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Abstract

Background: RNA-seq is a powerful tool for measuring transcriptomes, especially for identifying differentially
expressed genes or transcripts (DEGs) between sample groups. A number of methods have been developed for this
task, and several evaluation studies have also been reported. However, those evaluations so far have been restricted
to two-group comparisons. Accumulations of comparative studies for multi-group data are also desired.

Methods: We compare 12 pipelines available in nine R packages for detecting differential expressions (DE) from
multi-group RNA-seq count data, focusing on three-group data with or without replicates. We evaluate those
pipelines on the basis of both simulation data and real count data.

Results: As a result, the pipelines in the TCC package performed comparably to or better than other pipelines
under various simulation scenarios. TCC implements a multi-step normalization strategy (called DEGES) that
internally uses functions provided by other representative packages (edgeR, DESeq2, and so on). We found
considerably different numbers of identified DEGs (18.5 ~ 45.7 % of all genes) among the pipelines for the same real
dataset but similar distributions of the classified expression patterns. We also found that DE results can roughly be
estimated by the hierarchical dendrogram of sample clustering for the raw count data.

Conclusion: We confirmed the DEGES-based pipelines implemented in TCC performed well in a three-group
comparison as well as a two-group comparison. We recommend using the DEGES-based pipeline that internally
uses edgeR (here called the EEE-E pipeline) for count data with replicates (especially for small sample sizes). For data
without replicates, the DEGES-based pipeline with DESeq2 (called SSS-S) can be recommended.

Background
RNA sequencing (RNA-seq) is a basic tool for measur-
ing expressions of multiple genomic loci [1–5]. One im-
portant goal for RNA-seq is to identify of differentially
expressed genes (DEGs) under different conditions. Re-
searchers typically start the differential expression (DE)
analysis with a so-called “count matrix”, where each row
indicates the gene (or exons or genomic loci), each col-
umn indicates the sample, and each cell indicates the
number of reads mapped to the gene in the sample [5–9].
There are roughly four levels of resolution in current DE
analysis: gene-, transcript-, exon-, and base-level. Exam-
ples of the DE methods for individual levels are (i) edgeR

[10], DESeq [11], and TCC [12] for gene-level; (ii)
Cuffdiff2 [13], IUTA [14], and SplicingCompass [15]
for transcript-level; (iii) DEXSeq [16] and NPEBseq
[17] for exon-level; and (iv) DER Finder [18] for base-
level. Many methods can perform DE analysis for mul-
tiple levels (e.g., Cuffdiff2 can perform both gene- and
transcript-level analysis) and are provided as R/Biocon-
ductor packages [19, 20].
Read counts across technical replicates derived from a

single source fit to a Poisson distribution [3, 21]. For
data on biological replicates (BRs) derived from different
individuals, the gene-level counts well fit to an over-
dispersed Poisson distribution such as a negative-
binomial (NB) model [10, 11, 22], beta-binomial (BB)
model [5, 23], Poisson-Tweedie model [6], and so on. In
particular, the Poisson-Tweedie model well captures the
biological variation (especially for zero-inflation and
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heavy tail behavior, for details see [6]) when many BRs
are available. As an increase in sample size (i.e., the
number of replicate samples) precedes an increase in se-
quencing depth (i.e., the number of sequenced reads)
[24–26], a more complex model such as Poisson-
Tweedie may be the first choice for count data with
many BRs. However, as many replicates are still difficult
to take due to sequencing cost and the small amount of
the target RNA sample, RNA-seq data with few BRs
have mainly been stored. Two R packages based on the
NB model (edgeR and DESeq) have been widely used as
a common choice for DE analysis of RNA-seq data with
few BRs [9–11, 27].
In general, the DE analysis consists of two steps (data

normalization X and DEG identification Y), and each R
package has its own methods for the X-Y pipeline [12].
The aim of normalization is to make the normalized
counts for non-DEGs similar between all samples [28].
The edgeR and DESeq manipulate the raw count data as
input. They first calculate normalization factors (or size
factors) for individual samples as X, then construct the
model (i.e., estimate the parameters on the model in
which the calculated normalization factors are used to
re-scale the raw counts), and calculate p-values (i.e., per-
form the statistical test using the model) as Y. Previous
studies have demonstrated that X has more impact than
Y on the ranked gene list [8, 29, 30] and that two
normalization methods implemented in the two pack-
ages (edgeR and DESeq) generally give satisfactory re-
sults [31]. While the normalization method provided in
edgeR is termed TMM (trimmed mean of M-values)
[32], we here call the default pipelines X-Y for edgeR and
DESeq “edgeR-edgeR (or E-E)” and “DESeq-DESeq (or
D-D)”, respectively.
We previously proposed a multi-step normalization

procedure called TbT [8]. TbT consists of three steps: X
using TMM (step 1), Y using an empirical Bayesian
method implemented in the baySeq package [22] (step 2),
and X using TMM after elimination of the estimated
DEGs (step 3) comprising the TMM-baySeq-TMM
normalization pipeline. The key concept is to alleviate the
negative effect of potential DEGs before calculating the
normalization factors in step 3. As mentioned previously
[8], the DEG elimination strategy (called DEGES) can be
repeated until the calculated normalization factors con-
verge. The iterative TbT can be described as a TMM-(bay-
Seq-TMM)n procedure. Accordingly, a generalized pipeline
with the multi-step normalization can be described as
X-(Y-X)n-Y in which the X-(Y-X)n with n > = 2 corre-
sponds to the iterative DEGES-based normalization.
Our TCC package [12] implements the proposed pipe-

line X-(Y-X)n-Y. Recommendations are made from an ex-
tensive simulation analysis: (i) edgeR-(edgeR-edgeR)3-
edgeR on two-group RNA-seq data with few replicates

and (ii) DESeq-(DESeq-DESeq)3-DESeq on two-group
data without replicates [12]. However, similar to many
other studies [24–28, 33], the performance evaluations
were limited to a two-group comparison. While many R
packages as well as TCC can perform DE analysis on
more complex experimental designs [5, 9, 22, 34–37],
there have been few evaluation studies on RNA-seq data
with those designs, e.g., multi-group data. The current
study aims to evaluate 12 pipelines available in nine R
packages when analyzing multi-group RNA-seq count
data. Specifically, our primary interest is to investigate
the effectiveness of the DEGES-based pipeline in TCC
under such more complex designs. We report pipelines
suitable for multi-group comparison.

Results and discussion
To investigate the performance of DE pipelines for a
multi-group comparison, a total of 12 pipelines available
in the nine packages were mainly evaluated in this study:
TCC (ver. 1.7.15) [12], edgeR (ver. 3.8.5) [10], DESeq
(ver. 1.18.0) [11], DESeq2 (ver. 1.6.3) [35], voom [38] in
limma (ver. 3.22.1) [39], SAMseq [40] in samr (ver. 2.0),
PoissonSeq (ver. 1.1.2) [41], baySeq (ver. 2.0.50) [22],
and EBSeq (ver. 1.6.0) [42]. Note that TCC can perform
several combinations for the DE pipeline X-(Y-X)n-Y
with n = 3 as recommended [12]. We sometimes refer to
this DEGES-based pipeline as XYX-Y with the fixed
number of n for short. We basically confine individual
methods (X and Y) in each pipeline to functions provided
by the same packages (i.e., edgeR or DESeq2) for simpli-
city. For example, the edgeR-related pipeline is “edgeR-
(edgeR-edgeR)3-edgeR”, where X = TMM and Y = the
DEG identification method, implemented in edgeR. Al-
though we previously termed this pipeline “iDEGES/
edgeR-edgeR” [12], here we abbreviate it to EEE-E for con-
venience. Similarly, the “DESeq-(DESeq-DESeq)3-DESeq”
pipeline can be shortened to DDD-D. This is because (1)
users can select, for example, different DEG identification
methods Y for steps 2 and 4 and (2) we will discuss
some possible combinations such as DED-S for the
“DESeq-(edgeR-DESeq)3-DESeq2” pipeline. In this sense,
the DEGES-based pipeline can also be denoted as X-
(Y-X)n-Z or XYX-Z.
Following our previous studies [8, 12], we here demon-

