the dynamical properties
of the interaction and making the overall behaviour of the
motif similar to its real-world counterparts. For exam-
ple, using the same terminology of [15], the Single-input
motif (Figure 1), is considered to generate coordinated
expression of a set of genes, and, more interestingly sched-
uled expression schemas, in which the regulated genes will
express in a defined order.

The selected nodes are then removed from N and in
a separate set H, which is initially empty, are added the
nodes that took the role of x in Figure 1. When there are no
more nodes to connect in Vy, the nodes in H are passed
into Vi, H is set to ¥ and a new iteration is started. This
process goes on until both Vi and H are empty.

Each time Vi gets the nodes of H, modules of nodes in
the network get connected hierarchically.

When the network construction is completed, a special
class of nodes are added to the network: signalling nodes.
These nodes are responsible of transferring information
to the network [15,21]. Stimulation signals are an exam-
ple of information passed. System state can be set through
signals as covered in the next section. The number of sig-
nalling nodes to be placed in the network is determined
by the user. Signalling nodes only have outgoing edges.
Target genes are determined sampling a distribution pro-
portional to the out degree of the nodes of the network.
This ensures that the majority of genes controlled by sig-
nals, have enough capability of controlling the state of the
network during simulation.

A more concise representation of the network genera-
tion procedure is reported in Algorithm 1.
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Algorithm 1 Procedure for the generation of regulatory
networks.
1: procedure GENERATENETWORK(n, m, s, ¢, 1)
2: // Create graph N, with V' (N) a set of n + m nodes, one for
each gene and mirna and an empty set of edges E (N) =
N <« CREATEGRAPH(n + m, )
H<«~0
while V. (N) UH # # do
// Generate a pool of random motifs.
P < GENERATEMOTIFPOOL()
forallM € P do
: // Gene subscores are computed according to Eq. 4 and
Eq. 3.
10: Sg (M)l-j < GENESSUBSCORE(N, M, o)
11: // Mirna subscores are computed according to Eq. 6, Eq. 7
and Eq.5.

W oo N Tk W

12: Sm (M);; <— MIRNASSUBSCORE(N, M, A)
13: // Motif overall score is computed according to Eq. 2.
14: S (M) < MODULESCORE(Sg (M);;, Sm (M) ;)
15: end for
SM)
16: Pr(M) < ————
2 pep S (M)
17: // sample a motif M from P with probability mass Pr.
18: M <« SAMPLE(P, Pr)
19: define the mapping Map
20: foralljin V (M) do
21: ifj is a gene then
. Sg (M)

22: Pr, )« ————

genes @ Zi Sg (M)ij
23: // sample a gene i from V(N) with probability Prgenes (7).
24: i < SAMPLE(genes (V (N)), Prgenes (i)
25: Map (J) <~
26: else if j is a mirna then
27: Primirnas (i) < Sm (M)

mirnas Zl Sm (M)ll
28: // sample a mirna i from V(N) with probability Prmirnas (i)-
29: i < SAMPLE(mirnas (V (N)) , Prmirnas (£))
30: Map (j) < i
31: end if
32: end for

33: // Add to E (N) the connections of M among the selected
nodes in Map.

34: // NOTE: During edge addition regulation parameters are
also generated.

35: ADDEDGES(N, M, Map)

36: // remove from V (N) the selected nodes.

37: V(N) < V(N)\ Map

38: // add to H the selected nodes marked as X in Figure 1.
39: H < H UREGULATORS(Map)

40: end while

41: // Attach s signalling genes to a random sample of genes
sampled with probability proportional to the respective
degree.

42: ADDSIGNALS(N,s)

43: end procedure

Simulation

Simulation of the system is based on ODEs. Concen-
trations of gene products are modelled by continuous
variables on a limited time interval [22]. The rate of
production of a given element x; depends on the con-
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centration of its regulatory components, both genes and The degradation rate of target genes is directly influ-
miRNAs (to not clutter the notation we omit explicit time  enced by the regulating miRNA m1; [25,26]. The degrada-
dependency of concentrations and concentration rates) tion function is defined as

dx,-

Wi _ 8

ar oo ® im0 = dio + iy i 0,10 ()

x is the vector of concentrations of the genes regulating

x;, m is the vector of concentration levels of the miRNAs The first term is the basal degradation rate, that is the
regulating x; and f; is a non-linear regulation function of  rate of degradation of x; independent of my and d; is the
these components. A common model for f;(x,m) with a  rate of degradation dependent on the concentration of m.

