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Abstract

Background: Data from a plethora of high-throughput sequencing studies is readily available to researchers,
providing genetic variants detected in a variety of healthy and disease populations. While each individual cohort helps
gain insights into polymorphic and disease-associated variants, a joint perspective can be more powerful in identifying
polymorphisms, rare variants, disease-associations, genetic burden, somatic variants, and disease mechanisms.

Description: We have set up a Reference Variant Store (RVS) containing variants observed in a number of large-scale
sequencing efforts, such as 1000 Genomes, ExAC, Scripps Wellderly, UK10K; various genotyping studies; and disease
association databases. RVS holds extensive annotations pertaining to affected genes, functional impacts, disease
associations, and population frequencies. RVS currently stores 400 million distinct variants observed in more than
80,000 human samples.

Conclusions: RVS facilitates cross-study analysis to discover novel genetic risk factors, gene–disease associations,
potential disease mechanisms, and actionable variants. Due to its large reference populations, RVS can also be
employed for variant filtration and gene prioritization.

Availability: A web interface to public datasets and annotations in RVS is available at https://rvs.u.hpc.mssm.edu/.
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Background
As high-throughput sequencing technologies become
more widely employed, variants detected in large rese-
quencing studies are continuously being published,
including the 1000 Genomes Project, ESP6500, ExAC, and
TCGA [1–4]. These variants differ from the ones tar-
geted by genotyping arrays, in that most of them will
initially not be properly annotated with genes, amino
acid changes, impacts, associated diseases, or population
frequencies. Individual and multi-sample data sets each
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require exhaustive annotation, using tools such as snpEff,
ANNOVAR, or VEP [5–7], predictions of deleterious-
ness provided by SIFT, PolyPhen2, PROVEAN, and others
[8–10] and curated databases such as dbSNP, ClinVar,
and HGMD [11–13] to provide as detailed a picture as
possible supporting interpretation on a sample-by-sample
basis. Notably, for every set of newly called variants, cur-
rent setups require the annotation of each variant from
scratch: even though many variants were observed in
earlier studies, aforementioned algorithms and database
lookups will be run again on every new call set. Especially
the computation of functional predictions and population
frequencies are costly and need not be run on recurring
variants.
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By integrating the results of multiple sequencing efforts,
covering a large number of healthy subjects, with such
information, we can construct a repository that serves
two major purposes: annotating large numbers of genetic
variants by aforementioned tools and databases; as well
as pooling variants and their frequency distributions in
various populations. While the first is primarily aimed
at decreasing the operations needed to fully annotate
new studies, the second provides a fundamental basis for
analyses of disease populations, surpassing the capabili-
ties of each individual study to function as a reference
population.
In this paper, our major goal is to build an infrastructure

that allows centralized storage of every variant observed
in resequencing studies, in-house projects, or known in
curated databases. In this centralized storage, variants will
be annotated once using a spectrum of tools for func-
tional impact and predictions, as well as population fre-
quencies, diseases-associations, pharmacogenetic infor-
mation, literature mining, and so on.With each additional
sequencing study, the amount of truly novel variants will
become less—as shown, for example, for whole genomes
[14]—, drastically decreasing the number of variants that
have to run through any annotation pipeline. A data ware-
house that incorporates sequencing results from thou-
sands of individuals from various ethnic backgrounds and
disease populations allows for fast cross-study analysis,
such as differential mutation analyses, to discover novel
genetic risk factors, gene–disease associations, potential
disease mechanisms, and actionable variants [15–17]. The
accumulated allele frequencies also help to gain an under-
standing of the distribution of disease-associated variants
in reference populations.
Our second goal is to achieve a platform-independent

solution, referring to data storage and computation infras-
tructure: relational databases, NoSQL, compute clusters,
and Hadoop, each of which has its particular benefits
for storage, indexing, querying, integration, or computa-
tion: some platforms are better suited to run secondary
analysis pipelines and to call variants, some are bet-
ter suited for computing allele frequencies across stud-
ies, some will be used to run graphical, interactive user
interfaces, some to store and access summarized data,
some to store per-individual data. We argue that such
an endeavor requires a mechanism to compute a glob-
ally unique key for each normalized variant independently
on each platform1. This will allow to easily map between
every genetic variant resource employed across the entire
infrastructure.
In summary, the functionality we present with the Ref-

erence Variant Store includes

• data from various large resequencing studies and
annotation databases;

• extensive annotations including population
frequencies, clinical significance, and predictions of
functional impact;

• integrated analysis of disease versus healthy
populations;

• a reversible variant key that uniquely identifies SNVs,
MNVs, and indels, and that can be computed solely
based on location and alleles;

• a RESTful web service to access bulk data
programmatically; and

• per-sample information stored on Apache Hadoop
allowing for fast computation of allele frequencies
across populations, linkage disequilibrium, and
population stratification.

We have so far populated RVS with variants from
diverse resources shown in Table 1: RVS currently con-
tains 473 million distinct variants at 389 million sites; 399
million of these variants have been observed in at least
one of the studies we integrated; the remainder are largely
hypothetical SNVs from dbNSFP2 [18].
Observed variants originate from 82,600 samples: 5,600

whole genomes, 66,000 whole exomes, and 11,000 geno-
typed samples. We also included variants that are anno-
tated independent of samples, from resources such as
ClinVar, OMIM, COSMIC, and the literature, adding to
the observed and hypothetical variants.
The remainder of this paper is organized as follows.

After presenting work closely related to ours, we shall
provide details on the data sources and genetic variants
imported into the Reference Variant Store so far, and show
summary statistics as to variant types and impacts. We
will then discuss applications and future directions for
our work. We shall then explain the architecture and the
workflows in RVS that support storage, annotation and
loading of novel variants. We will lastly present details on
the allele-specific variant key and literature mining.

