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Abstract

Background: DNA methylation offers an excellent example for elucidating how epigenetic information affects gene
expression. β values andM values are commonly used to quantify DNA methylation. Statistical methods applicable to
DNA methylation data analysis span a number of approaches such as Wilcoxon rank sum test, t-test,
Kolmogorov–Smirnov test, permutation test, empirical Bayes method, and bump hunting method. Nonetheless,
selection of an optimal statistical method can be challenging when different methods generate inconsistent results
from the same data set.

Results: We compared six statistical approaches relevant to DNA methylation microarray analysis in terms of false
discovery rate control, statistical power, and stability through simulation studies and real data examples. Observable
differences were noticed between β values andM values only when methylation levels were correlated across CpG
loci. For small sample size (n =3 or 6 in each group), both the empirical Bayes and bump hunting methods showed
appropriate FDR control and the highest power when methylation levels across CpG loci were independent. Only the
bump hunting method showed appropriate FDR control and the highest power when methylation levels across CpG
sites were correlated. For medium (n=12 in each group) and large sample sizes (n=24 in each group), all methods
compared had similar power, except for the permutation test whenever the proportion of differentially methylated
loci was low. For all sample sizes, the bump hunting method had the lowest stability in terms of standard deviation of
total discoveries whenever the proportion of differentially methylated loci was large. The apparent test power
comparisons based on raw p-values from DNA methylation studies on ovarian cancer and rheumatoid arthritis
provided results as consistent as those obtained in the simulation studies. Overall, these results provide guidance for
optimal statistical methods selection under different scenarios.

Conclusions: For DNA methylation studies with small sample size, the bump hunting method and the empirical
Bayes method are recommended when DNA methylation levels across CpG loci are independent, while only the
bump hunting method is recommended when DNA methylation levels are correlated across CpG loci. All methods
are acceptable for medium or large sample sizes.
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Background
DNA methylation is a biochemical process of adding a
methyl group at the 5′ carbon of the cytosine ring to
form 5-methylcytosine (found at cytosine-guanosine din-
ucleotides (CpGs)) and plays a significant role in the
development and progression of human disease [1]. More
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than 50% of human gene transcription initiations are from
genome regions with elevated CpG contents, known as
“CpG islands”. CpG loci within promoter CpG islands are
normally free from DNA methylation to allow the ini-
tiation of gene expression [2]. Studies have documented
associations between DNA methylation and cancer [1, 3].
Promoter hypermethylation impacts development of can-
cer through transcriptional silencing of crucial growth
regulators. Two United States Food and Drug Adminis-
tration (FDA) approved epigenetic drugs, azacitidine and
decitabine, reactivate tumor suppressor genes through
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removing DNA methylation marks, which highlights the
importance of understanding DNAmethylation in disease
etiology and treatment [4, 5].
Large-scale examination of DNA methylation through

microarray or sequencing technologiesmakes epigenome-
wide association studies (EWAS) feasible to explore asso-
ciations between DNA methylation and cancers in the
sustained effort to develop novel anti-cancer drugs, and
to identify DNAmethylation markers associated with cer-
tain cancers for prognosis and diagnosis purpose [6]. The
Illumina HumanMethylation BeadChip technology is a
popular platform for conducting epigenome-wide asso-
ciation studies. Three platforms have been developed
by Illumina for DNA methylation assay: GoldenGate,
Infinium Human Methylation27 and Infinium Human-
Methylation450 BeadChip. All platforms use two fluo-
rescent dye colors to recognize the bisulphite-converted
sequence. The standard output from the BeadChip assay
for quantifying methylation is the β value, which is calcu-
lated from the intensity of methylated allele (Max(M, 0))
and the intensity of unmethylated allele (Max(U , 0))
according to the following formula [7].

β = Max(M, 0)
Max(M, 0) + Max(U , 0) + 100

(1)

The β values are usually preprocessed for the down-
stream statistical analysis. The summary on preprocessing
the β values including quality control, background correc-
tion, and normalization could be found somewhere else
[8]. For differential DNAmethylation analysis, the average
β value denotes the methylation level, or the percent-
age for an interrogated locus. The average β values vary
between 0 and 1. In an ideal situation, "zero" indicates
that no copy of the CpG site in the sample is methylated,
and "one" indicates that every copy of the site is methy-
lated. The average β value approximates the methylation
percent for the population of a sampled CpG site. Alter-
natively, some investigators use the M-value, considering
the M-value alternative statistically more valid [9]. The
M-value is defined as:

M = log2
Max(M, 0) + 1
Max(U , 0) + 1

. (2)

The range of M-values could be from −inf to +inf ,
consistent with the data range for a normal distribu-
tion. However, interpretations of M-values are not as
intuitive as for β-values. A properly normalized M-value
approaching zero indicates that a specific CpG site is
half-methylated. Positive M-values suggest a methylation
rate greater than 50%, while negative M-values indicate a

methylation inferior to 50%. The β-values and M-values
are related through a log2 ratio transformation such as:

M = log2
β

1 − β
(3)

It has been shown that there is an approximately linear
relationship between β-values andM-values in the middle
range of the methylation data ([0.2, 0.8] for β values, and
[-2, 2] forM-values) [9].
We used both β-values and M-values in our simula-

tion studies and real data examples, which should provide
guidance to investigators in selecting β-values or M-
values for their differential DNAmethylation analysis with
regard to FDR control, power, and stability.
Currently available methylation differential analysis

methods implemented in Bioconductor/R include sev-
eral approaches such as Wilcoxon rank sum test (used
in methyAnalysis package), t-test (used in methyAnalysis,
CpGAssoc, RnBeads, and IMA package), Kolmogorov-
Smirnov Tests (although not implemented in packages,
but used by some investigators [10]), permutation test
(used in CpGAssoc package), empirical Bayes method
(used in RnBeads, IMA and minfi package), and bump
hunting method (used in bumphunter and minfi pack-
age). However, with so many options available to inves-
tigators, selection of an optimal statistical method, can
be challenging-especially when different methods applied
to the same data set generate inconsistent results. As
such, we systematically investigated these commonly used
DNA methylation differential analysis methods in terms
of their FDR control, power, and stability, through sim-
ulation studies. We illustrated the respective advantages
and disadvantages of these methods with real methyla-
tion data sets, in order to provide empirical evidence and
advice to investigators in selecting the most appropriate
DNA methylation analysis methods for their studies.