single regulating gene x; and a single miRNA 1y is The miRNA rate of production is assumed to follow a
d law similar to the production of genes, but with a constant
X7 .
L =pir (x]) —d; (my) - x; 9) degradation ra’te. . .
dt When there’s more than a regulator the Hill equation

Where p; is the basal production rate of x;, i.e., the basic ~ Will not suffice. Hence, there is the need for a model
rate of production; r; (x,) is the function that model the takinginto account interactions among regulators in addi-
regulation of x; on x; and d; (my) is the degradation func- tion to interactions between regulators and the regulated
tion [22,23] that depends on the concentration level of ~gene. Since most of the interactions among regulators
my. are unknown [15], we apply the same idea proposed in

A common regulation function is the Hill equation [24] 7] and define the possible interactions among regulators

by combinations of simple functions. Here we follow the
¥ same approach and define the same simple interaction
h (x,;@,u) =k (10)  functions among regulators:

(2

Cooperation
All regulators need to be highly expressed to activate the
regulated gene

with & (xj; Q,M) € [0,1]. Parameter & > 0 is the value at
which % (xj; Q,u) = 0.5, i.e,, a threshold on the concen-
tration level of xj; 4 > 0 controls the steepness of the
function. For i > 1 the Hill equation has a sigmoid shape
(Figure 2). COOP (x1,...,%,) = min (1 (x1),...,h(xy)) (12)

h(x; 0, h)
h(x; 6. h)

Figure 2 Hill functions. Shapes of the Hill function for different values of the parameters. The solid red line is a Hill function with parameters 6 = 0.5
and u = 5. The shaded red area is the family of Hill functions obtained when 6 € [0.3,0.8] and w is fixed. Similarly, the solid blue line is the Hill
function of parameters & = 0.3 and u = 6. The shaded blue area is the family of Hill functions obtained when p € [2,10] and 6 is fixed.
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Synergy
Contemporary activation of all regulators is not necessary
to activate the regulated gene

SYN (x1,...,%,) =min(1,h(x1) + ...+ h(x,) (13)
Inhibition
Activation of the regulator means target gene is repressed
INH ) = 1 — & (x) (14)
Competition
Regulator x; competes with repressor x;
COMP (x1,x2) = max (0, & (x1) — K (x2)) (15)

It is to be noted that in this case the threshold and
steepness parameters are different for each interaction.
The specific regulation function of each gene is defined by
the composition of randomly sampled functions and the
regulators that will interact.

Since miRNAs tend to increment the rate of degradation
of target genes, resulting in reduced expression levels, we
assume that the only type of interaction among miRNAs
regulating the same target gene is a synergyc inhibition.

Once all the system parameters are specified, the set of
ODEs is solved with a numerical procedure over a given
time interval. An initial value for the system must be spec-
ified. The result of the simulation can be used both as a
time series dataset, or as steady state microarray data by
sampling the time series.

Different experimental conditions can be simulated
using controlling signals for the synthetic subjects. A large
set of different stimuli can be simulated, from inhibition of
some hub gene (with a constant 0 signal) to periodic drug
administration (using periodic signals).

Variability of the model
In order to generate plausible expression values for dif-
ferent simulated subjects it must be present a degree
of variability in the model. We used a two-level model
comprehending biological and technical variability.
Biological variability is an intrinsic characteristic among
beings of the same species and is implemented in the
synthetic system as a small amount of noise in system
parameters values. Specifically, white noise with low stan-
dard deviation is added for each subject to be simulated.
Technical variability is an inevitable part of the data
acquisition process and is simulated implementing the
model of error measurement proposed in [27] that consid-
ers two error components. For each true expression level
x;, the measured intensity y; is given by

yi=c+uxie +e (16)

where c is the constant mean background level. € is an
additive error term distributed as N (0,0¢) that repre-
sents the background noise and mostly influences low
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expressed genes. The second error termisn ~ N (0, 0,7),
a multiplicative factor that represents the proportional
error that mostly influences higher expression values.

Results and discussions

Network validation

In order to verify the hierarchical modularity of the gen-
erated regulatory networks, we constructed different sets
of networks of different sizes with default parameters.
The scale-free property has been verified generating 50
networks of 1000 nodes with the same scale parameter
a = 2.2. We measured the degree distribution for each
network and fitted a line in the log-log plot. In Figure 3 is
shown the resulting fit. From the generated networks we
estimated a scale parameter @ = 2.5566 and a goodness-
of-fit parameter of R* = 0.9362.