Related work
Several efforts share some of our goals in bring-
ing together variants and annotations from large-scale
sequencing studies. Chennagiri et al. [19] presented an
idea to store genetic variants in a database for fast
access, reduce redundancy, and Sanger benchmarking.
They loaded more than 9000 samples from VCF files,
including population frequencies from an early release
of 1000 Genomes data clinical samples, and additional
Sanger sequencing data. Annotations encountered in VCF
files are stored as key–value pairs to support arbitrary
tags. For RVS, we want to obtain (sub-) population fre-
quencies, including disease population, from as many
studies as possible. Clinical samples cover a variety of indi-
cations and originate from in-house and many external
studies, genotyping and sequencing alike. We also enrich
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Table 1 Number of variants imported from various external resources

Study Variant sites Variants Unique to study Variants passed Samples

1000 Genomes [1] 81,195,126 81,693,252 57,400,612 all 2,504

ESP6500 [2] 1,982,177 1,998,204 184,225 all 6,503

UK10K [47] ALSPAC/TWINS 37,258,978 37,560,436 6,155,493 all 2,432

UK10K with diseasec 9,391,582 11,177,227 8,847,466 9,969,036 4,888

TCGA [4] germlinec 200,691,728 219,533,884 90,884,769 n/a 4,224

TCGA somatic 876,970 890,172 696,754 all 4,205

Scripps Wellderly [48] 76,144,271 91,947,469 63,331,143 53,303,437 534

ExACb [3] 9,579,712 10,450,724 6,581,946 8,811,372 63,352

MSSM BioBank genotyping 849,806 849,806 0 all 11,210

In-house resequencing study 29,326,393 29,671,729 10,134,258 23,610,572 142

Total observed 358,152,122 399,404,510 244,216,666 >217,796,115 82,558b

Other resources:

dbNSFPa [18] 30,523,109 89,617,785 73,561,239 — —

ClinVar [12] 101,317 104,455 31,694 — —

OMIM [49] 10,863 10,913 — — —

COSMIC [50] 1,483,983 1,525,243 — — —

PharmGKBc [51] 672 684 — — —

SwissVard (77,047) (84,649) (34,198) — —

HGMDc [13] 125,744 133,464 32,178 — —

Literature mining — 890,665 — — —

Total observed + other 388,902,292 472,965,749 317,841,777 >217,796,115 82,558

The first block refers to sequencing/genotyping studies, the second to sample-independent annotation databases. “Unique to study” counts variants that were observed only
in that particular study. “Variants passed” refers to variants that passed quality metrics as defined by the particular study, at least one sample has to pass; n/a: individual sample
quality metrics not available. Totals exclude duplicates seen in different studies. Variants in annotation databases are included only if they can be mapped to precise
coordinates and allele. Since a large proportion of the variants discovered by literature mining are given at the protein level only, they were not compared to other studies
adbNSFP contains hypothetical variants, see text
bExAC includes samples from 1000 Genomes, ESP6500, and TCGA
cNote that data from HGMD, PharmGKB, UK10K diseases and TCGA germline are not visible to external users on the RVS website
dCounts for SwissVar refer to distinct amino acid changes. Further details on individual resources are provided in Additional file 4: Table S3

our annotations with by integrating renowned resources,
such as ClinVar and OMIM.
CanvasDB3 is a local infrastructure supporting the anal-

ysis of resequencing projects, using MySQL for storage
and providing an R interface for analysis [20]. As one
major difference to RVS, CanvasDB stores the entirety
of sample-specific genotypes, such as 1092 samples from
the 1000 Genomes Project data. Users of CanvasDB can
therefore perform SEQ-GWAS cohort analyses, defining
cohorts on-the-fly and factoring in disease populations or
family structures and the like. CanvasDB can be used as a
fast and powerful filtering tool to analyze groups of sam-
ples. RVS aims at having data from several large cohort
studies as well as various sources of annotation readily
available for interpretation of observed variants.
GEMINI is a software package designed for explor-

ing variation in personal genomes and family based
genetic studies [21]. It utilizes resources such as KEGG
and ENCODE for annotation of genes and ClinVar for

variants. Once the local hosting solution is set up, users
can import single samples or larger studies to store indi-
vidual genotypes. Complex queries allow to find variants
meeting different inheritance patterns, or run burden cal-
culations.With RVS, in contrast, our focus is on providing
detailed variant annotation on large numbers of preloaded
variants and data from several large sequencing studies
are readily available to the user; however, RVS currently
does not store data by individual sample.
The Exome Aggregation Consortium recently presented

their effort to make genetic variation data observed in
63,358 whole exomes publicly available [3]. ExAC brings
together data from healthy and disease populations and
can be searched by gene, variant, or dbSNP to show
population frequencies and other annotations such as
affected transcripts or disease association according to
ClinVar. They also offer quality metrics to inform users
about the reliability of calls, such as read depths his-
tograms obtained from samples interrogated at each
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site. Contributing projects to date range from the 1000
Genomes and ESP to TCGA, Swedish Schizophrenia and
Bipolar Studies, and several type 2 diabetes studies.
EVA, the European Variation Archive, collects highly

detailed, granular, raw variant data from human (with
other species to follow) [22, 23]. Types of genetic vari-
ation data include short as well as structural variations.
EVA provides a web-based browser to query the entirety
of variants for studies, genes, frequencies, and raw data,
such as from VCFs. One of the benefits of EVA is that it
allows users to submit variants obtained in their own stud-
ies by sample, supporting pedigree information as well.
The focus of RVS in addition to the collection of vari-
ants lies on extensive annotation, in terms of population
frequencies, clinical significance, predicted impacts, and
so on.
The SG-ADVISER [24] is a standalone application that

retrieves annotations for variants, including copy num-
ber, from a web-server on the fly. The back-end of SG-
ADVISER utilizes a combination of precomputed data
and high-performance computation on demand. Similar
to RVS, the results include coding and protein impact,
splicing impact, allele frequencies, and clinical annota-
tions; in addition, data on regulatory variants, genomic
regions, ontological information on processes, functions,
and pathways are available.