Methods
Hypothesis testing for each DNA methylation locus was
done using either the average β-values or the transformed
M-values of the different groups. Assume there are m
methylation loci from the DNA methylation array assay.
Among the m methylation loci, m0 loci are not differen-
tially methylated. Suppose Rmethylation loci are rejected
of m total loci, then V indicates the number of falsely
rejected methylation loci (or “false discoveries”) from
R rejections, and S denotes the true number of differ-
entially methylated loci between groups in R rejections
(R = V + S). The possible outcomes of testing m DNA
methylation loci simultaneously are shown in Table 1.
When testing m DNA methylation loci simultaneously,
we need to control multiple testing error rate as opposed
from testing a single DNA methylation locus.
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Table 1 Possible outcomes fromm hypotheses tests

Number not rejected Number rejected

true null
hypotheses

U V m0

non-true null
hypotheses

T S m − m0

total m − R R m

The most commonly used multiple testing error rate for
discovery purposes is the false discovery rate proposed by
Benjamini and Hochberg [11], defined as:

FDR = E
(
V
R

|R > 0
)
Pr(R > 0). (4)

Another definition of false discovery rate proposes
to control the expected proportion of false discoveries
E(VR |R > 0) when R > 0 [12] such as:

pFDR = E
(
V
R

|R > 0
)
. (5)

pFDR = 1 when m0 = m. FDR and pFDR set to 0 when
R = 0. FDR and pFDR are similar when the phenotype
is not associated with DNA methylation for most of
the CpGs.
In our simulations, two different multiple testing pro-

cedures were used to control for FDR/pFDR . Through
a step-up procedure, the Benjamini-Hochberg procedure
[11] provides control of FDR at α level. The Benjamini-
Hochberg procedure compares ordered P(i) with i

mα

from the largest p, rejecting all H(i) i = 1, 2, . . . , k with
P(i) ≤ i

mα. The Benjamini-Hochberg procedure provides
strong control for FDR at level α (for independent
and positively correlated test statistics). Similarly to the
Benjamini-Hochberg procedure, the Storey’s q-value pro-
cedure [12] uses conservative point estimators of m0,
m̂0(λ) (λ is a tuning parameter). With larger cutoffs, the
Storey’s q-value leads to higher power than the Benjamini-
Hochberg procedure as m̂0(λ) ≤ m. The Storey’s q-value
controls pFDR at α, with test statistics correlated weakly
or independently.
Besides controlling FDR at a desired α level in the mul-

tiple testing process, we would also desire that the DNA
methylation analysis method possess enough power to
detect true differential DNA methylation loci and be con-
sistent from experiment to experiment. Power is defined
as the expected proportion of true differentially methy-
lated loci detected among the total number of true differ-
entially methylated loci [13]. Stability is measured as the
standard deviation (SD) of the count of the differentially
methylated loci detected. Power and stability of a differen-

tial DNAmethylation analysis method could be expressed
using the following formulas:

Power = E
(

S
m − m0

|m > m0

)
, (6)

Stability = SD(R). (7)

Power is defined as 0 and Stability becomes a measure
of standard deviation of false detections whenm = m0.

Wilcoxon rank sum test (rank test)
Wilcoxon rank sum test (i.e., Mann–Whitney U test) is a
rank-based non-parametric test and used in the methy-
Analysis package as a differential methylation analysis
method [14]. It is usually used as an alternative to the
two-independent sample t-test when the assumption of
normal data distribution is violated for the t-test.
Assume the methylation level denoted either by β-

values orM-values for ith locus, jth group, and kth subject
is yijk . Suppose j = 1 denotes the normal group and
j = 2 denotes the cancer group. For each DNA methyla-
tion locus, the null hypothesis of the Wilcoxon rank sum
test is that the distribution of yi1k equals the distribution
of yi2k for i = 1, 2, . . . ,m. The two-side alternative hypoth-
esis is a location shift of the distribution of yi2k from yi1k in
either direction. The raw p-values from theWilcoxon rank
sum test are then adjusted using Benjamini and Hochberg
procedure to control for FDR at level α [11] through the
p.adjust function in R.

t-test
Implemented in methyAnalysis, CpGAssoc, RnBeads, and
IMA packages, the t-test is a commonly used hypothe-
sis testing method in genomic data analysis for testing
equivalence of means between two groups [15]. For two
independent samples t-test, there are two t-test proce-
dures depending on whether the variances from those two
groups are equal or not. The unequal variance t-test pro-
cedure (i.e., Welch’s t-test) is usually the default one used
in most packages, and does not assume equal variance
between groups. The raw p-values from the t-tests are
computed based on the t distribution, while adjusted p-
values are obtained using the Benjamini and Hochberg
procedure through the same p.adjust function in R.

Kolmogorov-Smirnov test (KS test)
The Kolmogorov-Smirnov test (KS test) is a nonparamet-
ric test in statistics for testing the equality of two continu-
ous probability distributions [16, 17]. In DNAmethylation
studies, the null hypothesis is that the distribution of yi1k
equals the distribution of yi2k as that in Wilcoxon rank
sum test for each locus of i = 1, 2, . . . ,m. Sensitive to dif-
ference in shape and location of the distribution functions
of two groups, the KS test differs from the Wilcoxon rank
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sum test (sensitive to differences in location). The raw p-
value from the KS test are adjusted using the Benjamini
and Hochberg procedure to control FDR at level α.

Permutation test
Permutation test is a resampling-based nonparametric
test, which permutes data falling under the null hypoth-
esis of equal data distributions between groups [18]. The
distributions of test statistics (usually t-test statistics) are
estimated from permuted test statistics. In the CpGAs-
soc package, the raw p-values from the permutation test
for DNA methylation data are adjusted using the p.adjust
function in R to control FDR at level α.

Empirical Bayes method
Used in RnBeads, IMA and minfi packages, the empiri-
cal Bayes method is a popular hypothesis testing method
applied through the lmFit and eBayes functions [19]. First,
we can fit a linear model to estimate β∗

i , the mean differ-
ences between two groups for ith locus. In DNA methy-
lation studies, let yTi = (yi1 , . . . , yin) denote the DNA
methylation level for both groups with n = n1 + n2 for ith
locus. Then, we can fit a linear model for each locus using
the formula:

E(yi) = Xβ∗
i , (8)

where X is a design matrix of full column rank, and β∗
i

is a coefficient vector. The β∗
i coefficient vector includes

(β∗
i0,β∗

i1) with β∗
i0 denoting the mean DNA methylation

level for normal group, while β∗
i1 denotes the meanmethy-

lation level difference between the cancer group and the
normal group. Thus, the null hypothesis for testing the
mean methylation level difference between the normal
group and the cancer group is H0 : β∗

i1 = 0 for locus i =
1, . . . ,m. The test statistic for testing H0 is the moderated
t-statistic, based on a hybrid classical/Bayes approach,
defined by:

t̃ij = β̂∗
ij

s̃i
√vij

. (9)

The p-value for testing H0 : β∗
ij = 0 (H0 : β∗

i0 = 0 and
H0 : β∗

i1 = 0) based on the moderated t-statistic is cal-
culated from the t distribution with di + d0 degrees of
freedom. More information on s̃i, vij, di, and d0 could be
found elsewhere [19].
The p-value for testing H0 : β∗

i1 = 0 can be further
adjusted using the p.adjust function to control for FDR at
level α.

Bump hunting method
The bump hunting method used in bumphunter and
minfi packages was developed to take into account the

correlations of methylation levels between nearby CpG
locus [20]. The bump hunting method was carried out
by first fitting a linear regression model for each locus
before smoothing the coefficient within clusters along
the genome to identify bumps [21]. More specifically, for
each locus, a linear model will be used to estimate the
coefficient of difference in methylation levels between
the cancer group and the normal groups. Let Yijk denote
the measured methylation level for ith locus, jth group,
and kth subject. Xij is an indicator variable with Xi1 =
0 for the normal group and Xi1 = 1 for the cancer
group at all locus i. β∗

i is the estimated coefficient for
Xij, and also stands for the estimated difference in DNA
methylation levels between the cancer and the normal
groups. We have then the following linear regression
model.

Yijk = μi + β∗
i Xij + εijk (10)

where εijk is the error term in the model, which follows a
normal distribution with mean = 0 and variance = σ 2

i .
After fitting the linear regression model, the bump

hunting method will be implemented according to the
following steps:

(1) Estimate β∗
i for each locus i.

(2) Estimate a smooth function β∗(t) using these
estimates.