We then verified the scale-invariance of the cluster-
ing coefficient. For this, we generated 100 networks with
size randomly sampled from the interval [10,1000]. In
Figure 4 the estimated scale parameter of the distribution
of the clustering coefficient in relation with network size
is shown. Together these results show that generated net-
works have the hierarchical modularity property of the
real regulatory networks.

In the rest of this section we report four cases of anal-
ysis that can be performed on the generated datasets:
two examples try to explore the topology of the net-
work and are based on network reconstruction meth-
ods and on clustering methods. The other two are
methods of feature relevance: a filter method based on
t-tests and a wrapper method based on the Boruta
method.

For the experiments we generated three regulatory
networks from which we generated different simulated
dataset of increasing complexity:

GRN1 1000 genes, 100 miRNAs and 10 controlling
signals
GRN2 1000 genes, 300 miRNAs and 35 controlling
signals
GRN3 500 genes, 100 miRNAs and 20 controlling signals

In all cases the synthetic datasets are obtained by sim-
ulating the regulatory network for an amount of 100 time
points. The resulting dataset is obtained by taking the
expression values at the last simulated time point.

Reverse engineering

We wanted to test if the synthetic networks generated
with the proposed model can be reconstructed with com-
monly used tools for this task. From GRN1 we gener-
ated a dataset of 75 samples by assigning to each of the
10 controlling signals a constant value randomly sam-
pled from a uniform distribution in [0, 1]. We estimated
the significance of each connection for both gene-only
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log(P(k))

resulting estimated scale parameter is & = 2.5566 with R? = 0.9362.

Degree Distribution

log(k)

Figure 3 Fitting of degree distribution. The degree distribution of 50 networks generated with the same size is fitted by a line in log-log space. The

10

expression dataset and genes+miRNAs dataset with
PANDA [28]. PANDA is a message-passing network pre-
diction method based on interactions among TFs and
regulated genes. Information for each type of interac-
tion is propagated to the others iteratively, resulting in a
prediction score for each interaction.

For both types of regulatory networks we provided dif-
ferent numbers of a priori connections. We executed
PANDA with prior information covering the 10%, 25%,
50%, 75% and 100% of all actual connections among the
gene-gene network (1656 edges) and full network interac-
tions (3969 edges).

In addition, we introduced noisy prior information in
the form of false connections. Different quantities of
incorrect edges have been tested, namely 10%, 25%, 50%,
75%, 100% of incorrect edges.

Since the PANDA scores can be interpreted as z-scores,
we set a p-value threshold to 0.05 for both nominal and
Bonferroni corrected p-values. We also set a threshold
of 0.05 to false discovery rate (FDR). For each significant
connection we calculated the length of the path in the
actual synthetic network.

In Tables 1, 2, 3 and 4 are reported the results of the
analysis (where 1 signifies direct interaction, > 1 signifies
indirect interaction, Inf signifies no interaction). When

given correct prior information PANDA is able to mark
as significant almost 100% of true interactions, whereas
when noisy (false) prior information is passed, none of it
is marked as significant.

We carried out additional tests using ARACNE [29],
which estimates pairwise interactions by the degree of
mutual information shared among the nodes in exam.
Indirect connections that may stem are removed applying
the data processing inequality. Starting from the expres-
sion dataset we estimated the mutual information matrix
for both gene-only interactions and for the full regula-
tory network. We set a threshold of 0.05 on the weights of
the reconstructed connections and checked how many of
them are actual connections in the synthetic network.

In Table 5 are listed the path lengths for the interac-
tions predicted by ARACNE on the synthetic network. In
the gene-only network, most of the interactions found do
not actually exist, whereas in the full network, compris-
ing both genes and miRNAs, about half of the interactions
found exist in the network but have an average path length
of 4.38.

The high rate of erroneous interactions may be due to
the fact that ARACNE works well when the role of the
loops in the regulatory network is negligible [29], whereas
the networks produced by the proposed simulator involve
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Clustering coefficient distribution parameter
.
.