Construction and content
The key components in the Reference Variant Store are
1) a database infrastructure, 2) pre-computed annotations
for known genetic variants, 3) insertion of novel vari-
ants from heterogeneous sources, and 4) a unique ID to
share data across platforms. Figure 1 shows an overview
of the RVS architecture, depicting components for stor-
age and computation, staging area, and import of new
data. Table 2 and Additional file 1: Figure S1 show key
tables in the production and staging areas. We will also
describe our methodology to extract variants from the lit-
erature (PubMed abstracts and PubMedCentral full texts
including supplementary files) in this section.

Variant registry— summary, types, source
The main relational tables in the Reference Variant Store
hold each observed variant using minimal information.
The central summary table contains chromosome, start
and end position, reference and alternate allele, variant
type, dbSNP ID if available, size of the affected region, and
the unique variant key. Coordinates currently default to
GRCh37 and we hold the respective location on GRCh38
in addition. We also store a DB-internal, auto-increment
variant ID and a numerical representation of the chro-
mosome (X = 23, Y = 24, MT = 25) for fast cross-
referencing within the relational database only and for

Fig. 1 RVS architecture and workflow. All new variant data in VCF format gets populated into a staging area, where novel variants are registered with
RVS. Novel variants are exported to the compute cluster for annotation with snpEff etc. Data are imported back into the production tables of RVS.
Large studies will also trigger the upload of (sub)population frequencies. Variants in RVS are assigned to each new or updated source, allowing
multiple sources per variant
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Table 2 Major tables in the Reference Variant Store that hold all
imported variants and annotations

Table Description

Summary main table that stores each variant by chromoso-
mal location, reference and alternate allele, dbSNP,
and GRCh36/38 locations; most other tables are
dependent tables

Impact effect(s) on gene, transcript, intron/exon, missense/
non-sense, CDS and amino acid change, where appli-
cable; by transcript

Frequencies allele frequencies in large-scale sequencing studies
(1000 Genomes, ESP6500, ExAC, Scripps Wellderly,
etc.)

Predictions computational predictions of functional impact,
such as PolyPhen-2, MutationAssessor, SIFT, CADD,
PROVEAN, GWAVA, and ensemble scores

Phenotypes disease-associations from ClinVar, HGMD, OMIM, etc.

Regions observed and predicted regions that contain the
given variant: functional and regulatory elements
(ENCODE), protein domains (InterPro), microRNA
target sites (miRanda)

Source maps each variant to the study/studies in which it
was observed; also stores pass- or non-pass flags
according to filtering criteria if provided by the study

Comments optional: human expert comments on specific
variants, pertaining to disease, impact, etc.

Staging_summary registry that holds potentially new variants while they
are not yet automatically annotated and copied to the
production summary table

Staging_impact holds results from computational models regarding
effects of the mutation (protein level)

possible future partitioning of tables to increase perfor-
mance. For each source of variants, we store the source
study of each variant as a many–to–many lookup table.

Variant annotation— impact, frequencies, predictions,
phenotype, regions
We separate different basic types of annotations into mul-
tiple tables. 1) Impacts are the immediate effects of a
variant on gene, transcript, and protein sequences, such
as amino acid change, frameshift, or promoter region,
based on GRCh37 and ENSEMBL 78. Those can be com-
puted using snpEff, ANNOVAR, and VEP [5–7].We chose
ENSEMBL and snpEff as our baseline and included addi-
tional annotations using snpEff on the RefSeq transcript
models [25]. The infrastructure supports other annotation
tools as well, see [26] for a detailed discussion. 2) Predic-
tions refer to the predicted functional impact of a vari-
ant, most often, on the protein level; computational tools
include SIFT, PolyPhen-2, PROVEAN, MutationAsses-
sor, CADD, GWAVA [8–10, 27–29], among others, and
ensemble scores provided by dbNSFP [18]. 3) We store
allele frequencies pertaining to large sequencing efforts,
such as 1000 Genomes, ESP6500, and Wellderly. 4) If the
variant is associated with a phenotype, such as a disease

or risk factor for a disease, we provide this annotation
together with its source, such as ClinVar and OMIM. 5)
Variants are annotated for occurrence in several kinds
of DNA regions and protein domains: regulatory and
functional regions from ENCODE [30]; predicted miRNA
target sites [31]; and protein domains from InterPro [32];
6) In an optional table for comments, we hold annotations
provided by in-house clinical experts on variants, particu-
larly in the context of disease, to be displayed to users with
appropriate privileges.

Sample registry
RVS can optionally serve as a registry for studies and
samples, without modifications to the variant registry
and annotation tables. It is possible to also store geno-
type information per sample, including read depth, quality
metrics, and so on; for our large-scale applications includ-
ing hundreds of thousands of samples, however, individual
information is stored in raw VCF files4 on Hadoop5. We
update each imported VCFwith the variant key, which can
be computed independent of a central database lookup
at any time (see later in this section for methods and
limitations).

Insertion of novel variants
The process of inserting variants into the Reference Vari-
ant Store is outlined in Fig. 1. We first load each variant
into a staging area, from where we check if they already
exist in RVS. If not, they will be registered in the pro-
duction copy, to provide minimal information as obtained
from the input (such as allele frequencies in the underlying
study) or that are fast to compute (type of variant, effective
size, variant key). Providers of new variants will there-
fore receive variant keys for their input in any case, for
later reference. The variant will also be visible to queries
against RVS right away, but devoid of detailed informa-
tion as to transcripts, amino acid changes, etc. In nightly
updates, which can also be triggered manually if required,
we will then compute the left-normalized representation
and provide missing annotations using snpEff.