(3) Use this smooth function β∗(t) to estimate the
regions Rn, n = 1, . . . ,N for which β∗(t) �= 0 for all
t ∈ Rn.

(4) Assign statistical uncertainty to each estimated
region using permutation tests.

We examined two p-values generated from the bump
hunting method in the minfi package. One p-value is the
raw p-value from the bump hunting method, adjusted
through the Benjamini and Hochberg procedure using the
p.adjust function in R (Bump hunting BH), and the other
p-value is the q-value - an adjusted p-value generated
from the minfi package using Storey’s procedure (Bump
Hunting q-value) [22].

Data extraction
We downloaded the ovarian cancer data set [23] and the
rheumatoid arthritis data set [24] from the National Cen-
ter for Biotechnology Information (NCBI) Gene Expres-
sion Omnibus (GEO) public functional genomics data
repository. The ovarian cancer data set on 540 whole
blood samples has GEO accession number GSE19711,
generated from the Illumina Infinium 27k Human DNA
methylation Beadchip v1.2. The rheumatoid arthritis data
set on 691 subjects has GEO accession number GSE42861
and was generated using Illumina HumanMethylation450
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BeadChip array. We randomly selected 3, 6, or 12 samples
from either the case or the control groups to illustrate the
apparent test power comparisons.

Results
Simulation study
We conducted simulation studies to compare the power
and stability of six DNA methylation differential anal-
ysis methods for independent and correlated DNA

methylation levels across CpG loci. Each simulation study
included 1,000 independently generated two group sam-
ples with sample size (n) of 3, 6, 12, or 24 in both the can-
cer and normal groups. For all simulations, we set the total
number of DNA methylation loci (m) as 1000. The frac-
tions of truly differentially methylated loci

(
π1 = m−m0

m
)

were set at 1%, 5%, 10%, 25%, 50%, 75%, or 90% to
cover different scenarios. To mimic the data distribution
of a real DNA methylation array experiment, the β values

a)

b)

c)

d)

Fig. 1 Estimated FDRs, powers, means of total discoveries, and SD of total discoveries of six DNA methylation differential analysis methods using β

values (Independent case). Blue solid: rank test; Red dashed: t-test; Green dotted: KS test; Black dotdash: permutation test; Orange twodash:
Empirical Bayes; Yellow twodash: Bump Hunting BH adjustment (BH-BH); Purple twodash: Bump Hunting q-value adjustment (BH-q)
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from the DNA methylation array studies for both can-
cer and normal groups were generated from a mixed beta
distribution (0.1Beta(0.5, 5) + 0.9Beta(5, 0.5)), for inde-
pendent DNA methylation levels across CpG loci. For
correlated DNA methylation levels across CpG loci, the β

values yij for ith locus and jth subject were generated from

yij = 2log2(bij)−log2(1−bij)+eij

1+2log2(bij)−log2(1−bij)+eij
where bij and eij were the (i, j)th

elements of m × 2n matrixes of B and E respectively. B
was simulated from a Beta(0.1, 0.1) distribution and E was

an matrix of error following a factor-analytic structure
E = LUT + � [25]. L = Z × 	 in which Z (am × 4 factor
loadings matrix) denoted methylation profiles for con-
stituent cell types and 	 = diag(0.55, 0.35, 0.07, 0.03)T
(a 4 × 4 factor scores diagonal matrix) denoted cell pro-
portions through its diagonal elements. U was a 2n × 4
matrix of latent effects, and � was a m × 2n random
error matrix. Both Z and U were simulated from N(0, 1)
distribution. � were simulated from N(0, σi) with σ 2

i =
0.5 − ∑

(diag(	2)) (i.e. the standard deviation of each

a)

b)

c)

d)

Fig. 2 Estimated FDRs, powers, means of total discoveries, and SD of total discoveries of six DNA methylation differential analysis methods usingM
values (Independent case). Blue solid: rank test; Red dashed: t-test; Green dotted: KS test; Black dotdash: permutation test; Orange twodash:
Empirical Bayes; Yellow twodash: Bump Hunting BH adjustment (BH-BH); Purple twodash: Bump Hunting q-value adjustment (BH-q)
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value was
√
0.5, but the errors were correlated across CpG

loci). To set up the mean β value differences between
groups, all β values of 1%, 5%, 10%, 25%, 50%, 75%,
or 90% of 1000 CpG loci in normal group subtracted
a sequential vector from 0.1 to 0.4 with a length of 10,
50, 100, 250, 500, 750, and 900. For instance, with 1%
true difference between groups, the first 10 rows of β

values from the normal group will equal the original β

values in the normal group, generated either from the
mixed beta distribution 0.1Beta(0.5, 5)+0.9Beta(5, 0.5) or
from yij = 2log2(bij)−log2(1−bij)+eij

1+2log2(bij)−log2(1−bij)+eij
, subtracted the sequen-

tial vector with a length of 10 from 0.1 to 0.4, i.e.
(0.10, 0.13, 0.17, 0.20, 0.23, 0.27, 0.30, 0.33, 0.37, 0.40). The
M-values were generated using the logit2 transformation
of the β-values

(
M = log2

(
β

1−β

))
and the FDR level was

set at 5%.

Simulation results
Independent cases
For simulated DNA methylation data with sample sizes
as small as 3 in each group, all methods could control
FDR at a desired level of 5% (Fig. 1a and Fig. 2a). In
terms of power, the empirical Bayes method was the most
powerful, followed by the bump hunting method and
the t-test when the proportion of differentially methy-
lated loci was below 50% (Table 2 and Table 3). The
bump hunting method was the most powerful method,
followed by the empirical Bayes method and the t-
test when the proportion of differentially methylated
loci was above 50%. Within the bump hunting method,
power is higher with Storey’s q-value procedure than
with Benjamini and Hochberg’s procedure. Neither the
Wilcoxon rank sum test, the Kolmogorov-Smirnov test,
nor the permutation test had power to identify any truly

Table 2 Powers across six DNA methylation differential analysis methods using β values for independent case

n π1 Power

Rank test t-test KS test Permutation Empirical Bayes Bump hunting BH Bump hunting q-value