strate the performance of these pipelines mainly on the
basis of same evaluation metric and simulation frame-
work. We use the area under the ROC curve (AUC) as a
main measure of comparison, which evaluates both sen-
sitivity and specificity of the pipelines simultaneously
[28, 43–48]. To perform the multi-group comparison as
simply as possible, we focus here on the three-group
data (i.e., G1 vs. G2 vs. G3) with equal numbers of repli-
cates (i.e., 1, 3, 6, and 9 replicates per group; Nrep = 1, 3,
6, and 9). The gene ranking was performed on the basis
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of an ANOVA-like p-value or the derivatives, where a
low p-value for a gene indicates a high degree of DE in
at least one of the groups compared. The simulation
conditions are as follows: the total number of genes is
10,000 (Ngene = 10000), 5 or 25 % of the genes are
DEGs (PDEG = 5 or 25 %), the levels of DE are four-fold
in individual groups, and the proportions of DEGs up-
regulated in individual groups (PG1, PG2, PG3) are (1/3,
1/3, 1/3), (0.5, 0.3, 0.2), (0.5, 0.4, 0.1), (0.6, 0.2, 0.2),
(0.6, 0.3, 0.1), (0.7, 0.2, 0.1), and (0.8, 0.1, 0.1).

Simulation data with replicates
We first assessed the performances of a total of 12 pipe-
lines: three pipelines in TCC (i.e., EEE-E, DDD-D, and
SSS-S), edgeR, edgeR_robust, DESeq, DESeq2, voom,
SAMseq, PoissonSeq, baySeq, and EBSeq. Table 1 lists
the average AUC values of 100 trials between the ranked
gene lists and the truth for various simulation conditions
with Nrep = 3. Overall, the AUC values for the EEE-E
pipeline were the highest and similar across the seven
different proportions of DEGs up-regulated in individual
groups (PG1, PG2, PG3). The edgeR (i.e., the pipeline E-E)
performed the second best overall. EEE-E and edgeR
performed comparably under the unbiased proportion of
DEGs in individual groups (1/3, 1/3, 1/3). This is quite
reasonable because the EEE-E can be viewed as an itera-
tive edgeR pipeline and their theoretical performances
are the same under the unbiased condition [12]. Similar
to the relationship between EEE-E and edgeR, the DDD-
D (or SSS-S) can be viewed as an iterative DESeq (or
DESeq2) pipeline. As expected, DDD-D (or SSS-S) con-
sistently outperformed DESeq (or DESeq2) in all simula-
tion conditions except for the unbiased situations.
We observed similar AUC values across the seven dif-

ferent proportions of DEGs for individual pipelines at
PDEG = 5 % (Table 1a). When a higher amount of DEGs
was introduced (i.e., PDEG = 25 %; Table 1b), the perfor-
mances generally worsened as the degrees of biases in-
creased (i.e., from left to right in Table 1). For example,
the AUC values for voom under the unbiased (1/3, 1/3,
1/3) and most biased (0.8, 0.1, 0.1) proportions de-
creased from 87.08 to 84.56 %. We observed relatively
poor performances for EBSeq and voom. This is consist-
ent with a previous simulation study on two-group data
with a low number of BRs (Nrep = 2) [28]. A possible ex-
planation of these results is that EBSeq was originally
developed to detect DE isoforms (not DEGs) [41] and
the large body of methodology in voom is for microarray
data (not RNA-seq count data) [38]. Our current evalu-
ation focuses on the gene-level RNA-seq count data and
does not address the problem of such a detailed reso-
lution of DE analysis. SAMseq and PoissonSeq per-
formed stably across different proportions. This is
probably because both methods are non-parametric ones

that do not assume any particular distribution for the
data and are generally robust against such biased situa-
tions. These methods, however, performed poorly over-
all. Additional file 1 is the R code for obtaining these
results.
It should be noted that the relative performances for

EBSeq tend to improve as the number of replicates per
group increases (Nrep = 6 and 9; see Sheet 2 and 3 in
Additional file 2). In particular, EBSeq consistently out-
performed the others when Nrep = 9 and PDEG = 5 %,
suggesting that the DEGES-based pipeline based on
EBSeq could produce a more accurate ranked gene list.
However, as previously discussed for the DEGES-based
pipeline based on baySeq [12], Bayesian methods (EBSeq

Table 1 Average AUC values for simulation data with replicates

PG1 33 % 50 % 50 % 60 % 60 % 70 % 80 %

PG2 33 % 30 % 40 % 20 % 30 % 20 % 10 %

PG3 33 % 20 % 10 % 20 % 10 % 10 % 10 %

(a) PDEG = 5 %

EEE-E (TCC) 91.57 91.50 91.50 91.43 91.42 91.45 91.46

DDD-D (TCC) 90.70 90.62 90.64 90.54 90.55 90.59 90.62

SSS-S (TCC) 88.34 88.33 88.30 88.24 88.23 88.21 88.30

E-E (edgeR) 91.58 91.48 91.47 91.38 91.37 91.38 91.34

edgeR_robust 90.95 90.86 90.85 90.75 90.74 90.74 90.73

D-D (DESeq) 90.71 90.60 90.60 90.50 90.49 90.50 90.48

S-S (DESeq2) 88.34 88.31 88.26 88.19 88.17 88.11 88.14

voom 87.16 87.01 86.99 86.88 86.91 86.88 86.86

SAMseq 85.04 84.97 84.93 84.83 84.88 84.88 84.91

PoissonSeq 87.31 87.25 87.25 87.19 87.17 87.22 87.23

baySeq 90.24 90.21 90.21 90.22 90.17 90.13 90.07

EBSeq 85.77 85.85 85.78 85.81 85.73 85.71 85.77

(b) PDEG = 25 %

EEE-E (TCC) 91.47 91.46 91.45 91.45 91.43 91.42 91.37

DDD-D (TCC) 90.77 90.73 90.72 90.70 90.68 90.65 90.57

SSS-S (TCC) 88.13 88.11 88.13 88.14 88.12 88.09 88.06

E-E (edgeR) 91.47 91.30 91.18 91.06 90.98 90.62 89.97

edgeR_robust 90.89 90.69 90.57 90.43 90.34 89.97 89.27

D-D (DESeq) 90.77 90.54 90.37 90.25 90.15 89.73 89.04

S-S (DESeq2) 88.12 87.83 87.62 87.49 87.36 86.79 85.92

voom 87.08 86.71 86.52 86.29 86.18 85.60 84.56

SAMseq 84.95 84.82 84.82 84.77 84.75 84.72 84.63

PoissonSeq 87.22 87.18 87.14 87.13 87.11 87.06 86.97

baySeq 90.34 90.13 90.07 89.92 89.83 89.52 88.86

EBSeq 85.82 85.61 85.49 85.34 85.30 84.74 84.02

Average AUC values (%) of 100 trials for each simulation condition are shown:
(a) PDEG = 5 % and (b) PDEG = 25 %. Simulation data contain a total of 10,000
genes: PDEG % of genes is for DEGs, PG1 % of PDEG in G1 is higher than in the
other groups, and each group has three BRs (Nrep = 3). Seven conditions are
shown in total. The highest AUC value for each condition is in bold
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and baySeq) generally require huge computation time
(see Sheet 4 in Additional file 2). While the computation
can be parallelized, the implementation of DEGES for
EBSeq might be unfeasible.
Recall that the level of DE for DEGs was four-fold in