A globally unique, reversible identifier for small variants
Our Reference Variant Store is used not only to com-
pute and related content inside a database instance, but
to enable integration across compute and storage archi-
tectures. We therefore require a unique identifier, derived
from the genomic location (genome build, chromosome,
start, and end) and alternate allele. This variant key serves
several purposes: 1) for every new dataset, study or anno-
tation, the key can be computed directly from the genomic
location and alleles, thus there is no need for possibly
expensive lookups in relational database tables or similar
mechanisms; 2) the key can be used completely indepen-
dent from a central architecture to assign IDs to variants;
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3)when sharing results across platforms, databases tables,
and so on, the key allows fast integration of data; 4) the
original genomic location and alleles can be computed
from the variant key as a fallback and error recovery and
to allow export; 5) the key is a compressed version of the
genomic coordinates and alleles; 6) as an additional ben-
efit, the variant key is valid across projects and alleviates
data sharing on a larger scale.
The variant key we propose encodes the reference

genome build (using GRCh version numbers), chromo-
some (1..22, X, Y, MT), start and end positions, and the
alternate allele, in the following way: 1) the first byte
encodes the reference genome version, 2) the second byte
encodes the chromosome, 3) bytes 3 to 7 store the start
position, 4) bytes 8 to 12 store the end position, 5) bytes
13 and 14 store the length of the alternate allele (up to
4095), and 6) all following bytes contain the compressed
alternate allele. The encoding uses 64 characters in lex-
icographic order (digits, symbol ‘@’, upper case letters,
symbol ‘_’, lower case letters) and therefore the variant key,
when sorted, reflects the actual order of variants on the
chromosome. The lexicographic order is useful for range
queries as well, when using only the prefix of the vari-
ant key that denotes the assembly, chromosome, and start
position.
The variant key is unique for SNVs, deletions, and for

insertions/MNVs of up to 2958 inserted nucleotides. We
decided on this restriction based on practical purposes,
driven by data types and index key sizes in MySQL. We
define small indels to be of effective size 1000 bp or less,
referring to the absolute length difference of reference
and alternate alleles. The latest release of 1000 Genomes
Project data, for instance, contains 3283 indels of size
larger than 1000. Those are included in RVS but have been
assigned a potentially ambiguous variant key, and there-
fore should be accessed by chromosomal location and
alt allele. We provide implementations in Python6, Java,
JavaScript, Scala, and MySQL.

Variants observed in the literature
We automatically extracted variants from the literature
that are discussed with (mostly small-scale) sequenc-
ing efforts, genotyping, mutagenesis experiments, disease
association, and other phenotypic impacts. The challenge
in integrating variants from the literature with RVS is
twofold: 1) to detect genes and mutations with high pre-
cision (correct mutation, mapped to correct gene) and
2) to convert each mutation into proper chromosomal
location and alternate allele. If a variant is already con-
tained in dbSNP, mapping it to a dbSNP entry helps
solve 2). Otherwise, we need to deduce the chromoso-
mal location from known coding sequences. In either case,
we can end up with multiple transcripts, multiple loca-
tions, and multiple alternate alleles potentially underlying

a reported amino acid change. To identify the correct ref-
erence genome build when chromosomal coordinates are
given is also a challenge, since the build is not always
explicitly mentioned in a publication.
We combined SETH ([33]; also see [34] for a compari-

son of recent tools) with GNAT [35] for the recognition
of mutations and genes in text, respectively. SETH recog-
nizes a variety of variants, such as single point mutations,
indels, and structural variants, and attempts to map them
to dbSNP and/or a protein sequence. It takes as input
genes extracted and mapped to Entrez Gene by GNAT,
as well as hand-curated data from NCBI’s gene2pubmed
[36]. Jimeno Yepes et al. [34] compared the performance
of several tools that recognize mutations in text and found
that SETH outperformed several others on this task, with
a precision of 89 at 68% recall. SETH first converts every
variant that it found into a canonical, or “grounded” form,
similar to [37]. Grounded forms use the syntax suggested
by the HGVS nomenclature [38], such as “c.396T>C” for
a change in the coding sequence. SETH then compares
each such variant to dbSNP, based on known CDS and
protein changes and affected location and alleles, since
dbSNP curates those annotations. For every variant that
could not be mapped to dbSNP, SETH uses the protein
sequence of genes found nearby to find the best match (if
any). Since protein sequences may change over time but
prior publications will seldom be corrected, we account
for several causes underlying most discrepancies, such as
omitted start codons and signal peptides, when match-
ing an amino acid change onto a protein sequence by its
position.
From 24 million MEDLINE7 citations and 3.1 mil-

lion PubMed Central full texts8, we excavated more
than 17 million occurrences of genetic variants (count-
ing each individual occurrence in one single publication),
see Table 3. We imported only those variants found in
the literature that we were able to map to dbSNP or a
gene/protein sequence, since only those would yield ver-
ifiable genomic coordinates and alleles. In PubMed, for
instance, we found a total of 761,443 variants with evi-
dence, 261,881 of which we successfully mapped to a
dbSNP entry. Counting only unique alleles across three
textual sources (Medline citation, PMC full text, supple-
mentary files), RVS contains 890,665 alleles that we were
able to map to one or more publications.
Using a reverse-mapping of variants given as a HGVS

CDS or protein change to possible transcripts, we
compute the chromosomal location and alternate allele
wherever possible, which is of most interest for vari-
ants without an apparent dbSNP entry. Using either the
dbSNP ID or the chromosomal location, we can integrate
variants identified by text-mining with the remainder of
the Reference Variant Store and provide publications or
text snippets as additional annotations. As mentioned in
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Table 3 Mutations extracted from PubMed/MEDLINE, PMC full
texts, and PMC from PDFs including supplementary files such as
Excel tables. Variants are grouped by variant type, counting each
evidence for each variant resulting in the grand total. We also
show the number of variants that we were able to map to a
dbSNP ID, as well as the number of unique variants, disregarding
occurrences across multiple publications

Type PubMed PMC PDF and Total
Supplement

Substitution 617,693 853,487 5,804,542

dbSNP 102,040 222,310 4,433,018

Insertion 3,072 2,252 17,640

Duplication 875 1,263 5,522

Repeat 42 76 339

Deletion 19,987 27,192 69,326

Insdel 202 290 2,061

Frameshift 2,185 3,065 28,405

Structural 15,347 6,143 5,642,341

Total non-unique 761,449 1,116,093 15,802,854

– with dbSNP ID 261,881 381,500 4,743,471

Total unique 203,055 201,597 4,221,952

Total unique mapped to allelea 101,652 122,393 727,602 890,665

aIn case amino acid changes were given in the literature, we counted only one allele
that would lead to that change

the Discussion, we are currently working on extracting
disease–associations and other, lower level phenotypes
such as changes in biochemical properties of proteins,
from those textual evidences. We discuss our previous
efforts to map variants to pharmacogenetic impacts in
[39]. For now, RVS contains a simple mapping from a
variant to the publications that it is described in, without
further details on findings of the respective studies.