250

Clustering coefficient scale invariance

0 750 1000
Network size

Figure 4 Scale invariance of clustering coefficient. Simulation of 100 networks of random size in [10, 1000] shows that the estimated scaling
parameter of the clustering coefficient is independent from the network size and approximates the value found in real networks.

both feedback and feed-forward loops on different scales
(i.e., from loops of nodes to loops of motifs) that may
produce complex behaviours like oscillations or mem-
ory states. In addition, miRNAs also participate in loops
with genes. Both facts may motivate the high levels of
false interactions found in the gene-only network, where
the miRNA layer of information needed to explain the
behaviour of genes is not included in the analysis.

We speculate that the large number of direct interac-
tions inferred by ARACNE in the full regulatory network
may be due to the simplistic model of variation employed.
This results in nodes of the same pathway sharing too
much information, such that they look like directly con-
nected with respect to the Mutual Information.

Clustering of genes and miRNAs

Broadly speaking, clustering a set of objects aims to parti-
tion them into disjoint subsets. This partition is such that
objects from different subsets are as much dissimilar as
possible, whereas objects of the same cluster are maxi-
mally similar. Clustering has been widely applied to gene
expression profiles across subjects. Gene clustering can be
used as a mean of dimensionality reduction technique in
which only a representer for each cluster is used instead
of the entire dataset for further analysis [30]. In addition,

gene clustering can be useful to predict the functional role
of unknown genes based on the known genes of the same
cluster [31].

We analysed two different synthetic datasets. The first
dataset was generated from GRN2. The dataset is made of
two classes each of 50 samples. The signalling genes were
all set to O for the first condition and to 1 for the second
condition (relative expression levels).

The second dataset is made of 75 samples divided into
three classes of 25 samples each. The dataset is simulated
from GRN1. For each condition we defined a constant
expression value for the 10 controlling genes by randomly
sampling a uniform distribution ¢/ (0, 1). In both experi-
ments for each sample we add a small amount of white
noise to network parameters and then we simulated the
network over an interval of 100 time points and taking as
the expression dataset the last time-point.

For both synthetic datasets we used the k-means cluster-
ing algorithm on the features (genes and mirnas). Genes
and miRNAs of both datasets have been standardized so
that the mean of each gene and miRNA is 0 and the stan-
dard deviation is 1, then clustered into 50 groups. Data
standardization makes the differences among genes and
miRNAs depend on their correlations. In Figure 5 are
shown some of the clustered genes and miRNAs along



Table 1 Gene-only path length

p < 0.05 (uncorrected) Path length

p < 0.05 (Bonf.) Path length

FDR < 0.05 Path length

Prior connections

0 1 2 3 5 Inf 1 1
165 true - 166 1 - - 1 165 165
414 true - 414 - - - 2 414 414
828 true - 829 7 1 - 4 828 828
1242 true 1 1243 3 - 1 5 1242 1242
1656 true - 1656 2 - - 3 1656 1656

Path length of significant interactions confirmed by PANDA on the gene-only regulatory network with different amounts of correct prior information.
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Table 2 Gene-only path length with false information

Prior connections

p < 0.05 (uncorrected) Path length

p < 0.05 (Bonf.) Path length

FDR < 0.05Path length

1 2 5 Inf 1 1
1656 true + 165 false 1656 1 - 8 1656 1656
1656 true + 414 false 1656 2 1 7 1656 1656
1656 true + 828 false 1656 - - 4 1654 1656
1656 true + 1242 false 1656 2 1 7 1653 1656
1656 true + 1656 false 1656 2 - 4 1647 1656

Path length of significant interactions confirmed by PANDA on the gene-only regulatory network with the presence of different amounts of noisy prior information.

LSL:91 (SL0T) S2npwiojuiolg DNG °|p 19 O||1eld

GlJool abed



Table 3 Whole-network path length

. . p < 0.05 (uncorrected) Path length p < 0.05(Bonf.) Path length FDR < 0.05 Path length
Prior connections
0 1 2 3 4 5 6 1 1

396 true - 396 - - - - - 396 396

992 true 1 993 - - 1 1 - 992 992

1984 true 1 1985 - 2 2 1 1 1984 1984

2976 true - 2976 3 - 3 2 1 2976 2976

3969 true - 3969 - 1 1 - - 3969 3969

Path length of significant interactions confirmed by PANDA on the whole regulatory network with different amounts of correct prior information.
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Table 4 Whole-network path length with false information

Prior connections

p < 0.05 (uncorrected) Path length

p < 0.05 (Bonf.) Path length

FDR < 0.05 Path length

1 2 3 4 1 1
3969 true + 396 false 3969 - - 1 3671 3930
3969true + 992 false 3969 - - 1 3653 3918
3969 true + 1984 false 3969 - 1 - 3640 3899
3969 true + 2976 false 3969 - 1 1 3655 3874
3969 true + 3969 false 3968 1 1 1 3659 3859