this simulation framework and the shape of the distribu-
tion for introduced DEGs is the same as that of non-
DEGs [8]. Although the simulation framework has been
used [8; 12; 32], this may weaken the validity of the
current simulation framework. To mitigate this concern,
we performed simulations with different distributions of
DE when introducing DEGs. In this simulation, the fold-
changes for DEGs were randomly sampled from “1.2 + a
gamma distribution with shape = 2.0 and scale = 0.5”,
giving mean fold-change of 2.2 (=1.2 + 2.0 × 0.5). Similar
to the results with a fixed level of DE (four-fold for all
DEGs), EEE-E performed the best overall (see Sheet 5 in
Additional file 2). While a more extensive study with
other simulation settings should still be performed, this
trend suggests that different distributions of DE does
not have much impact on the DE results. The function-
ality for generating the different distributions of DE in
the “simulateReadCounts” function will be available in
TCC ver. 1.9.3 or higher.
As mentioned above, TCC can perform various combi-

nations for the DEGES-based DE pipeline X-(Y-X)n-Z or
XYX-Z, where Y and Z are the DEG identification
methods and X is the normalization method. We investi-
gated the effect of the individual methods (used as X, Y,
and Z) by analyzing a total of 12 pipelines (eight
DEGES-based pipelines and four non-DEGES-based
pipelines). Table 2 shows the average AUC values for
these pipelines. Note that the values in Tables 1 and 2
are comparable and that those for the four pipelines
(EEE-E, DDD-D, E-E, and D-D; colored gray in Table 2)
are provided in both tables. It is clear that choosing Z
has more impact on the gene ranking accuracy than
choosing Y and that using the DEG identification
method provided in edgeR in both Y and Z can be rec-
ommended. In comparison with the two normalization
methods in X in the eight DEGES-based pipelines, the
method in DESeq (denoted as “D”) gave slightly higher
AUC values than the TMM normalization method in
edgeR (denoted as “E”). However, the superiority of
DESeq in X was not observed when the four non-
DEGES-based pipelines X-Z were compared, where
edgeR (i.e., the TMM normalization method) outper-
formed DESeq. In any case, the different choices in X
have less impact than those in Y and Z. Additional file 3
is the R code for obtaining the results shown in Table 2.
Surprisingly, the best pipeline was DED-E, followed by

EEE-E and DDD-E (Table 2b). The DED-E and DDD-E
pipelines consist of methods provided by different pack-
ages. For example, DED-E, the “DESeq-(edgeR-DESeq)3-

edgeR” pipeline, consists of the normalization method in
DESeq as X and the DEG identification method in edgeR
as Y and Z. These results suggest that in some cases, the
suitable choices of the best pipeline may slightly improve
DE results. We should note that the current simulation
data are generated by the “simulateReadCounts” func-
tion in TCC. This is simply because, to the best of our
knowledge, TCC only provides the R function that can
generate multi-group simulation count data. TCC simu-
lates all counts using NB distributions, implying that this
simulation framework advantageously acts on the clas-
sical R packages such as edgeR and DESeq. This is prob-
ably the main reason for poor performances of two
recently published packages (edgeR_robust and DESeq2;

Table 2 Effect of different choices for the possible pipelines in
TCC

PG1 33 % 50 % 50 % 60 % 60 % 70 % 80 %

PG2 33 % 30 % 40 % 20 % 30 % 20 % 10 %

PG3 33 % 20 % 10 % 20 % 10 % 10 % 10 %

(a) PDEG = 5 %

EEE-E 91.57 91.50 91.50 91.43 91.42 91.45 91.46

DED-E 91.57 91.50 91.50 91.43 91.42 91.46 91.47

EDE-E 91.57 91.50 91.50 91.43 91.42 91.45 91.46

DDD-E 91.57 91.50 91.50 91.43 91.42 91.45 91.46

EEE-D 90.70 90.62 90.64 90.54 90.55 90.58 90.62

DED-D 90.71 90.62 90.64 90.54 90.55 90.59 90.62

EDE-D 90.70 90.62 90.64 90.54 90.55 90.58 90.62

DDD-D 90.70 90.62 90.64 90.54 90.55 90.59 90.62

E-E (edgeR) 91.58 91.48 91.47 91.38 91.37 91.38 91.34

D-E 91.58 91.48 91.46 91.38 91.36 91.36 91.32

E-D 90.70 90.61 90.61 90.50 90.50 90.51 90.50

D-D (DESeq) 90.71 90.60 90.60 90.50 90.49 90.50 90.48

(b) PDEG = 25 %

EEE-E 91.47 91.46 91.45 91.45 91.43 91.42 91.37

DED-E 91.47 91.46 91.47 91.47 91.45 91.45 91.43

EDE-E 91.47 91.43 91.41 91.40 91.36 91.30 91.19

DDD-E 91.47 91.44 91.43 91.42 91.39 91.36 91.29

EEE-D 90.77 90.74 90.74 90.73 90.71 90.71 90.65

DED-D 90.77 90.74 90.76 90.75 90.73 90.74 90.71

EDE-D 90.77 90.71 90.70 90.68 90.64 90.60 90.47

DDD-D 90.77 90.73 90.72 90.70 90.68 90.65 90.57

E-E (edgeR) 91.47 91.30 91.18 91.06 90.98 90.62 89.97

D-E 91.48 91.25 91.08 90.96 90.86 90.44 89.75

E-D 90.77 90.59 90.48 90.35 90.26 89.92 89.25

D-D (DESeq) 90.77 90.54 90.37 90.25 90.15 89.73 89.04

Legends are basically the same as in Table 1. Results of a total of 12 pipelines
are shown. The AUC values for four pipelines (EEE-E, DDD-D, E-E, and D-D) in
bold are also shown in Table 1. The DED-E pipeline outperforms the
others overall
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see Table 1); those are the advanced versions for edgeR
and DESeq, respectively, and are robust against count
outliers such as abnormally high counts (for details, see
[35, 36]). To the best of our knowledge, only one R
package, compcodeR [48], can generate simulation count
data with outliers, but it has been restricted to only two-
group comparisons so far. Extending the simulation
framework of compcodeR to multi-group data may allow
different pipelines to be compared more equally.

Simulation data without replicates
Unlike (multi-group) count data with replicates, there
are few packages that can manipulate count data without
replicates. These include TCC, edgeR, DESeq, DESeq2,
and so on. We here evaluated a total of 20 pipelines (13
DEGES-based pipelines and seven non-DEGES-based
pipelines). Table 3 shows the results for simulation data
without replicates under PDEG = 25 %. When three ori-
ginal non-DEGES-based pipelines X-Z are compared,
DESeq2 (i.e., S-S) performed the best, followed by DESeq
(D-D) and edgeR (E-E). This is completely different from
the results in Table 2. When 13 DEGES-based pipelines

XYX-Z are compared, choosing Z for the DEGES-based
pipeline has more impact on the gene ranking accuracy
than choosing Y (similar to Table 2) and that using the
DEG identification method provided in DESeq2 (i.e., S)
can be recommended as Z. This result may possibly be
explained by the removal of outliers that do not fit the
distributional assumptions of the model [40]: DESeq2
[35] implements a functionality for detecting and remov-
ing outliers on the basis of Cook’s distance [49]. In the
situation of count data without replicates, DEGs tend to
be flagged as outliers: Cook’s distances are generally
greater for DEGs than for non-DEGs. The negative effect
of 25 % DEGs introduced in this simulation framework
could therefore be weakened.
In addition to the model construction only with non-

outliers in the Z step, the DEGES-based normalization
in the XYX step also slightly but reliably improves
ranked gene lists. For example, the AUC values higher
for SSS-S than S-S (i.e., DESeq2) are by virtue of the
multi-step normalization strategy originally proposed by
Kadota et al. [8]. However, as also discussed in the TCC
paper [12], DESeq and DESeq2 generally estimate false
discovery rates (FDR) more conservatively than others
[9]. Indeed, we observed that the numbers of potential
DEGs satisfying 10 % FDR in step 2 (i.e., the Y step) in
the SSS-S pipeline were nearly zero (i.e., the estimated
PDEG values were 0 %) in all simulations, although the
actual PDEG values were 25 %. This is reasonable because
any attempt to work without replicates will lead to con-
clusions of very limited reliability [12]. TCC employs a
predefined floor PDEG value (=5 %) to obtain certain dif-
ferences between the DEGES-based approach SSS-S and
non-DEGES-based approach S-S: at least 5 % of the top-
ranked genes are not used when the normalization factors
are calculated at step 3 in the XYX pipeline. As an esti-
mated PDEG value of x% tends to work better when simu-
lation data with the same PDEG value are analyzed,
accurate estimation is the next important task. Additional
file 4 is the R code for obtaining the results shown in
Table 3.