Utility and discussion
RVS currently stores 399 million observed genetic vari-
ants at 358 million sites obtained from 82,600 samples,
meaning each variant has been encountered in at least
one sample. An additional 73 million hypothetical, sin-
gle amino-acid-altering variants originating from dbNSFP
enrich our existing annotations for potential future obser-
vations. Since we incorporated variants from clinical
datasets such as ClinVar, COSMIC, and PharmGKB9,
there are an additional approximately one million variants
that have not been observed in one of the studies included
in RVS thus far.
In total, RVS contains 473 million distinct genetic vari-

ants. Table 1 shows the current status of RVS in terms
of the number of variants imported from external stud-
ies. In comparison, dbSNP build 141 contains 62.5 mil-
lion RefSNP clusters for 261 million submissions. The
latest release of 1000 Genomes Project data for Phase 3

v5 found 81.7 million variants at 81.2 million sites. As
shown in Table 1, dbNSFP contains close to 90 million
variants: namely, all hypothetical amino acid-changing,
single-nucleotide variants. By combining currently ten
cohorts, we find that 16 million of those variants (18%)
have actually been observed in at least one sample.
Using the GRCh37/ENSEMBL v78 transcript model

[40], we mapped all 472 million variants to 1.955 bil-
lion impacts, where one variant typically maps to multiple
transcripts (up to 5kb up- or downstream) and/or to an
intergenic region. In addition, all variants were mapped to
transcripts from RefSeq release 68 [25], smaller but more
stable, resulting in 832 million impacts.
Among all variants observed in studies with ≥500 sam-

ples, 3.1 million variants hit a known InterPro protein
domain. Additional file 2: Table S1 shows the number
of variants per effect category on the transcript level,
using one canonical transcript per variant and variants
observed in a study with ≥500 samples. As canonical
transcripts we define transcripts matching the canonical
isoform provided by UniProt in protein sequence [41]. For
each imported study we discard individual sample data
and store only summarized information, such as allele
and genotype frequencies. Additional file 3: Table S2 lists
the amount of samples in RVS per technology, whole
genome/exome sequencing or genotyping, and the typical
number of base pairs covered in each.
It has to be noted that we import variants into RVS

regardless of their validity as determined by the origi-
nal study. Our main focus is on the annotation of each
observed variant, whereas we decisively leave interpreta-
tion up to the user, as proper context is only known at
the application level. Nevertheless, several of the studies
we included in RVS provide quality metrics on a summa-
rized or on an individual level, such as quality by read
depth and average coverage across samples. When using
the criteria for variants to pass defined by the respec-
tive study, 48.3% of the variants reported by Scripps
Wellderly, for example, have no individual sample that
passed quality filters for this variant. In the UK10K dis-
ease cohorts we considered, the percentage of variants
where at least one individual passed ranged from 44.5
to 78.9%. Those quality metrics and cut-offs can dif-
fer widely. Quality metrics are not provided by each
study, making it difficult to provide a final number of
truly observed variants in RVS. Details on the number
of variants before/after applying filters can be found in
Table 1.
As one major driver behind integrating study data in

RVS is to provide immediate access to precomputed anno-
tations, we are also interested in how many new vari-
ants we can expect to find in a new study or individual
sample. Table 1 shows the number of unique variants
found in each original study, compared to all others



Hakenberg et al. BMC Bioinformatics  (2016) 17:24 Page 8 of 13

in RVS, excluding hypothetical data in dbNSFP and
annotations from ClinVar, HGMD, and literature min-
ing. For whole genomes from 1000 Genomes project and
TCGA germline, we observed that they add a comparable
number of 22,900 and 21,500 unique variants on aver-
age per sample to RVS, respectively. The UK10K control
data, despite similar sample size, seems to present with
less unique variants in total and per sample—6 million in
total, compared to 60 million in the 1000 Genomes, with
about 2500 samples each.

Distribution of clinically relevant variants
To get an idea about the distribution of clinically relevant
variants in the population, we checked their respective

allele frequency in RVS cohorts, emphasizing healthy
cohorts. Table 4 shows the percentage of variants for
each source and annotation that fall into a certain bin
of allele frequencies. Allele frequencies were taken from
1000 Genomes Phase 3, ESP6500, Scripps Wellderly,
UK10K ALSPAC/TWINS, and ExAC, for a total of 75,325
samples10. For each variant, we used the highest allele fre-
quency found for any ethnicity (Additional file 4: Table S3
shows ethnicities for studies that had separate allele fre-
quencies available). We excluded variants annotated with
contradicting pathogenicities from different submitters to
a source. For instance, some variants in ClinVar were
annotated as both benign and pathogenic, with annota-
tions originating from different publications. The total

Table 4 Variants in clinical annotation databases observed in healthy cohorts, binned by maximum ethnicity-specific allele frequency
across cohorts. Bins are non-cumulative and intervals exclude the value of the upper boundary