3 0.01 0 0.0071 0 0 0.0714 0.0492 0.0612

0.05 0 0.0126 0 0 0.2278 0.0715 0.0993

0.10 0 0.0197 0 0 0.3577 0.1212 0.1722

0.25 0 0.0516 0 0 0.5252 0.2612 0.3861

0.50 0 0.1358 0 0 0.6417 0.4144 0.6450

0.75 0 0.2371 0 0 0.7027 0.5096 0.8414

0.90 0 0.2945 0 0 0.7274 0.5487 0.9378

6 0.01 0.0000 0.2713 0.0000 0.0000 0.5483 0.4025 0.4180

0.05 0.0000 0.4708 0.0000 0.0000 0.6856 0.5847 0.6045

0.10 0.5894 0.5773 0.5894 0.5894 0.7441 0.6660 0.6953

0.25 0.6640 0.7069 0.5926 0.7053 0.8147 0.7671 0.8164

0.50 0.7263 0.7890 0.5919 0.8078 0.8603 0.8274 0.9175

0.75 0.7865 0.8297 0.8654 0.8422 0.8834 0.8544 0.9874

0.90 0.7875 0.8475 0.8666 0.8589 0.8943 0.8648 0.9997

12 0.01 0.7541 0.7523 0.8053 0.0000 0.8085 0.7838 0.7883

0.05 0.8722 0.8581 0.9179 0.8607 0.8926 0.8898 0.8975

0.10 0.9082 0.8884 0.9164 0.8932 0.9149 0.9191 0.9304

0.25 0.9423 0.9258 0.9672 0.9311 0.9433 0.9546 0.9773

0.50 0.9643 0.9488 0.9674 0.9520 0.9607 0.9703 0.9990

0.75 0.9714 0.9599 0.9893 0.9619 0.9689 0.9719 1.0000

0.90 0.9753 0.9646 0.9895 0.9663 0.9725 0.9700 1.0000

24 0.01 0.9612 0.9252 0.9875 0.0000 0.9364 0.9403 0.9417

0.05 0.9883 0.9714 0.9973 0.9673 0.9779 0.9902 0.9917

0.10 0.9929 0.9809 0.9991 0.9810 0.9855 0.9970 0.9980

0.25 0.9967 0.9899 0.9997 0.9900 0.9923 0.9999 1.0000

0.50 0.9982 0.9940 0.9997 0.9941 0.9955 1.0000 1.0000

0.75 0.9989 0.9957 0.9999 0.9958 0.9967 0.9999 1.0000

0.90 0.9990 0.9965 0.9999 0.9965 0.9973 0.9994 1.0000
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Table 3 Powers across six DNA methylation differential analysis methods usingM values for independent case

n π1 Power

Rank test t-test KS test Permutation Empirical Bayes Bump hunting BH Bump hunting q-value

3 0.01 0 0.0051 0 0 0.0438 0.0399 0.0434

0.05 0 0.0086 0 0 0.1527 0.0488 0.0573

0.10 0 0.0126 0 0 0.2905 0.0848 0.1079

0.25 0 0.0331 0 0 0.4927 0.2117 0.3023

0.50 0 0.1051 0 0 0.6364 0.3702 0.5922

0.75 0 0.2030 0 0 0.7135 0.4725 0.8386

0.90 0 0.2633 0 0 0.7445 0.5148 0.9629

6 0.01 0.0000 0.2307 0.0000 0.0000 0.5442 0.3903 0.4004

0.05 0.0000 0.4511 0.0000 0.0000 0.6911 0.5977 0.6131

0.10 0.5894 0.5699 0.5894 0.5894 0.7561 0.6913 0.7140

0.25 0.6640 0.7182 0.5926 0.7072 0.8352 0.8014 0.8476

0.50 0.7263 0.8083 0.5919 0.8215 0.8876 0.8609 0.9450

0.75 0.7865 0.8508 0.8654 0.8596 0.9133 0.8838 0.9964

0.90 0.7875 0.8689 0.8666 0.8778 0.9254 0.8920 0.9999

12 0.01 0.7541 0.7896 0.8053 0.0000 0.8317 0.8475 0.8520

0.05 0.8722 0.8956 0.9179 0.8910 0.9151 0.9447 0.9499

0.10 0.9082 0.9224 0.9164 0.9240 0.9379 0.9682 0.9751

0.25 0.9423 0.9535 0.9672 0.9565 0.9649 0.9890 0.9973

0.50 0.9643 0.9708 0.9674 0.9730 0.9791 0.9944 1.0000

0.75 0.9714 0.9784 0.9893 0.9799 0.9854 0.9919 1.0000

0.90 0.9753 0.9817 0.9895 0.9829 0.9881 0.9878 1.0000

24 0.01 0.9612 0.9600 0.9875 0.0000 0.9597 0.9754 0.9763

0.05 0.9883 0.9892 0.9973 0.9861 0.9905 0.9989 0.9990

0.10 0.9929 0.9937 0.9991 0.9935 0.9946 0.9998 0.9999

0.25 0.9967 0.9972 0.9997 0.9972 0.9977 1.0000 1.0000

0.50 0.9982 0.9986 0.9997 0.9986 0.9990 1.0000 1.0000

0.75 0.9989 0.9992 0.9999 0.9992 0.9994 1.0000 1.0000

0.90 0.9990 0.9993 0.9999 0.9993 0.9995 1.0000 1.0000

differentially methylated locus across all proportions of
differentially methylated loci tested. For stability, the
empirical Bayes method was much better than either the
t-test or the bump hunting method (Table 4 and Table 5).
The bump hunting method had the largest standard devi-
ation of total discoveries once p-values were adjusted
using Storey’s q-value procedure. The standard devia-
tion of total discoveries from the bump hunting method
increased exponentially as the proportions of differen-
tially methylated loci increased. In the simulation studies,
no significant differences were observed between β val-
ues and M values in terms of FDR control, power, mean
number of total discoveries, or standard deviation of total
discoveries.
Increasing sample size to 6 in each group, the Wilcoxon

rank sum test, the Kolmogorov-Smirnov test, and the

permutation test all showed greater than zero power
(Fig. 1b and Fig. 2b). While all methods could control
FDR at 5%, the empirical Bayes method remained the
most powerful among all methods, followed by the bump
hunting method and the t-test, when the proportion of
differentially methylated loci was below 25% (Table 2 and
Table 3). The bump hunting method was the most pow-
erful method, followed by the empirical Bayes method
and the t-test/permutation test, whenever the propor-
tion of differentially methylated loci was above 25%. The
power of the Wilcoxon rank sum test, the Kolmogorov-
Smirnov test, and the permutation test was lower than
the t-test whenever the proportion of differentially methy-
lated loci was below 25%; however, the power of the
permutation test was similar to the t-test, whenever the
proportion of differentially methylated loci was above
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Table 4 Standard deviation of total discoveries across six DNA methylation differential analysis methods using β values for
independent case

n π1 Standard deviation of total discoveries

Rank test t-test KS test Permutation Empirical Bayes Bump hunting BH Bump hunting q-value

3 0.01 0 0.39 0 0 1.02 0.87 1.03

0.05 0 1.14 0 0 4.79 3.09 3.80

0.10 0 2.48 0 0 6.67 6.2 7.45

0.25 0 7.87 0 0 9.71 11.65 15.38

0.50 0 18.97 0 0 12.78 17.29 24.73

0.75 0 25.68 0 0 14.73 19.56 35.22

0.90 0 26.8 0 0 14.82 19.28 42.44

6 0.01 0.00 1.61 0.00 0.00 1.30 1.67 1.70

0.05 0.00 4.05 0.00 0.00 2.95 3.68 3.69

0.10 4.44 5.22 4.44 4.44 4.02 4.8 5.13

0.25 12.17 7.04 7.04 8.83 6.02 6.93 8.03

0.50 9.47 9.42 9.73 9.01 7.94 9.08 12.65

0.75 9.90 9.82 8.55 10.48 8.65 9.39 21.72

0.90 10.73 10.28 9.10 10.77 9.05 9.84 25.79

12 0.01 1.41 1.03 1.02 0.00 0.99 1.10 1.11

0.05 3.01 2.21 2.14 2.46 2.22 2.33 2.39

0.10 3.32 3.09 2.66 3.58 3.11 3.21 3.42

0.25 5.26 4.48 3.65 5.08 4.35 4.70 5.42

0.50 5.16 5.53 4.28 5.66 5.30 5.71 9.26

0.75 5.07 5.70 3.83 5.76 5.37 5.70 14.69

0.90 5.51 5.60 3.46 5.47 4.95 5.56 20.73

24 0.01 0.96 0.77 0.71 0.00 0.85 0.87 0.91

0.05 1.87 1.64 1.23 1.79 1.76 1.76 1.82

0.10 2.42 2.30 1.98 2.70 2.38 2.40 2.62

0.25 3.21 3.17 2.92 3.75 3.22 3.26 4.15

0.50 3.89 3.78 2.38 3.93 3.74 3.85 7.08

0.75 2.99 3.29 2.57 3.45 3.25 3.31 12.30

0.90 2.24 2.71 1.77 2.80 2.66 2.72 19.26

25%. The Wilcoxon rank sum test and the Kolmogorov-
Smirnov test had relatively lower power compared to the
other methods, even after the proportion of differentially
methylated loci increased to 25% or higher. In terms of
stability, the bump hunting method had the largest stan-
dard deviation of total discoveries and an exponentially
increasing trend, especially when the proportion of dif-
ferentially methylated loci was larger than 50% (Table 4
and Table 5). All other methods showed similar stabil-
ity, while the empirical Bayes method had relatively the
smallest standard deviation of total discoveries across
all proportions of differentially methylated loci. Signif-
icant differences were not observed between β values
and M-values in terms of power, mean number of total
discoveries, and standard deviation of total discoveries,