Real data with replicates
In addition to the simulation study, we also analyzed a
real RNA-seq count dataset sequenced from the three
species (i.e., the three-group data): humans (HS), chim-
panzees (PT), and rhesus macaques (RM) [50]. Briefly,
Blekhman et al. studied expression levels of liver samples
from three males (M1, M2, and M3) and three females
(F1, F2, and F3) from each species, giving a total of six
different individuals (i.e., six biological replicates) for
each species. Since they performed duplicate experi-
ments for each individual (i.e., two technical replicates),
the publicly available raw count matrix consists of
20,689 genes × 36 samples (=3 species × 2 sexes × 3

Table 3 – Average AUC values for simulation data without
replicates

PG1 33 % 50 % 50 % 60 % 60 % 70 % 80 %

PG2 33 % 30 % 40 % 20 % 30 % 20 % 10 %

PG3 33 % 20 % 10 % 20 % 10 % 10 % 10 %

EEE-E 77.15 76.88 76.78 76.63 76.88 76.15 75.48

DED-E 77.15 76.86 76.73 76.59 76.86 76.08 75.41

EDE-E 77.15 76.88 76.79 76.64 76.88 76.19 75.57

DDD-E 77.15 76.87 76.75 76.61 76.87 76.13 75.50

EEE-D 81.51 81.14 81.28 80.93 81.14 80.51 79.97

DED-D 81.52 81.14 81.25 80.90 81.14 80.45 79.90

EDE-D 81.49 81.14 81.28 80.94 81.14 80.55 80.05

DDD-D 81.51 81.15 81.26 80.91 81.15 80.49 79.98

E-E (edgeR) 77.15 76.87 76.76 76.60 76.87 76.10 75.36

D-E 77.15 76.86 76.71 76.57 76.86 76.04 75.35

E-D 81.49 81.13 81.27 80.91 81.13 80.46 79.86

D-D (DESeq) 81.53 81.12 81.23 80.88 81.12 80.41 79.84

SSS-S 82.46 82.18 82.08 81.98 82.18 81.52 80.97

EEE-S 82.46 82.18 82.08 81.98 82.18 81.50 80.89

DED-S 82.46 82.17 82.04 81.95 82.17 81.43 80.81

EDE-S 82.46 82.18 82.09 82.00 82.18 81.54 80.97

DDD-S 82.46 82.17 82.06 81.97 82.17 81.48 80.90

S-S (DESeq2) 82.46 82.16 82.01 81.92 82.16 81.38 80.73

E-S 82.46 82.17 82.07 81.96 82.17 81.45 80.76

D-S 82.46 82.16 82.02 81.93 82.16 81.39 80.74

Legends are basically the same as in Table 1. Results of a total of 20 pipelines
under PDEG = 25 % are shown. The EDE-S pipeline outperforms the
others overall
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biological replicates × 2 technical replicates). To cor-
rectly estimate the biological variation and make the as-
sumed structure of input data, we summed and
collapsed the count data of technical replicates, giving a
reduced number of columns in the count matrix (i.e., 18
samples; three species × 2 sexes × 3 biological replicates).
We here compared a total of 12 pipelines in light of the
overall similarity of ranked gene lists, the number of
shared DEGs satisfying an FDR threshold, and so on. To
compare these pipelines as simply as possible, we
regarded this dataset as a single-factor experimental de-
sign of three species where each has six biological repli-
cates (i.e., HS_rep1-6 vs. PT_rep1-6 vs. RM_rep1-6). The
full R code for analyzing this dataset is provided in Add-
itional file 5. The results of sample clustering applied to
these raw and collapsed count datasets are given in Add-
itional file 6 (as part of the results in Additional file 5).
Figure 1 shows the dendrogram of average-linkage

clustering for the 12 ranked gene lists. Seven pipelines
located in the center (from SSS-S to D-D) show similar
ranked gene lists. This is mainly because the seven pipe-
lines from the four packages (TCC, edgeR, DESeq, and
DESeq2) commonly employ a generalized linear model
(GLM) framework. Indeed, the minimum value of
Spearman’s correlation coefficients (r) among the seven
pipelines was 0.9240. It is also noteworthy that ranked
gene lists produced from TCC’s iterative strategies and the
corresponding original non-iterative strategies are particu-
larly similar. For example, the r between EEE-E from TCC
and E-E from edgeR was 0.9999, implying that these data
are not extremely biased in light of the proportions of
DEGs up- and/or down-regulated in individual groups

(PG1, PG2, PG3). That is, the proportions of DEGs in these
data (PG1, PG2, PG3) are rather closer to (1/3, 1/3, 1/3)
than, for example, (0.8, 0.1, 0.1) or (0.0, 0.9, 0.1).
Note that the dendrogram shown in Fig. 1 does not

necessarily indicate the superiority of the seven GLM-
based pipelines over the others such as EBSeq and bay-
Seq. For example, EBSeq employs an empirical Bayesian
framework that returns the posterior probabilities for
each of the five possible expression patterns (or models)
to each gene. We here used the posterior probability ob-
tained from the “non-DEG” pattern as a surrogate esti-
mate for the adjusted p-values and ranked genes in
ascending order of the values. This is probably the main
reason for EBSeq having lower similarity than the others.
We also confirmed this trend with some simulation data.
As shown in Sheet 2 in Additional file 2, EBSeq had the
highest average AUC values in the simulation condition:
PDEG = 5 %, (0.5, 0.4, 0.1) for (PG1, PG2, PG3), and Nrep =
9. A typical dendrogram of 12 ranked gene lists obtained
from this simulation condition is given in Additional file
7. In this trial, while EBSeq and baySeq formed one of
the two major clusters, those AUC values were not the
top two: the ranks for EBSeq and baySeq were the 1st
and 6th, respectively. These results indicate that the low
similarities of ranked gene lists between Bayesian pipe-
lines (such as EBSeq and baySeq) and the GLM-based
pipelines do not matter.
We compared the numbers of DEGs obtained from in-

dividual pipelines and the overlaps between all pairs of
pipelines (see Additional file 8). We found that different
pipelines could produce considerably different numbers of
DEGs. Indeed, the numbers widely ranged from 3832