Source 0 0–0.001 0.001–0.005 0.005–0.01 0.01–0.05 0.05–0.1 0.1–0.5 ≥0.5 Total

ClinVar: pathogenic 30.09 2.59 0.86 0.20 0.26 0.05 0.14 0.02 34.21

ClinVar: likely pathogenic 3.26 0.29 0.08 0.01 0.02 3.66

ClinVar: risk factor 0.35 0.03 0.06 0.02 0.05 0.02 0.13 0.10 0.76

ClinVar: association 0.01 <0.01 <0.01 0.01 0.01 <0.01 0.05 0.02 0.10

ClinVar: likely benign 0.47 0.95 1.01 0.49 0.51 0.05 0.05 0.01 3.54

ClinVar: benign 0.49 0.26 0.47 0.62 2.33 1.10 2.61 1.70 9.58

ClinVar: protective <0.01 <0.01 <0.01 0.02 0.01 0.03

ClinVar: drug response <0.01 <0.01 0.01 0.01 0.02

ClinVar: uncertain significance 8.15 2.05 1.53 0.37 0.36 0.05 0.06 0.03 12.60

ClinVar: other 1.02 0.05 0.04 0.02 0.03 0.01 0.15 0.08 1.40

ClinVar: unknown 29.44 2.58 0.97 0.19 0.38 0.12 0.31 0.11 34.10

HGMD: DM 81.24 4.17 1.40 0.39 0.46 0.05 0.04 0.01 87.76

HGMD: DM? 4.80 0.61 0.50 0.17 0.35 0.12 0.17 0.02 6.74

HGMD: DFP 0.16 0.01 0.02 0.01 0.07 0.08 0.48 0.29 1.12

HGMD: DP 0.30 0.03 0.06 0.04 0.13 0.09 0.71 0.45 1.81

HGMD: FP 0.86 0.15 0.16 0.09 0.20 0.09 0.32 0.15 2.02

HGMD: FTV 0.32 0.06 0.03 0.01 0.03 0.01 0.04 0.03 0.53

OMIM: pathogenic 72.24 8.69 3.19 1.00 1.14 0.26 0.73 0.23 87.48

OMIM: probably pathogenic 0.02 0.02

OMIM: probably not pathogenic 0.01 0.01

OMIM: risk factor 1.33 0.23 0.28 0.06 0.29 0.13 0.59 0.57 3.48

OMIM: association 0.02 0.01 0.01 0.01 0.06 0.09 0.20

OMIM: no known pathogenicity 0.11 0.03 0.04 0.03 0.11 0.06 0.39 0.15 0.92

OMIM: confers sensitivity 0.01 0.01

OMIM: protective 0.01 0.01 0.03 0.06 0.05 0.16

OMIM: drug response 0.01 0.02 0.05 0.07 0.15

OMIM: other 6.46 0.32 0.15 0.06 0.03 0.03 0.04 0.01 7.10

OMIM: VUS 0.11 0.08 0.07 0.03 0.03 0.05 0.09 0.05 0.51

Values represent the percentage of variants from the respective resource that fall into each category and bin. DM, disease-causing mutation; DM?, likely DM; DP,
disease-associated polymorphism; DFP, DP with additional functional evidence; FP, functional polymorphism; FTV, frameshift or truncating; VUS, variant of unknown
significance
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numbers of variants used to build Table 4 are 53,110 for
ClinVar, 10,863 for OMIM, and 133,464 for HGMD.
We found that 30% of pathogenic variants in ClinVar

did not occur in any of the RVS cohorts considered, as
well as 72% of OMIM variants and 81% of HGMD dis-
ease causing mutations (DM). On the other hand, benign
or protective variants tended to occur with higher fre-
quencies. Note that those overall results were skewed
to some extent by all-encompassing categories such as
‘unknown’ and ‘other’, as well as rare variants unlikely to be
observed even among 75,325 individuals. In addition, the
largest proportion of our data on those samples was pro-
duced using whole exome sequencing, omitting intronic
and intergenic variants by design.

Web query interface
We provide access to the public data sets using several
search templates at https://rvs.u.hpc.mssm.edu/. Searches
by gene, region, variant. or phenotype return all observed
variants and respective allele frequencies. We also pro-
vide all annotations described in Methods and Table 2:
transcripts, protein changes, predicted impacts from tools
such as SIFT and MutationAssessor, associated pheno-
types, and references to the literature. Another user
query allows to compare different populations and return
variants with significant differences in allele frequencies
between the selected groups. Users can narrow variants
down to those that hit exonic regions with or without
splice sites, and to non-synonymous variants. Data can be

exported in tab-delimited form and JSON. We show an
example web query of RVS in Fig. 2. Results are organized
by their source of information, such as basic informa-
tion in the variant (location, allele, type, dbSNP mem-
bership); affected transcripts, effect, and resulting amino
acid changes; population frequencies; and references to
databases and literature.

RESTful web service
To accommodate batch queries, RVS accepts REpresenta-
tional State Transfer (REST) requests to obtain data for
different resource types, namely population frequencies,
impacts such as protein changes, computational predic-
tions, and associated phenotypes. Supported arguments
are gene, chromosomal location, dbSNP ID, phenotype,
and variant key. This allows users to fetch all population
frequencies (a resource) for a given dbSNP ID (an argu-
ment), for instance. We limited requests to one resource
and one type of argument per call. To implement batch
queries, users can send individual requests for each vari-
ant, with up to ten chromosomal locations and/or regions
at a time, and obtain annotations. Users can do the same
for up to ten dbSNP IDs or ten genes as well. Results
are returned in JavaScript Object Notation (JSON) to
support nested data, such as predicted impact scores
applied to different amino acid positions, which depend
on the transcripts that overlap a requested chromoso-
mal location. Optional arguments allow to specify filters
on the results, such as returning information only on the

Fig. 2 RVS web query interface: public datasets in RVS can be queried by coordinates (shown), dbSNP, genes, and by defining ‘cohorts’ using
populations in RVS. RVS will return full annotations, frequencies, phenotypes, and literature references

https://rvs.u.hpc.mssm.edu/
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canonical transcript (if any), variants that results in an
amino acid change, or variants that have been observed
in a sequencing study; as opposed to hypothetical variants
from dbNSFP, or variants annotated in ClinVar but not
seen in any of our reference populations.