except that the FDR was controlled at a lower level when-
ever the β values were used for the empirical Bayes
method.
For a moderate sample size of 12 in each group, power

was not significantly different across methods when-
ever the proportion of differentially methylated loci was
greater than 1% (Fig. 1c and Fig. 2c). The mean number
of total discoveries was also similar. standard deviation
of total discoveries was maintained at a relatively low
level for all methods across all proportions of differentially
methylated loci, except for the bump hunting method,
which showed a relatively large standard deviation of
total discoveries and an exponentially increasing trend,
whenever the proportion of differentially methylated loci
was above 25% (Table 4 and Table 5). All methods still
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Table 5 Standard deviation of total discoveries across six DNA methylation differentially analysis methods usingM values for
independent case

n π1 Standard deviation of total discoveries

Rank test t-test KS test Permutation Empirical Bayes Bump hunting BH Bump hunting q-value

3 0.01 0 0.33 0 0 0.80 0.82 0.85

0.05 0 0.92 0 0 4.66 2.64 2.95

0.10 0 1.84 0 0 7.57 5.55 6.60

0.25 0 6.64 0 0 10.79 12.82 15.70

0.50 0 18.85 0 0 13.92 18.93 26.01

0.75 0 27.87 0 0 15.81 21.28 38.30

0.90 0 29.67 0 0 15.80 21.35 43.19

6 0.01 0.00 1.70 0.00 0.00 1.41 1.94 1.95

0.05 0.00 4.61 0.00 0.00 3.19 4.20 4.26

0.10 4.44 5.83 4.44 4.44 4.36 5.34 5.51

0.25 12.17 8.01 7.04 8.71 6.60 7.46 8.47

0.50 9.47 9.98 9.73 9.70 8.08 8.92 12.08

0.75 9.90 10.02 8.55 10.46 8.23 9.28 18.02

0.90 10.73 9.97 9.10 9.23 7.90 9.27 23.71

12 0.01 1.41 1.18 1.02 0.00 1.13 1.22 1.23

0.05 3.01 2.36 2.14 2.35 2.39 2.45 2.51

0.10 3.32 3.24 2.66 3.83 3.24 3.25 3.42

0.25 5.26 4.36 3.65 4.26 4.58 4.40 5.20

0.50 5.16 5.01 4.28 5.23 5.12 4.99 8.04

0.75 5.07 4.80 3.83 4.88 4.75 4.74 12.59

0.90 5.51 4.33 3.46 4.22 3.96 4.27 18.66

24 0.01 0.96 0.87 0.71 0.00 0.96 0.91 0.92

0.05 1.86 1.72 1.23 1.63 1.82 1.75 1.84

0.10 2.42 2.36 1.99 2.35 2.46 2.43 2.71

0.25 3.21 3.18 2.92 3.50 3.40 3.22 4.09

0.50 3.89 3.67 2.38 3.79 4.11 3.71 7.08

0.75 2.99 3.04 2.57 3.14 3.37 3.07 11.45

0.90 2.25 2.30 1.77 2.36 2.59 2.30 18.40

controlled FDR within a 5% level and had a more conser-
vative control of FDR as the proportion of differentially
methylated loci increased, with the exception of the bump
hunting method which was less conservative in FDR con-
trol as the proportion of differentially methylated loci
increased. Aside from the fact that the FDR was con-
trolled at a lower level whenever the β values were used
for the empirical Bayes method, no significant differences
were observed between β values and M-values in terms
of power, mean number of total discoveries, and standard
deviation of total discoveries.
Similar simulation results were observed when sam-

ple size was increased to 24 in each group (Fig. 1d and
Fig. 2d). The power of all methods became almost identi-
cal, and the large standard deviation of the bump hunting

method became more obvious. Whenever β values were
used for analysis using the empirical Bayes method, the
FDR was controlled at a relatively lower level as com-
pared to using M values. No significant power or stability
differences were observed between the β values and M
values.
Overall, the power and stability of all methods increased

as sample size increased for both β values and M values
(Table 2, 3, 4 and 5). It was observed that the permutation
method retained lower power whenever the proportion of
differentially methylated loci was as low as 1%, regard-
less of sample size. The Wilcoxon rank sum test and the
Kolmogorov-Smirnov test had exactly the same power
and stability whenever either β values or M values were
used.
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Correlated cases
When methylation levels were correlated across CpG loci
and sample size was as small as 3 in each group, the
FDR and power estimates were different from indepen-
dent cases. The t-test and empirical Bayes method had
very large FDR estimates with both β values and M
values. The bump hunting method had estimated FDR
exceeding 0.05 when β values were used, but the FDR
was well controlled at 5% when M values were used
(Fig. 3a and Fig. 4a). Interestingly, the bump hunting

method had much higher power than all other methods
especially when the proportion of differentially methy-
lated loci was lower than 25%. We also noticed that
the power of the bump hunting method was higher
when using β values than when using M values (Table 6
and Table 7). The bump hunting method also had a
larger mean of total discoveries than all other meth-
ods, and identified more loci when β values were used.
The stability trend remained the same as in the inde-
pendent case. The bump hunting method still had the

a)

b)

c)

d)

Fig. 3 Estimated FDRs, powers, means of total discoveries, and SD of total discoveries of six DNA methylation differential analysis methods using β

values (Correlated case). Blue solid: rank test; Red dashed: t-test; Green dotted: KS test; Black dotdash: permutation test; Orange twodash: Empirical
Bayes; Yellow twodash: Bump Hunting BH adjustment (BH-BH); Purple twodash: Bump Hunting q-value adjustment (BH-q)
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a)

b)

c)

d)

Fig. 4 Estimated FDRs, powers, means of total discoveries, and variances of total discoveries of six DNA methylation differential analysis methods
usingM values (Correlated case). Blue solid: rank test; Red dashed: t-test; Green dotted: KS test; Black dotdash: permutation test; Orange twodash:
Empirical Bayes; Yellow twodash: Bump Hunting BH adjustment (BH-BH); Purple twodash: Bump Hunting q-value adjustment (BH-q)

lowest stability among all methods compared (Table 8 and
Table 9).
When increasing sample size from 3 to 6 in each group,

the FDR and power estimates also showed different char-
acteristics from independent cases. The t-test still had
very large FDR estimates when either β values orM values
were used. The empirical Bayes method had decent con-
trol of FDR when β values were used; however, it lost con-
trol of FDR whenM values were used (Fig. 3b and Fig. 4b).
When M values were used, the bump hunting method

had the highest power among all methods compared.
When β values were used, the bump hunting method
was the most powerful method, followed by the empiri-
cal Bayes method and the t-test whenever the proportion
of differentially methylated loci was lower than 10% or
higher than 75%, while the empirical Bayes method had
the highest power whenever the proportion of differen-
tially methylated loci was between 10% and 75% (Table 6
and Table 7). For stability, the bump hunting method
had still the largest standard deviation of total discoveries
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Table 6 Powers across six DNA methylation differential analysis methods using β values for correlated case

n π1 Power

Rank test t-test KS test Permutation Empirical Bayes Bump hunting BH Bump hunting q-value