Fig. 1 Overall similarity of 12 ranked gene lists applied for Blekhman’s real count data. The dendrogram of average-linkage clustering is shown.
Spearman’s rank correlation coefficient (r) is used as a similarity metric; left-hand scale represents (1 - r)
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(18.5 % of all genes; DESeq) to 9453 (45.7 %; SAMseq).
This trend is consistent with that in a previous compara-
tive study [28]. As expected from Fig. 1, we observed simi-
lar numbers of DEGs between the three DEGES-based
pipelines (EEE-E, DDD-D, and SSS-S) and the correspond-
ing non-DEGES-based ones (E-E, D-D, and S-S). The Jac-
card coefficients, defined as “intersection/union” for two
sets of DEGs, for the three pairs (EEE-E vs. E-E, DDD-D
vs. D-D, and SSS-S vs. S-S) were top-ranked among a total
of 66 possible pairs. For example, both EEE-E in TCC and
E-E in edgeR reported the same numbers of DEGs
(=7247). Of these, 7208 DEGs (99.46 %) were common,
and the Jaccard coefficient was 7208 / 7286 = 0.9893 (see
Additional file 8). The overall number of common genes
across the 12 sets of DEGs was 2376. Since individual sets
were identified under the 5 % FDR threshold, 95 % of the
2376 common DEGs can statistically be regarded as
confident.
We next classified the expression patterns of the DEGs

obtained from the 12 pipelines (Table 4). We here
assigned individual DEGs to one of the ten possible pat-
terns defined in baySeq [22]; this package returns one of
these patterns to each gene. The background information
for this data is shown in the “all_genes” row in Table 4.
The “common” row indicates the percentages of individual
expression patterns for the 2376 common DEGs. The
remaining rows (from EEE-E to EBSeq) show the distribu-
tions for each of the pipelines. It is reasonable that no
DEGs identified by individual pipelines are assigned as a
flat expression pattern (i.e., G1 = G2 =G3) for the HS (G1)
vs. PT (G2) vs. RM (G3) comparison. We found that most
DEGs were assigned preferably to one of four patterns

(G1 > G2 >G3, G2 > G1 >G3, G3 >G1 > G2, and G3 >
G2 > G1) and unpreferably to one of two patterns (G1 >
G3 > G2 and G2 > G3 > G1). That is, up- (or down-)
regulation in G1 for DEGs tends to coincide with G2
more than G3. This can also be seen in the results from
sample clustering of the raw count data (see Additional
file 6), implying that we can roughly predict the DE re-
sults such as those shown in Table 4 from the overall
similarities of samples on the raw count data.
When comparing the distributions of patterns for

DEGs between pipelines, we saw high similarities overall.
If anything, baySeq showed a distribution relatively dif-
ferent from the others in light of the higher percentages
for three patterns (G1 > G2 = G3, G2 > G1 = G3, and
G3 > G1 = G2). This kind of classification can also be
performed using EBSeq [42]. EBSeq defines a total of
five possible patterns when comparing three groups: Pat-
tern 1 for non-DEG (i.e., G1 = G2 = G3), Pattern 2 for
differential expression (DE) in G3 (G1 = G2 < G3 and
G1 = G2 > G3), Pattern 3 for DE in G2 (G2 > G1 = G3
and G2 < G1 = G3), Pattern 4 for DE in G1 (G1 > G2 =
G3 and G1 < G2 = G3), and Pattern 5 for DE among all
groups. Similar to baySeq, EBSeq also returns one of
these patterns to each gene. The results of classification
based on EBSeq are given in Additional file 9. Similar to
the results from baySeq (Table 4), we observed that
nearly half the DEGs were assigned to Pattern 2, where
the expression patterns between G1 and G2 tend to be
more similar than for G3. We also observed that the dis-
tribution for baySeq is relatively different from the
others, e.g., lower percentages in Patterns 3 and 4 and a
higher percentage in Pattern 5.

Table 4 – Classification of expression patterns for DEGs

G1 = G2 =
G3

G1 > G2 =
G3

G1 > G2 >
G3

G1 > G3 >
G2

G2 > G1 =
G3

G2 > G1 >
G3

G2 > G3 >
G1

G3 > G1 =
G2

G3 > G1 >
G2

G3 > G2 >
G1

Total

all_genes 13.5 2.2 15.1 8.7 2.3 15.9 9.4 2.9 15.1 14.8 20689

common 0.0 0.1 23.2 5.8 0.2 26.4 5.7 0.7 18.6 19.2 2376

EEE-E 0.0 0.6 20.7 7.4 0.7 21.9 8.1 1.6 19.9 19.2 7247

DDD-D 0.0 0.4 25.0 7.3 0.6 25.0 6.0 1.4 17.3 17.1 3850

SSS-S 0.0 0.2 19.3 7.1 0.3 21.7 9.4 0.9 19.9 21.2 7295

E-E (edgeR) 0.0 0.6 20.4 7.3 0.7 22.1 8.3 1.6 19.7 19.3 7247

edgeR_robust 0.0 0.3 20.6 8.4 0.5 22.0 8.8 1.2 19.1 18.9 8076

D-D (DESeq) 0.0 0.4 24.3 7.2 0.6 24.2 6.0 1.4 17.8 18.1 3832

S-S (DESeq2) 0.0 0.2 20.4 8.0 0.3 21.8 8.9 0.8 19.7 19.9 7585

voom 0.0 0.7 21.3 7.7 0.7 22.5 8.2 1.3 18.7 19.0 7016

SAMseq 0.0 0.2 20.9 9.7 0.3 21.8 9.2 0.8 18.9 18.3 9453

PoissonSeq 0.0 0.0 19.5 8.9 0.1 22.2 9.4 0.3 20.3 19.3 6613

baySeq 0.0 0.8 21.0 5.5 1.3 23.7 6.3 2.8 19.0 19.6 3975

EBSeq 0.0 0.0 21.0 7.0 0.1 23.7 7.1 0.3 20.8 19.9 5699

Percentages of genes assigned to each of the ten possible patterns defined as baySeq. Numbers in the “Total” column indicate the numbers of genes. For
example, baySeq assigned 13.5 % of 20,689 genes as “G1 = G2 = G3.”
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We finally assessed the reproducibility of ranked gene
lists. Remember that the real dataset we analyzed here
consists of three groups, each of which has six BRs (we
denote this dataset as “rep1-6”). In addition to the ori-
ginal three-group comparison with six replicates (i.e.,
HS_rep1-6 vs. PT_rep1-6 vs. RM_rep1-6), we also per-
formed three three-group comparisons by dividing the
original dataset into three; individual subsets consist of
two BRs for each group. For example, the first subset
(say “rep1-2”) consists of a total of six samples for com-
paring HS_rep1-2, PT_rep1-2, and RM_rep1-2. Likewise,
the third subset (“rep5-6”) is for comparing “HS_rep5-6
vs. PT_rep5-6 vs. RM_rep5-6”. After performing the DE
analysis for the three subsets (i.e., rep1-2, rep3-4, and

rep5-6), we obtained three ranked gene lists for these
subsets. Accordingly, there are a total of four ranked
gene lists (rep1-2, rep3-4, rep5-6, and rep1-6) for each
pipeline. We evaluated the reproducibility of ranked
gene lists (i) for each subset to the original dataset (i.e.,
rep1-6 vs. rep1-2, rep1-6 vs. rep3-4, and rep1-6 vs.
rep5-6) and (ii) among the three subsets (i.e., rep1-2 vs.
rep3-4 vs. rep5-6).
Figure 2 shows the numbers of common genes between

the compared sets of top-ranked genes for individual pipe-
lines: (a) for the top 100 and (b) for the top 1000. For ex-
ample, there were 66 common genes when comparing the
two sets (rep1-6 and rep5-6) of the 100 top-ranked genes
obtained from the EEE-E pipeline (see the leftmost blue