Population frequencies of variants in ClinVar
As a possible application of RVS, we are working on
validation of suspected disease variants in various anno-
tation databases, including ClinVar, HGMD, and GAD.
Guidelines have been brought forward as to assess causal-
ity of variants in human disease [42]. As one first
step, researchers should meticulously check available data
for subpopulation-specific allele and carrier frequencies,
which RVS provides. ClinVar, for example, holds genetic
variants related to human health and annotates them
as pathogenic, likely pathogenic, risk allele, or benign
(among others). Assuming that no pathogenic variant
should occur with considerable frequency in any healthy
population, we can use the information accumulated in
RVS to cross–check allele frequency against tens of thou-
sands of samples with known ethnicity. We set a threshold
of 1% allele frequency in any population, although 0.1%
would be an acceptable stricter alternative for autosomal
dominant disorders. 349 variants in ClinVar have an allele
frequency of ≥ 1% in either 1000 Genomes or ESP6500
(total or by super-population). Out of those, 195 variants
are annotated as “pathogenic” in ClinVar, with an addi-
tional eight “likely pathogenic” variants. 80 out of 349 are
already annotated as “benign” or “likely benign”, with the
remainder being of uncertain significance, protective, or
having a mixture of annotations.

Identifying disease causing variants
Another application of RVS is the identification of poten-
tial disease causing variants. Those can be variants that
are observed exclusively in disease populations (heterozy-
gous, unaffected carriers may exist) and that have a likely
functional impact. RVS is particularly well suited to com-
pare genotype frequencies across any number of healthy
and disease populations. The annotations that we load for
each variant provide information as to its impact on the
protein level: variant affecting splice sites, producing early
termination codons, and so on. Loss-of-function variants
are of particular interest to the research community in
analyzing causality in disease [42].
We already imported several disease cohorts into RVS,

many with appropriate controls provided within the same
study. Since allele frequencies are preloaded for each of
the larger studies (hundreds of samples), we can quickly
discover variants possibly implicated in some rare dis-
eases, for example from UK10K samples, by comparing
allele frequencies. To assess sensitivity and specificity of
this methodology, we can compare such results with data

already published on the respective original study, for
example, [43, 44]. Excluding, for example, variants that
have also been observed in the 1000 Genomes Project,
ESP6500, Scripps Wellderly, UK10K ALSPAC/TWINS,
and variants observed in other rare diseases from UK10K,
we can re-discover variants such as MAB21L2 c.152G>A,
which were unknown prior to the UK10K data release
and their initial publications. For the Coloboma eye dis-
ease data, we found a total of 88 variants that follow
those criteria (no carriers in healthy or other disease
populations).
Since RVS aims at incorporating as many observed

variants as possible for computing their impact, it also
includes low quality variants. We store information
regarding the quality metrics as supplied by each study;
at the lowest common level, these would flag whether or
not a variant passed the filtering criteria suggested by the
respective study11. Such information should be consid-
ered when trying to identify or validate disease causing
variants.
To achieve results of higher quality, aforementioned

analyses also need to incorporate ancestry information on
each individual. Where not available, we are experiment-
ing with inferring the ethnicity of an individual using prin-
cipal component analysis (PCA) and ancestry informative
markers (AIMS).

Future directions
Future directions we are pursuing are the integration of
disease populations, inclusion of structural variants, text
mining for functional consequences, cloud storage for
public access, and transition to GRCh38, among others.
A full transition of RVS to GRCh38, while keeping

GRCh36 and GRCh37 locations for fast integration with
legacy data, is our immediate next step. Since GRCh38
incorporates numerous haplotypes (alternate loci, cur-
rently in 178 regions), a focus will be on the design of
a unique identifier for build 38 that can capture this
variation.
As a related issue, the current design handles only short

insertions and multi-nucleotide variants, limited to about
3000 bp, while deletions are unlimited in size. This is
due to a technical limitation of the underlying database
and its maximum index size. RVS does not at this point
store copy number variation, gene fusion events, or other
larger-scale structural rearrangements, as well as loss of
heterozygosity, all of which we aim to include in future
releases. Those data will particularly boost applications of
RVS in oncology research, where a large number of such
events have been observed in past and ongoing sequenc-
ing projects. One current drawback of such data is that
precise coordinates are often not known, so we would
require a mechanism to match imprecise regions with
each other and specific short variants.
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We are also contemplating to store the data, once pre-
processed, on cloud services such as Amazon. It will
then be available to the research community running
Hadoop/EMR applications that build on top of the infor-
mation we provide, without requiring the invocation of
web services, and without the need for each individual
group to replicate and maintain such data. One issue in
this regard are the different access models (data usage
agreements, licenses), which need to be considered. At
the current stage, we are not providing certain data from
PharmGKB and HGMD, as well as TCGA germline and
UK10K disease cohorts publicly on the RVS website.
In many cases, the functional consequences of a specific

variant are not known. We are currently mapping more
than 4.5 million variants that we detected in the litera-
ture to experimental findings, such as a change in protein
function, gene expression, or drug resistance, to provide
those annotations with RVS. This effort is a continua-
tion of our prior work on detection of genetic variants in
text and their association with diseases and drug response
phenotypes [33, 39]. We are now focusing on changes in
biochemical properties of the DNA, mRNA, and protein,
for which experiments such as mutagenesis, have been
carried out and results reported in the literature.
In addition to functional scoring methods for coding

changes, we will also incorporate predictions on aberrant
splicing, such as the destruction of known sites favoring
cryptic splice sites, or mutations occurring within exonic
and intronic splice site enhancing and silencing regions.
As a final building block in RVS, we are currently incor-

porating public and non-public data from disease cohorts,
such as GERA [45], ADNI [46],WGS50012, and the dbGaP
Compilation of Individual-Level Genomic Data for Gen-
eral Research Use (GRU)13 into a joined Disease Variant
Store (DIVAS). This will add another level of annotation to
variants, for phenotypes and disease population frequen-
cies, and allow for more powerful analyses across studies
that are currently hindered by small sample sizes and lim-
ited genetic background. An integration of data collected
on similar phenotypes in distinct studies, for instance,
while at the same time providing data on healthy individ-
uals, can help glimpse into (rare) disease-causing variants
and their mechanisms.