3 0.01 0 0.0112 0 0 0.0000 0.9854 0.9854

0.05 0 0.0106 0 0 0.0002 0.3328 0.3328

0.10 0 0.0113 0 0 0.0000 0.1788 0.1788

0.25 0 0.0108 0 0 0.0003 0.0779 0.0779

0.50 0 0.0113 0 0 0.0009 0.0453 0.0461

0.75 0 0.0119 0 0 0.0018 0.0353 0.0388

0.90 0 0.0120 0 0 0.0031 0.0322 0.0379

6 0.01 0.0000 0.0018 0.0000 0.0000 0.0154 0.1131 0.1135

0.05 0.0000 0.0014 0.0000 0.0000 0.0167 0.0266 0.0270

0.10 0.0000 0.0012 0.0000 0.0000 0.0215 0.0150 0.0153

0.25 0.0000 0.0012 0.0000 0.0000 0.0450 0.0121 0.0139

0.50 0.0000 0.0014 0.0000 0.0000 0.0889 0.0148 0.0285

0.75 0.0000 0.0020 0.0000 0.0000 0.1300 0.0224 0.0851

0.90 0.0001 0.0029 0.0001 0.0001 0.1514 0.0287 0.1773

12 0.01 0.0128 0.0333 0.0060 0.0000 0.0982 0.0676 0.0707

0.05 0.0204 0.0564 0.0072 0.0000 0.1598 0.0726 0.0765

0.10 0.0432 0.0934 0.0174 0.0002 0.2135 0.1085 0.1183

0.25 0.1298 0.1953 0.0836 0.1070 0.3081 0.2091 0.2514

0.50 0.2574 0.3095 0.1953 0.2701 0.3976 0.3195 0.4377

0.75 0.3572 0.3824 0.3009 0.3582 0.4547 0.3874 0.6143

0.90 0.3902 0.4170 0.3011 0.3975 0.4806 0.4186 0.7283

24 0.01 0.2030 0.3114 0.1950 0.0000 0.3806 0.3472 0.3515

0.05 0.3841 0.4476 0.5185 0.2202 0.4968 0.4795 0.4890

0.10 0.4865 0.5115 0.5711 0.4547 0.5510 0.5407 0.5560

0.25 0.6240 0.6080 0.7351 0.5875 0.6333 0.6338 0.6718

0.50 0.7222 0.6796 0.8634 0.6699 0.6968 0.6972 0.7876

0.75 0.7769 0.7209 0.9425 0.7145 0.7335 0.7295 0.8899

0.90 0.7954 0.7395 0.9431 0.7343 0.7503 0.7423 0.9548

whenever the proportion of differentially methylated loci
was high, either with β values or M values (Table 8 and
Table 9).
For a sample size of 12 in each group, the power and

stability of all methods started to converge. TheWilcoxon
rank sum test, the t-test, and the Kolmogorov-Smirnov
test had estimated FDR values larger than 0.05 whenever
β values were used and the proportion of differentially
methylated loci was smaller than 10%. When M values
were used, only the bump hunting method and the per-
mutation test had FDR controlled at 5% whenever the
proportion of differentially methylated loci was smaller
than 10% (Fig. 3c and Fig. 4c). With β values, the empir-
ical Bayes method had slightly higher power than all
other methods whenever the proportion of differentially
methylated loci was smaller than 25%. The bump hunting

method had the highest power whenever the proportion
of differentially methylated loci was greater than 25%.
Using M values, the permutation test had the highest
power whenever the proportion of differentially methy-
lated loci was smaller than 50%, and the bump hunting
method had the highest power whenever the proportion
of differentially methylated loci was greater than 50%
(Table 6 and Table 7). The stability of all methods began
to converge, but the bump hunting method still showed
slightly larger standard deviation than all other methods
compared (Table 8 and Table 9).
With a sample size of 24 in each group, the power of

all methods was similar (Table 6 and Table 7). The t-
test had estimated FDR over 5% whenever β values were
used and the proportion of differentially methylated loci
was smaller than 10%. All methods had estimated FDR
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Table 7 Powers across six DNA methylation differential analysis methods usingM values for correlated case

n π1 Power

Rank test t-test KS test Permutation Empirical Bayes Bump hunting BH Bump hunting q-value

3 0.01 0 0.0025 0 0 0.0000 0.0422 0.0539

0.05 0 0.0030 0 0 0.0000 0.0133 0.0166

0.10 0 0.0027 0 0 0.0001 0.0116 0.0149

0.25 0 0.0027 0 0 0.0002 0.0101 0.0132

0.50 0 0.0031 0 0 0.0003 0.0100 0.0151

0.75 0 0.0035 0 0 0.0004 0.0108 0.0196

0.90 0 0.0038 0 0 0.0007 0.0115 0.0275

6 0.01 0.0000 0.0002 0.0000 0.0000 0.0000 0.0040 0.0043

0.05 0.0000 0.0003 0.0000 0.0000 0.0001 0.0013 0.0015

0.10 0.0000 0.0002 0.0000 0.0000 0.0001 0.0008 0.0009

0.25 0.0000 0.0002 0.0000 0.0000 0.0002 0.0007 0.0009

0.50 0.0000 0.0002 0.0000 0.0000 0.0002 0.0006 0.0011

0.75 0.0000 0.0003 0.0000 0.0000 0.0003 0.0007 0.0518

0.90 0.0001 0.0003 0.0001 0.0001 0.0004 0.0007 0.8306

12 0.01 0.0125 0.0002 0.0060 0.0000 0.0013 0.0012 0.0015

0.05 0.0201 0.0002 0.0071 0.0000 0.0008 0.0014 0.0017

0.10 0.0429 0.0002 0.0172 0.0625 0.0008 0.0016 0.0021

0.25 0.1291 0.0004 0.0828 0.3775 0.0013 0.0032 0.0099

0.50 0.2566 0.0005 0.1935 0.5593 0.0194 0.0214 0.4811

0.75 0.3560 0.0008 0.3004 0.6525 0.2526 0.1901 0.9410

0.90 0.3894 0.0016 0.3010 0.6904 0.3945 0.3202 0.9993

24 0.01 0.2000 0.0602 0.1955 0.0000 0.0779 0.1065 0.1111

0.05 0.3824 0.1561 0.5173 0.6587 0.1322 0.3315 0.3579

0.10 0.4851 0.3883 0.5719 0.8010 0.3327 0.5460 0.5907

0.25 0.6233 0.7138 0.7358 0.8928 0.6846 0.7914 0.8661

0.50 0.7215 0.8666 0.8637 0.9394 0.8597 0.8997 0.9904

0.75 0.7762 0.9197 0.9422 0.9577 0.9179 0.9326 1.0000

0.90 0.7948 0.9380 0.9431 0.9649 0.9366 0.9407 1.0000

within 5% whenM values were used (Fig. 3d and Fig. 4d).
The bump hunting method with Storey’s q-value adjust-
ment still showed low stability whenever the proportion
of differentially methylated loci was large (Table 8 and
Table 9).
In summary, the power and stability of all methods

showed differences when using β values versus M val-
ues in all correlated cases (Table 6, 7, 8 and 9). When-
ever sample sizes were 3, 6, or 12 in each group, the
t-test, the empirical Bayes method, and the bump hunting
method had larger power using β values than M values.
The same observation was made whenever sample size
was increased to 24 in each group with the proportion
of differentially methylated loci smaller than 25%. The
Wilcoxon rank sum test and the Kolmogorov-Smirnov test
had similar power using β values or M values, and the

permutation test had higher power usingM values than β

values. The permutation method still retained low power
whenever the proportion of differentially methylated loci
was as low as 1%, regardless of sample size. All methods
were observed to produce slightly larger standard devi-
ations whenever using β values rather than M values,
except for the bump hunting method and the empirical
Bayes method whenever the proportion of differentially
methylated loci was larger than 50% for sample size of 12
in each group.