Path length of significant interactions confirmed by PANDA on the whole regulatory network with the presence of different amounts of noisy prior information.
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Table 5 Whole-network path length with ARACNE

Path length
1 2 3 4 5 6 7 8 9 Inf
Gene-only Interactions 25 8 9 6 4 3 - - - 6493
Whole-network Interactions 43 150 681 1342 1367 449 130 12 2 3704

Path length of interactions inferred by ARACNE on the gene-only and full regulatory networks.

with the information coming from the known regulatory  feature selection. Different approaches to feature selection
network (the actual connections). As can be seen nodes are available, which can be summarized in three cate-
(genes and miRNAs) that are clustered together are actu-  gories: filter, wrapper and embedded methods, each with
ally connected in the network from which the data has its own advantages and disadvantages [30]. We performed

been generated. two feature relevance analysis. The first dataset is made
of 50 samples for each condition (2 conditions in total)
Feature relevance generated from GRN3. In this experiment we wanted to

Due to the high-dimensional nature of OMICs data, effec-  simulate the case in which the 2 different conditions are
tive modelling for inference or prediction in bioinfor-  well characterized by a subset of controlling signals in
matics cannot be performed without an initial phase of the form of an expression signature by setting 13 of the
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Figure 5 Revealed interactions among clustered genes. Clustered genes and miRNAs together with interactions. The majority of nodes that are
clustered together are actually connected in the network from which data has been simulated.
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20 control signals to a deterministic value. Specifically,
the first 13 genes for the first condition have been set to
values 1100011011011 mixed with the remaining 7 con-
trol signals set to random values sampled from U (0, 1).
For the second condition the first 13 genes have been set
to 1001110100010. We applied a filter feature selection
method based on the ¢-test [32]. We set a threshold on the
FDR to 0.05 and marked as significant all the genes with
a g-value below the threshold. 8 out of the 39 significant
genes are actual signalling genes, 22 significant genes are
at path length 1 from a signalling gene, the remaining 9 are
at path length 2 from a signalling gene. The same has been
made for miRNAs and 3 out of 5 are at distance 1 from a
signalling gene and the remaining 2 are at distance 2.

The second dataset consists of 75 samples divided into
three classes of 25 samples each generated from GRN1
by setting the controlling signals to random constant val-
ues sampled from U (0, 1). For this more complex dataset
we used the wrapper method of Boruta [33]. This method
relies on the random forest classifier. The significance of
each feature is assessed comparing its importance given
by the random forest to the importance of a randomly
computed version of the same feature. Features that are
significantly more important than their random permuta-
tions are marked as relevant.

The procedure marked as relevant 59 genes: 9 are sig-
nalling genes, 28 are directly connected to (at least) a
signalling gene, 20 are at distance 2 from a signalling gene
and the remaining 3 genes are at distance 3 from a sig-
nalling gene. Of the 6 relevant miRNAs, 5 are at distance
2 from a signalling gene and only 1 is at distance 1 from a
signalling gene.

From these experiments it is to be noted that almost all
signalling genes which have been set to different values for
each experimental condition are recognised as significant.
The remaining signalling genes that are not marked as sig-
nificant may have been set to values too similar between
different conditions or the amount of noise is such to
deteriorate the pattern. It should be also noted that both
feature relevance procedures marked as significant nodes
directly connected to at least a signalling gene or in the
same pathway. This shows the capability of the proposed
model of propagating information through modules of
locally connected genes.

Conclusions

Here we proposed a multi-view biological data simulator
based on ordinary differential equations with the objec-
tive of benchmarking multi-view learning methods. We
ensured that the generated data is biologically relevant
for the features need to follow patterns of interaction that
are similar to those observed in real biological networks.
We showed different cases of analysis where the simulated
datasets can complement real datasets in the assessment
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of novel methods for data analysis. At the same time the
sample analysis further validated the proposed approach
since information coherent with the regulatory network
is extracted from the synthetic dataset. It will be pos-
sible to implement additional layers of complexity (e.g.,
including DNA methylation or copy number variations)
as more comprehensive and systematic knowledge on the
biological interactions arises.

Additional file

Additional file 1: MVBioDataSim R package. The R implementation of
the proposed method is available as R package attached to this paper.
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