Fig. 2 Reproducibility between ranked gene lists. Numbers of common genes between top-ranked genes for individual pipelines are shown:
(a) results for 100 top-ranked gene lists and (b) results for 1000 top-ranked gene lists. Bars in black (rep1-6 vs. rep1-2), gray (rep1-6 vs. rep3-4), and
blue (rep1-6 vs. rep5-6) in Fig. 2a indicate the numbers of common genes between the two sets of 100 top-ranked genes obtained from the
individual pipelines. For example, the gray bar (rep1-6 vs. rep3-4) for DDD-D in Fig. 2a indicates that there were 46 common genes when the 100
top-ranked genes from the dataset rep1-6 are compared with the 100 top-ranked genes from the dataset rep3-4. Analogously, bars in red (rep1-2
vs. rep3-4 vs. rep5-6) in Fig. 2b indicate the numbers of common genes between the three sets of 1000 top-ranked genes for the three datasets
(rep1-2, rep3-4, and rep5-6). For example, the red bar for EEE-E in Fig. 2b indicates that there were 397 common genes (39.7 % of overlapping
genes) when the three sets of gene lists (each of which contains 1000 top-ranked genes) obtained from the pipeline EEE-E for the three datasets
were compared. The full R code for this analysis is given in Additional file 5
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bar in Fig. 2a). As shown in Table 1 and Additional file 2,
the more BRs we use, the more accurate the ranked gene
lists we can obtain. Accordingly, the evaluation based on
the reproducibility of ranked gene lists is analogous to a
performance comparison when the available count data
have only two BRs. Overall, we see high reproducibility for
three edgeR-related pipelines (EEE-E, E-E, and edgeR_ro-
bust) and low reproducibility for two pipelines (SAMseq
and EBSeq). This trend is consistent with the simulation
results shown in Table 1 (i.e., three-group data with three
BRs) and previous simulation results for two-group data
with two BRs [28]. Although PoissonSeq showed the high-
est reproducibility when the 1000 top-ranked genes were
evaluated (Fig. 2b), the performance seems unstable, espe-
cially on < 200 top-ranked genes. This is mainly due to
low reproducibility of the ranked gene list for rep1-2 to
the list for rep1-6. Although we saw a plausible outlying
sample (RMM2 or RM_rep5) in the dendrogram of sam-
ple clustering for the raw count data, it would not have
been related to the dissimilarity of ranked gene lists be-
tween rep1-2 and rep1-6. The percentages of overlapping/
common genes (POGs) for any numbers of top-ranked
genes are given in Additional file 10.

Effect of different choices for options
In general, there are multiple options for some func-
tions, and different choices may result in different
ranked gene lists. We investigated the effect of different
choices for two representative pipelines (E-E and D-D)
under one simulation condition (0.5, 0.4, 0.1) for (PG1,
PG2, PG3) shown in Table 1a. For E-E, we evaluated a
total of eight combinations, 4 method options (“TMM”,
“RLE”, “upperquartile”, and “none”) in “calcNormFactors”
function × 2 test options (“chisq” and “F”) in the
“glmLRT” function, provided in edgeR. We observed
quite similar performances between the two test options
(“chisq” and “F”). The average AUC value when using
the method = ”TMM” option was the highest (91.47 %),
followed by “RLE” (91.46 %), “upperquartile” (91.40 %),
and “none” (91.19 %). Since the best practice (i.e., using
method = “TMM” and test = “chisq”) is the default in E-E
(i.e., edgeR), the choices should be left unchanged. Cur-
rently, TCC does not allow these options to be changed
when performing EEE-E that can be recommended for
multi-group data with replicates.
We should note that D-D does not follow the simple

conclusion described above (i.e., the default is the best).
We evaluated a total of 18 combinations, 3 method op-
tions (“pooled”, “pooled-CR”, and “blind”) × 3 sharingMode
options (“maximum”, “fit-only”, and “gene-est-only”) × 2
fitType options (“parametric” and “local”), in “estimateDis-
persions” function provided in DESeq. While the average
AUC value for the suggested combination in DESeq
(i.e., method = “pooled”, sharingMode = “maximum”, and

fitType = “parametric”) was 90.60 %, the highest value in
the 18 interrogated combinations was 91.69 %. Surprisingly,
the best performing combination (i.e., method = “blind”,
sharingMode = “fit-only”, and fitType = “local”) did not
include any suggested choice.
We found that using both method = “blind” and shar-

ingMode = “fit-only” was especially important to obtain
high AUC value when analyzing count data with repli-
cates. Recall that the combination was the default (or
suggested) choices for DESeq when analyzing count data
without replicates. The high AUC values with the sharing-
Mode = “fit-only” option can be explained by the nature of
simulation data (see the ‘Simulation data with replicates’
subsection). In other words, (i) the sharingMode = “fit-
only” option is advantageous when existence of count out-
liers is not assumed (see the “estimateDispersions” func-
tion manual in DESeq) and (ii) the simulation data
generated by the “simulateReadCounts” function in TCC
do not have count outliers. The method = “blind” option
ignores the group labels (G1 or G2 or G3) and can com-
pute a gene’s empirical dispersion value even if there is no
BRs. As described in the manual, this method can lead to
loss of power (i.e., low sensitivity). The use of method
= “blind” for count data with replicates cannot practically
be recommended in light of potential low sensitivity. Most
importantly, DESeq (i.e., D-D) is no longer recommended
by the authors and DESeq2 (i.e., S-S) is recommended in-
stead regardless of the number of BRs [35].
We also investigated the effect of different choices for

one pipeline S-S under one simulation condition (0.5,
0.4, 0.1) for (PG1, PG2, PG3) shown in Table 3. We evalu-
ated a total of six combinations, 2 type options (“ratio” and
“iterate”) in the “estimateSizeFactors” function × 3 fitType
options (“parametric”, “local”, and “mean”) in “estimate-
Dispersions” function, provided in DESeq2. Overall, we
found that different choices for fitType options had more
impact than those of type options. Moreover, the use of fit-
Type = “parametric” had the highest AUC values (82.01
and 81.91 % with type = “ratio” and “iterate”, respectively),
followed by the uses of “local” (81.53 and 81.31 %), and
“mean” (76.02 and 75.84 %). Since the best practice (i.e.,
the use of type = “ratio” and fitType = “parametric”) is the
default in S-S (i.e., DESeq2), the choices should be left un-
changed. Similar to the above described for EEE-E, TCC
does not allow these options to be changed when perform-
ing SSS-S, which can be recommended for multi-group
data without replicates. These results indicate that, as ex-
pected, suggested options should basically be used. The
AUC values for these combinations are given in Additional
file 11.

Conclusion
We evaluated 12 pipelines for DE analysis of multi-group
RNA-seq count data. Second to two-group comparison,
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this experimental design has arguably been performed
well in practice. To our knowledge, the current evaluation
is the first comprehensive study on multi-group count
data. Our main findings can be summarized as follows:
First, the idea of DEGES implemented in TCC can be

applied to multi-group data. We confirmed that the
AUC values for the three DEGES-based pipelines (EEE-E,
DDD-D, and SSS-S) were higher overall than the corre-
sponding non-DEGES-based pipelines: E-E (edgeR), D-D
(DESeq), and S-S (DESeq2), respectively (Table 1).
Second, choosing DEG identification method Z in the

DEGES-based pipeline XYX-Z is critical for obtaining
good DE results. For Z in the pipeline XYX-Z, using E
(the DEG identification method provided in edgeR;
Table 2) and S (provided in DESeq2; Table 3) when ana-
lyzing three-group data with and without replicates, re-
spectively, gave higher AUC values than the others.
Third, to analyze three-group data with replicates, we

recommend using either DED-E or EEE-E (Table 2).
Both pipelines can easily be performed by using the
TCC package. While DED-E showed the highest AUC
values under the interrogated pipelines and simulation
conditions, the difference between DED-E and the sec-
ond best pipeline EEE-E can practically be negligible.
Since EEE-E is the natural extension of a DEGES-based
pipeline for edgeR, using EEE-E would be the best prac-
tice. However, note that two Bayesian pipelines (baySeq
and EBSeq) perform comparably to or better than the
GLM-based pipelines (edgeR, DESeq, and DESeq2)
when a number of replicates are available (Additional file
2). In particular, EBSeq consistently outperformed EEE-E
under some simulation conditions (Nrep = 9 and PDEG =
5 %; Sheet 2 in Additional file 2), suggesting that the
DEGES-based pipeline based on EBSeq could produce a
more accurate ranked gene list. Although these Bayesian
pipelines tend to come at the cost of a huge computa-
tion time, their implementation and evaluation are the
next important tasks.
Fourth, to analyze three-group data without replicates,