Real data examples
Ovarian cancer
Ovarian cancer ranks fifth in cancer death among women
in the United States [26]. Aberrant DNA methylation was
found to be associated with ovarian cancer. A genome
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Table 8 Standard deviation of total discoveries across six DNA methylation differential analysis methods using β values for correlated
case

n π1 Standard deviation of total discoveries

Rank test t-test KS test Permutation Empirical Bayes Bump hunting BH Bump hunting q-value

3 0.01 0 3.51 0 0 0.57 4.94 4.94

0.05 0 3.36 0 0 0.87 5.08 5.08

0.10 0 3.48 0 0 0.00 5.01 5.01

0.25 0 3.55 0 0 0.56 5.36 5.37

0.50 0 4.17 0 0 1.71 6.30 6.43

0.75 0 4.41 0 0 3.45 6.38 7.03

0.90 0 4.74 0 0 5.00 7.04 8.05

6 0.01 0.00 0.70 0.00 0.00 0.41 1.26 1.26

0.05 0.00 0.77 0.00 0.00 1.19 1.47 1.50

0.10 0.00 0.72 0.00 0.00 2.26 1.68 1.73

0.25 0.00 1.16 0.00 0.00 6.00 2.93 3.33

0.50 0.00 2.32 0.00 0.00 12.26 5.89 9.53

0.75 0.00 6.88 0.00 0.00 17.56 10.06 27.22

0.90 1.94 17.78 1.94 1.97 20.27 13.17 51.04

12 0.01 0.51 0.94 0.29 0.00 1.07 1.06 1.11

0.05 1.62 2.79 0.99 0.00 3.48 2.96 3.07

0.10 4.32 5.61 2.48 0.63 5.38 5.74 6.06

0.25 12.32 10.81 14.19 15.07 9.15 10.80 12.37

0.50 13.79 15.16 51.68 17.03 13.59 15.14 20.58

0.75 31.06 18.20 11.72 19.36 15.82 18.11 32.88

0.90 19.40 19.47 13.90 20.84 17.52 19.47 44.66

24 0.01 1.66 1.62 1.67 0.00 1.35 1.62 1.62

0.05 4.68 3.77 6.71 10.98 3.44 3.78 3.86

0.10 6.50 5.31 6.31 5.09 4.91 5.32 5.47

0.25 9.92 7.98 7.73 8.23 7.62 8.01 9.26

0.50 12.56 10.37 7.95 10.64 10.00 10.40 14.80

0.75 12.78 11.00 6.64 11.17 10.69 11.00 24.48

0.90 14.06 12.13 7.07 12.19 11.78 12.13 30.75

wide DNA methylation profiling of United Kingdom
Ovarian Cancer Population Study (UKOPS) was con-
ducted to identify methylation signatures associated with
carcinogenesis [23]. The data is available publicly, down-
loaded from the NCBI GEO website with GEO num-
ber GSE19711. The data originated from the Illumina
Infinium 27k Human DNA methylation Beadchip v1.2
with 27578 CpGs from 540 whole blood samples, and 266
samples were taken from post-menopausal ovarian can-
cer patients, and 274 from normal controls (age-matched).
To illustrate the differences in apparent test power (total
number of discoveries) across the six methods at differ-
ent FDR levels, we randomly selected either 3, 6, or 12
samples from both the cancer pre-treatment group and
control group. The FDR levels ranged from 0.01 to 0.10,

with a step of 0.01. Due to lack of significants using
adjusted p-values for all methods, the raw p-values were
used for comparisons. Thus, the Storey’s q-value proce-
dure and the Benjamini-Hochberg procedure from the
bump hunting method had the same raw p-values.
When we randomly took 3 samples from both the can-

cer and control groups, both the empirical Bayes method
and the bump hunting method showed higher apparent
test power than the four other methods (Fig. 5). No dis-
coveries were made either with the Wilcoxon rank sum
test, the Kolmogorov-Smirnov test, or the permutation
test, below a FDR level of 0.08. The t-test had lower appar-
ent test power than the empirical Bayes method and the
bump hunting method. However, differences between the
empirical Bayes method and the bump hunting method
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Table 9 Standard deviation of total discoveries across six DNA methylation differentially analysis methods usingM values for
correlated case

n π1 Standard deviation of total discoveries

Rank test t-test KS test Permutation Empirical Bayes Bump hunting BH Bump hunting q-value

3 0.01 0 0.30 0 0.00 0.22 0.76 0.88

0.05 0 0.45 0 0.03 0.19 0.90 1.04

0.10 0 0.67 0 0.00 0.26 1.35 1.61

0.25 0 1.00 0 0.04 0.36 2.00 2.48

0.50 0 1.56 0 0.03 0.62 2.93 4.13

0.75 0 2.13 0 0.03 0.85 3.82 6.21

0.90 0 2.48 0 0.03 1.18 4.46 38.95

6 0.01 0.00 0.08 0.00 0.00 0.14 0.21 0.21

0.05 0.00 0.14 0.00 0.00 0.11 0.26 0.29

0.10 0.00 0.17 0.00 0.00 0.14 0.29 0.31

0.25 0.00 0.27 0.00 0.00 0.25 0.48 0.55

0.50 0.00 0.39 0.00 0.00 0.36 0.67 0.96

0.75 0.00 0.49 0.00 0.00 0.59 0.83 119.14

0.90 1.94 0.54 1.94 1.97 0.91 0.98 166.82

12 0.01 0.50 0.06 0.29 0.00 0.16 0.12 0.13

0.05 1.61 0.11 0.98 0.00 0.23 0.32 0.36

0.10 4.29 0.16 2.47 10.35 0.35 0.52 0.60

0.25 12.39 0.36 14.19 12.94 0.99 1.71 4.88

0.50 13.82 0.68 51.43 14.47 13.96 15.04 56.63

0.75 31.13 2.07 11.71 15.66 41.52 51.51 41.62

0.90 19.59 4.98 14.03 16.74 33.38 43.90 27.44

24 0.01 1.65 0.83 1.67 0.00 0.89 1.24 1.28

0.05 4.72 5.14 6.69 5.33 4.23 5.56 5.81

0.10 6.54 8.72 6.29 4.82 8.17 7.44 7.95

0.25 9.91 9.78 7.74 6.07 9.53 8.87 10.16

0.50 12.61 9.43 7.97 6.60 9.63 8.78 11.47

0.75 12.79 8.51 6.67 6.12 8.20 8.19 13.85

0.90 14.08 7.87 7.14 5.77 7.84 7.81 20.16

were not significant. When we randomly selected 6 sam-
ples from both groups, total discoveries were similar for all
methods, except for the Kolmogorov-Smirnov test which
had still a relatively lower apparent test power than all
other methods. No significant differences were observed
between results using either β-values or M-values. When
increasing sample size further to 12 in each group, we
observed that all methods had more convergent apparent
test power than when using a sample size of 6 in each
group. Similarly, the Kolmogorov-Smirnov test showed
increased power as sample size increased to 12 in each
group.