Conclusions
We presented here our implementation of a reference
variant store (RVS). RVS hosts germline, somatic, and
hypothetical genetic variants from large sequencing and
genotyping studies, including the 1000 Genomes Project,
ESP6500, UK10K, Scripps Wellderly, and TCGA. We
store the precomputed effect (affected gene, transcript,
protein), impact (functional predictions), population fre-
quencies (healthy and disease), and disease association
with experimental evidence (such as ClinVar and literature

mining) as annotations for each variant. In total, RVS
consist of over 470 million genetic variants thus far, rep-
resenting 78,500 samples. Overall, we found 244 million
variants that were unique to a single study, out of 400
million observations made in one or more studies; these
numbers exclude hypothetical data from dbNSFP and
sample-independent clinical databases such as ClinVar.
Our two main goals are first to provide quick turn-around
times for the full annotation of individually sequenced
genomes14; and second to support exploratory analyses
across all studies. As such, RVS facilitates cross-study
analysis to discover novel genetic risk factors, gene–
disease associations, potential disease mechanisms, and
actionable variants. Due to its large reference populations,
RVS can also be employed for variant filtration and gene
prioritization, providing allele frequencies in healthy pop-
ulations, integrated with protein-level annotations and
known disease-associations.
Detected variants are submitted to RVS, which returns

unique variant keys that can also be computed indepen-
dent of centralized lookup tables, on any computational
platform. Truly novel variants will be annotated on-the-fly
or during nightly builds, whereas annotations for previ-
ously encountered variants are available immediately. We
envision that with each newly added dataset and individ-
ual genome, the burden of computing effect and impact
of new variants will become less until having to add only
a minimal amount of variants for each newly sequenced
individual. For example, it has been shown that the num-
ber of novel SNVs per genome rapidly drops from an
initial 3,500,000 variants in the first whole genome to less
than 150,000 new variants after assessing the twentieth
genome [14]. We found that after having stored about
5,000 whole genomes, each new genome on average adds
just over 3,000 new variants.
Every new annotation dataset that we load into RVS,

and that contains annotations per variant or per gene,
for disease associations, functional impact, pharmacoge-
netics, etc., can be easily extended by adding the unique
variant key, allowing for immediate integration with exist-
ing variant calls and propagation of the data to our tools
and search interfaces. This setup also allows for frequent
updates of the underlying disease-association databases
without having to re-annotate VCF files and/or relational
tables holding per-sample data.

Availability
A web interface to public datasets and annotations in RVS
is available at https://rvs.u.hpc.mssm.edu/.

Endnotes
1Referring to left-aligned variants, in gene regions

described using HGVS nomenclature; see https://github.
com/counsyl/hgvs and [37, 38].

https://rvs.u.hpc.mssm.edu/
https://github.com/counsyl/hgvs
https://github.com/counsyl/hgvs
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2dbNSFP consists of all hypothetical single nucleotide
variants that would result in an amino acid change,
including stop lost and gained, and holds predicted
impact scores.

3CANdidate Variant Analysis System and Data Base:
https://github.com/UppsalaGenomeCenter/CanvasDB

4VCF format: http://www.1000genomes.org/wiki/
Analysis/Variant%20Call%20Format/vcf-variant-call-
format-version-41

5Apache Hadoop: http://hadoop.apache.org/
6A Python package for normalizing variants and

generating variant keys is available at https://github.com/
weiyi-bitw/varnorm

7Medline: http://www.ncbi.nlm.nih.gov/pubmed/
8PMC: http://www.ncbi.nlm.nih.gov/pmc/
9Note that we included variants from clinical datasets

only if precise coordinates and alleles were available,
therefore not storing variants referred to as “del 5kb” and
similar occurrences.

10We decided not to use TCGA germline allele
frequencies, due to uncertain genotypes that are devoid
of homozygous alternate calls in all but breast cancer and
some kidney chromophobe data.

11Note that filtering criteria may vary widely between
studies. Not all information necessary to apply our own
metrics are consistently available to us.

12WGS500: http://www.well.ox.ac.uk/wgs500
13GRU: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/collection.cgi?study_id=phs000688
14By extension, whole exome sequencing, other

targeted sequencing, genotyping arrays.
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Additional file 1: Database schema of RVS. Supplementary figure 1
summarizes the database schema of RVS production tables; some columns
were omitted, such as detailed prediction scores and columns for
sub-population frequencies. For detailed explanations of tables, refer to
Table 2. (PDF 164 kb)

Additional file 2: Variants in RVS by type (silent, frameshift, etc.).
Supplementary table 1 shows the effects of observed variants. Shown are
the numbers of variants that fall into a specific category of the
SequenceOntology (http://www.sequenceontology.org/), as determined
by snpEff [5]. Counts are based on observations in studies with ≥500
samples, unfiltered, and take into account one canonical transcript per
variant. Regions up/downstream of a gene are limited to 5000 bp. Effects
with less than 10 matching variants are omitted. (PDF 18.8 kb)

Additional file 3: Sequencing cohorts in RVS. Supplementary table 2
summarizes the sample cohorts in RVS by sequencing/genotyping
technology: Approximate number of base pairs covered; targeted regions
in whole exome sequencing depend largely on the capturing kit, see [52]
for an overview. (PDF 15.1 kb)

Additional file 4: Data sources integrated in RVS. Supplementary table
3 provides details on major external resources integrated into RVS.
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