we recommend using either EDE-S or SSS-S (Table 3).
Both pipelines can easily be performed by using the
TCC package. While EDE-S showed the highest AUC
values under the interrogated pipelines and simulation
conditions, the difference between EDE-S and the sec-
ond best pipeline SSS-S can be practically negligible.
Since SSS-S is the natural extension of a DEGES-based
pipeline for DESeq2, using SSS-S would be the best prac-
tice. Note that our previous recommendation for analyz-
ing two-group data without replicates was to use DDD-
D and that this conclusion was obtained only by evaluat-
ing a total of eight competing pipelines (D-D, DDD-D,
EDE-D, EbE-D, D-b, DDD-b, EDE-b, and EbE-b, where
“b” denotes baySeq). We expect the DESeq2-related
pipelines (i.e., EDE-S and SSS-S) would be recommended

for analyzing two-group data without replicates as an
updated guideline. The comprehensive evaluation should,
of course, be performed as one of the next tasks.
Fifth, the results of DE analysis (including existence or

non-existence of DEGs) can roughly be estimated by the
hierarchical dendrogram of sample clustering for the
raw count data (Table 4; Additional files 6, 8, and 9).
The dendrogram of sample clustering tells us some use-
ful information about the DE results. The real count
data we used here have 18.5 ~ 45.7 % of DEGs at the 5 %
FDR threshold (Additional file 8). In our experience,
such results (i.e., existence of large numbers of DEGs)
have frequently been obtained when individual groups
(G1, G2, and G3) form distinct sub-clusters where each
sub-cluster consists only of members in each group
(Additional file 6). In other words, if members in each
sub-cluster originate from plural groups, no or few
DEGs would be obtained as the DE result for such indis-
tinct data. Of course, it is critical to employ appropriate
choices for the distance metric and filtering of low
count data for obtaining a robust dendrogram. While
we employed the default options (“1 - Spearman correl-
ation coefficient” as a distance and the use of unique ex-
pression patterns as an objective filtering) in the clustering
function (“clusterSample”) provided in TCC, further evalu-
ation should also be performed.
We speculate that the current recommendations made

from the three-group comparative study can be applied
to data consisting of three or more groups. While our
preliminary analysis for four- and five-group simulation
data has produced similar results to the current study,
comprehensive evaluations are the next tasks.

Methods
All analyses were performed using R (ver. 3.2.0 pre-release)
[19] and Bioconductor [20].

Simulation data
The three-group simulation data analyzed here were
produced using the “simulateReadCounts” function in
TCC. The variance (V) of the NB distribution can gener-
ally be modeled as V = μ +Φμ2. The empirical distribu-
tion of read counts for producing the mean (μ) and
dispersion (Φ) parameters of the NB model was ob-
tained from Arabidopsis data (three BRs for both the
treated and non-treated samples) in [51]. The output of
the “simulateReadCounts” function is stored in the TCC
class object with information about the simulation con-
ditions and is therefore ready-to-analyze.

Real data
The real count dataset (“suppTable1.xls”) was obtained
from the supplementary website of [50]. The raw count
matrix consisting of 20,689 genes × 36 samples (=3

Tang et al. BMC Bioinformatics  (2015) 16:361 Page 10 of 14



species × 2 sexes × 3 BRs × 2 technical replicates) were
collapsed by summing the data of technical replicates,
giving a reduced number of columns in the count
matrix (i.e., 18 samples; 3 species × 2 sexes × 3 BRs).
The three-group comparison of this dataset was performed
by ignoring the sex differences (i.e., males or females). The
relationship of sample names between the original and
current study can be seen in Additional file 6.

Differential expression analysis using individual packages
Gene lists ranked in accordance with the level of DE are
pre-required for calculating AUC values. The input data
for DE analysis using all R packages are the raw count
data where each row indicates the gene (or transcript),
each column indicates the sample (or library), and each
cell indicates the number of reads mapped to the gene
in the sample. The versions of major R packages were
TCC ver. 1.7.15, edgeR ver. 3.8.5, DESeq ver. 1.18.0,
DESeq2 ver. 1.6.3, limma ver. 3.22.1, samr ver. 2.0, Pois-
sonSeq ver. 1.1.2, baySeq ver. 2.0.50, and EBSeq ver. 1.6.0.
All the DEGES-based pipelines X-(Y-X)n-Z or XYX-Z

were performed using the TCC package. This pipeline
includes EEE-E, DED-E, EDE-E, DDD-E, EEE-D, DED-D,
EDE-D, DDD-D, SSS-S, EEE-S, DED-S, EDE-S, and
DDD-S. Four other non-DEGES-based pipelines X-Z (D-
E, E-D, E-S, and D-S) were also performed using this
package, since they were the hybrid ones originally im-
plemented in different packages. These DEGES-based
and non-DEGES-based pipelines were performed using
two functions: “calcNormFactors” for X (and Y) and
“estimateDE” for Z, in the TCC package. For the
DEGES-based pipelines X-(Y-X)n-Z, the options for X, Y,
and n in the “calcNormFactors’ function correspond to
norm.method, test.method, and iteration, respectively.
The E, D, and S for X correspond to norm.method = “tmm”,
“deseq”, and “deseq2”, respectively. The E, D, and S for both
Y and Z correspond to test.method = “edger”, “deseq”, and
“deseq2”, respectively. For n in the DEGES-based pipelines
X-(Y-X)n-Z, the iteration = 3 was used as recommended in
[12]. For example, the DED-S pipeline was performed using
the “calcNormFactors” function with norm.method = “deseq”,
test.method = “edger”, and iteration = 3 options, followed by
the “estimateDE” function with test.method = “deseq2” option
(see Additional file 4). The non-DEGES-based pipelines X-Z
as X-(Y-X)0-Z were accomplished by applying iteration =
FALSE. The genes were ranked in ascending order of the
p-values. The p-value adjustment for the multiple-testing
problem was performed using the “p.adjust” function
with method = “BH” option (Benjamini-Hochberg FDR
calculation).
The two functions in TCC internally use individual

functions provided by one (or two) of the three other
packages (edgeR, DESeq, and DESeq2) in accordance
with the specific choices (i.e., “tmm”, “edger”, “deseq”,

and “deseq2”) of options in TCC. The options used for
individual functions in those three packages, internally
used in TCC, are the same as those suggested in the ori-
ginal packages. Accordingly, three pipelines (i.e., E-E, D-D,
and S-S) as the default procedures in edgeR, DESeq, and
DESeq2 can also be performed using TCC. For example,
the S-S pipeline in TCC can be performed using the “calc-
NormFactors” function with norm.method = “deseq2”, test.-
method =NULL, and iteration = FALSE options, followed
by the “estimateDE” function with test.method = “deseq2”
option (see Additional files 1 and 4). Although we did not
employ TCC for the three pipelines in the current
evaluation, researchers can easily learn what is done in
TCC by comparing the corresponding original proce-
dures described below.
Two pipelines, E-E (the same as the default edgeR pro-

cedure) and edgeR_robust, were performed using the edgeR
package. The E-E pipeline for analyzing count data with
replicates was performed using the following functions:
“DGEList”, “calcNormFactors” with the method = “TMM”
option, “estimateGLMCommonDisp” with method =
“CoxReid” option, “estimateGLMTrendedDisp” with
method = “auto” option, “estimateGLMTagwiseDisp”,
“glmFit”, and “glmLRT” with test = “chisq” option.
When analyzing count data without replicates, the
“estimateGLMCommonDisp” function with three op-
tions (method = “deviance”, robust = TRUE, and subset
= NULL) was used and two functions (“estimateGLM-
TrendedDisp” and “estimateGLMTagwiseDisp”) were
not used, as suggested. The edgeR_robust method was
performed using the following functions: “DGEList”,
“calcNormFactors” with method = “TMM” option,
“estimateGLMRobustDisp” with prior.df = 10, maxit =
6, and record = FALSE options, “glmFit”, and “glmLRT”
with test = “chisq” option. The gene ranking and p-value
adjustment procedure were performed the same way as
described above.
The pipeline D-D was performed using the DESeq