Rheumatoid arthritis
Rheumatoid arthritis is a complex disease whose etiol-
ogy involves the interaction of genetic, environmental,

and life-style factors [27]. Epigenome-wide associations
study have implicated DNA methylation as an inter-
mediary of genetic risk in rheumatoid arthritis using
Illumina HumanMethylation450 arrays on 354 rheuma-
toid arthritis cases and 337 controls [24]. The Methyla-
tion data was downloaded from the NCBI GEO website
with accession number GSE42861. To demonstrate fur-
ther the differences in apparent test power across the
six methods at different FDR levels for popular Human-
Methylation450 arrays, we randomly selected samples
of size 3, 6, or 12 from both the rheumatoid arthri-
tis case group and control group with the same FDR
level set in the Ovarian Cancer example. The Storey’s
q-value procedure and the Benjamini-Hochberg proce-
dure from the bump hunting method had the same raw
p-values.



Li et al. BMC Bioinformatics  (2015) 16:217 Page 17 of 20

a)

b)

c)

d)

e)

f)

Fig. 5 Total discoveries of the six DNA methylation differential analysis methods using both β andM values for methylation 27k data. Blue solid: rank
test; Red dashed: t-test; Green dotted: KS test; Black dotdash: permutation test; Orange twodash: Empirical Bayes; Yellow twodash: Bump Hunting
BH adjustment (BH-BH); Purple twodash: Bump Hunting q-value adjustment (BH-q)

The apparent test power showed similar results to
those observed in the ovarian cancer example (Fig. 6).
When sample size was 3 in each group, the empiri-
cal Bayes method and the bump hunting method had
higher apparent test power than all other methods
compared. The empirical Bayes method had a slightly
higher apparent test power than the bump hunting
method when β values were used, while the bump hunt-
ing method had a slighter higher apparent test power
than the empirical Bayes method when M-values were
used. All other methods showed similar results to those
observed in the ovarian cancer example. When sample
size was further increased to 6 or 12 in each group,
the apparent test power of all methods compared were
similar.
Overall, the results of the apparent test power com-

parisons of the six DNA methylation differential analysis
methods using real data were consistent with our simula-
tion results.

Discussion and conclusions
In simulation studies, we compared six DNA methylation
data analysis methods in terms of FDR control, power, and

stability in both independent and correlated cases. These
methods’ apparent test power based on raw p-values were
also compared using two real data examples. For inde-
pendent cases, no significant differences were detected
between β values and M values in terms of FDR con-
trol, power, and stability, except that FDR was controlled
at a lower level for the empirical Bayes method when
β values were used for analysis. The similarity of the
simulation results using either the β values or M values
was probably due to the linear relationship between β

and M values when β values were in the [0.2, 0.8] range
and M values were in the [-2, 2] range as pointed out
by Du [9]. The differences between β and M values in
the empirical Bayes approach are likely a result of model
mis-specification in the case of β values, potentially lead-
ing to an overestimation of standard deviations and thus
deflation of significance. For correlated cases, the FDR
control, power, and stability of the methods compared
showed differences when using β values versus M values,
which might have resulted from the correlations across
CpG loci. The higher power and slightly lower stability
observed in the t-test, the empirical Bayes method, and
the bump hunting method when using β values rather
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a)

b)

c)

d)

e)

f)

Fig. 6 Total discoveries of the six DNA methylation differential analysis methods using both β andM values for methylation 450k data. Blue solid:
rank test; Red dashed: t-test; Green dotted: KS test; Black dotdash: permutation test; Orange twodash: Empirical Bayes; Yellow twodash: Bump
Hunting BH adjustment (BH-BH); Purple twodash: Bump Hunting q-value adjustment (BH-q)

than M values for small sample size data deserves further
exploration.
In high-throughput data analysis, small or medium

sample sizes are very common due to scant resources
and funding constraints. Low statistical power challenges
the reliability of studies, especially in small biomedical
studies with low sample size [28]. Choosing appropriate
approaches for DNA methylation data analysis could help
investigators maximize the likelihood of true discover-
ies from small sample size studies with limited resources
and funding. For small sample size data, both the empiri-
cal Bayes method and the bump hunting method showed
good FDR control and much higher power than all
other methods in independent cases. The empirical Bayes
approach shrinks the estimated sample variance of the
ordinary t-statistic towards a pooled estimate, resulting
in higher power and more stable inference in small sam-
ple size studies [19]. The bump hunting method borrowed
the strength of neighbor CpG loci, which improved the
power of the DNA methylation analysis for small sam-
ple size [20]. When the methylation levels were correlated
across CpG loci, only the bump hunting method showed

decent control of FDR and much higher power than all
other methods compared. The inflated FDR from the t-
test and the empirical Bayes method was likely caused
by the violation of the t distribution assumption when
sample size is small, and by the violation of the inde-
pendence assumption of methylation levels across CpG
loci. The well-controlled FDR and high power from the
bump hunting method might be due to its strength in
taking the probe location information into account to
model the correlation structure of error variances [20].
When sample size is very small (n = 3), the zero power
of the permutation test is due to the limited number of
the possible combinations of permutation [29]. For the
Wilcoxon rank sum test and the Kolmogorov-Smirnov
test, the zero power when sample size is 3 may also be
due to the discrete distribution of their test statistics esti-
mated under the null hypothesis. For medium or large
sample size, all methods had almost equivalent power,
except for the permutation test with a very low proportion
of differentially methylated loci, which deserves further
exploration to elucidate causality. It is expected to see that
the Storey’s q-value adjustment from the bump hunting
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method has higher power than the Benjamini-Hochberg’s
p-value adjustment from the bump hunting method, as
the Storey’s q-value adjustment has a larger cutoff value
than the Benjamini-Hochberg p-value adjustment [22].
Meanwhile, the larger cutoff value from the Storey’s q-
value adjustment resulting from the inclusion of estimated
π0 also brought more variability in the analysis results,
as indicated by the greater standard deviation of total
discoveries.
In high-throughput data analysis, it is important to

examine the power and stability of multiple testing pro-
cedures to learn the likelihood of true discoveries from
empirical studies [30, 31]. In general, the use of either β

values or M values is appropriate; however, it is advis-
able to take into account the differences observed between
the β values and M values whenever applying the meth-
ods to DNAmethylation differential analysis. When DNA
methylation levels are independent across CpG loci, we
recommend the bump hunting method and the empiri-
cal Bayes method in studies constrained by small sample
sizes. When DNAmethylation levels are correlated across
CpG loci, we do recommend the bump hunting method
in studies constrained by small sample sizes. In studies
with medium to large sample size, all methods are suit-
able. With DNA differential methylation data analysis,
researchers need to exercise caution with regard to the
low stability of the bump hunting method whenever the
proportions of differentially methylated loci are large, and
with regard to the inflated FDR of the empirical Bayes
method whenever DNA methylation levels are correlated
across CpG loci in studies constrained by small sample
sizes.
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