package. The D-D for analyzing data with replicates was
performed using the following functions: “newCountData-
Set”, “estimateSizeFactors” with locfunc =median option,
“estimateDispersions” with method = “pooled”, sharing-
Mode = “maximum”, and fitType = “parametric” options,
and “fitNbinomGLMs”. When analyzing data without repli-
cates, the “estimateDispersions” function with the following
options was used as suggested: method = “blind” and shar-
ingMode = “fit-only”. The genes were ranked in ascending
order of the p-values. The p-value adjustment for the
multiple-testing problem was performed using the
“p.adjust” function with method = “BH” option (Benjamini-
Hochberg FDR calculation).
The pipeline S-S in the DESeq2 package was per-

formed using the following functions: “DESeqDataSet-
FromMatrix”, “estimateSizeFactors” with type = “ratio”
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option, “estimateDispersions” with fitType = “parametric”
option, and “nbinomLRT” with modelMatrixType = “stand-
ard’ option. The genes were ranked in ascending order of
the p-values. Since this package provides adjusted p-values,
the number of DEGs satisfying the 5 % FDR threshold was
obtained using the values.
The pipeline voom in the limma package was per-

formed using the following functions: “DGEList”, “calc-
NormFactors” with method = “TMM” option in edgeR,
“voom”, “lmFit”, “eBayes”, and “topTable”. The gene
ranking was performed using the resultant p-values.
Since this package provides adjusted p-values, the number
of DEGs satisfying the 5 % FDR threshold was obtained
using the values.
The pipeline SAMseq in the samr package was per-

formed using the “SAMseq” function with the following
options: nperms = 100, nresamp = 20, resp.type = “Multi-
class”, and fdr.output = 1.0. Since this package only pro-
vides adjusted p-values, the gene ranking was performed
using the adjusted p-values.
The pipeline PoissonSeq was performed by using the

“PS.Main” function with npermu = 500 option. The gene
ranking was performed using the resultant p-values.
Since this package provides adjusted p-values, the num-
ber of DEGs satisfying the 5 % FDR threshold was ob-
tained using the values.
The pipeline baySeq was performed using the follow-

ing functions: “new”, “getLibsizes” with estimation-
Type = “edgeR” option, “getPriors.NB” with samplesize =
5000 and estimation = “QL” options, “getLikelihoods” with
pET = “BIC” option, and “topCounts”. Since this package
only provides adjusted p-values, the gene ranking was per-
formed using the values. The ordering information in the
output of the “topCounts” function was used for classify-
ing the expression patterns of genes.
The pipeline EBSeq was performed using the following

functions: “GetPatterns”, “MedianNorm”, “EBMultiTest”
with three options (maxround = 5, Qtrm = 1.0, and
QtrmCut = −1), and “GetMultiPP”. There are five expres-
sion patterns to consider when comparing three-group
data. The “EBMultiTest” function was performed with the
consideration of all the five possible patterns. The poster-
ior probability obtained from the “non-DEG” pattern was
used as a surrogate estimate for the adjusted p-values. The
gene ranking was performed using the values. The MAP
information in the output of the “GetMultiPP” function
was used for classifying the expression patterns of genes.

Additional files

Additional file 1: R code for obtaining simulation results with
replicates (Table 1). After execution of this R-code with default parameter
settings, the average AUC values of 100 trials under the following conditions
shown in Table 1 can be obtained: PDEG = 5 %, (0.5, 0.4, 0.1) for (PG1, PG2,

PG3), and Nrep = 3. The results in Additional file 2 can also be obtained by
changing the parameter Nrep to be 6 or 9. (R 12 kb)

Additional file 2: Results for simulation data with replicates (mainly
Nrep = 6 and 9). Average AUC values (%) of 100 trials are shown for a
total of 12 pipelines for three-group simulation data, where each group
has six (Nrep = 6; Sheet 1) and nine (Nrep = 9; Sheet 2) BRs. Sheet 3:
Average partial AUC values (%) of 20 trials with (1 - specificity) < 0.1.
Sheet 4: Average computation times (in seconds) of 20 trials. The times
were measured on a Windows system (Windows 7 Professional, Intel(R)
Core(TM) i5-2540 M CPU, 2.60 GHz, and 8 GB memory). Sheet 5: Average
AUC values (%) of 20 trials where the fold-changes for DEGs were
randomly sampled from “1.2 + a gamma distribution with shape = 2.0 and
scale = 0.5”. Other legends are the same as in Table 1. (XLSX 24 kb)

Additional file 3: R code for obtaining simulation results with
replicates (Table 2). After execution of this R-code with default parameter
settings, the average AUC values of 100 trials under the following conditions
shown in Table 2 can be obtained: PDEG = 5 %, (0.5, 0.4, 0.1) for (PG1,
PG2, PG3), and Nrep = 3. (R 4 kb)

Additional file 4: R code for obtaining simulation results without
replicates (Table 3). After execution of this R-code with default parameter
settings, the average AUC values of 100 trials under the following
conditions shown in Table 3 can be obtained: PDEG = 25 %, (0.5, 0.4,
0.1) for (PG1, PG2, PG3), and Nrep = 1. (R 8 kb)

Additional file 5: R code for obtaining results of Blekhman’s count
data. After execution of this R-code, full results of real data analysis can
be obtained. (R 21 kb)

Additional file 6: Dendrogram of average-linkage hierarchical
clustering for the Blekhman’s count data. Results of sample clustering
are shown: (a) a raw count dataset consisting of 36 samples, (b) a
collapsed data consisting of 18 samples, and (c) the same data as (b) but
with different sample labels. The clustering was performed using the
“clusterSample” function with default options provided in TCC. (PPTX 62 kb)

Additional file 7: Dendrogram of average-linkage hierarchical
clustering for 12 ranked gene lists. Twelve ranked gene lists used for
constructing the dendrogram were obtained from the analysis of the
simulation data under the following conditions: PDEG = 5 %, (0.5, 0.4, 0.1)
for (PG1, PG2, PG3), and Nrep = 9. The clustering was performed using the
“clusterSample” function with distances defined as (1 - Spearman’s rank
correlation coefficient). EBSeq showed the highest AUC values (=96.83 %)
in this simulation trial, followed by EEE-E (96.45 %), E-E (96.42 %), DDD-D
(96.35 %), D-D (96.31 %), baySeq (96.21 %), edgeR_robust (95.13 %), S-S
(94.54 %), SSS-S (94.43 %), PoissonSeq (94.07 %), voom (92.70 %), and
SAMseq (92.23 %). (PNG 6 kb)

Additional file 8: Comparison of DEGs obtained from individual
pipelines for the Blekhman’s count data. Sheet 1: Numbers of DEGs
satisfying the 5 % FDR threshold and the overlaps between all pairs of
pipelines are shown. The presentation method is the same as in table 1
in [28]: the numbers on the diagonal are highlighted in bold. Sheet 2:
The corresponding Jaccard coefficients are shown. (XLSX 13 kb)

Additional file 9: Classification of expression patterns for DEGs
(based on EBSeq). EBSeq defines a total of five possible patterns
(Patterns 1 ~ 5). DEGs (satisfying 5 % FDR threshold) identified by
individual pipelines were assigned to one of the five possible patterns.
(XLSX 11 kb)

Additional file 10: Percentages of Overlapping Genes (POGs)
between ranked gene lists for 12 pipelines. POG values for any
numbers of top-ranked genes for individual pipelines are shown. Legends
are basically the same as in Fig. 2. (PPTX 151 kb)

Additional file 11: Average AUC values for simulation data with
various options. Average AUC values of 100 trials are shown. The suggested
(or default) options and the highest AUC values are in bold. Sheet 1: E-E
(edgeR), Sheet 2: D-D (DESeq), Sheet 3: S-S (DESeq2). (XLSX 12 kb)
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