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Abstract

Background: BLOSUMmatrices belong to the most commonly used substitution matrix series for protein homology
search and sequence alignments since their publication in 1992. In 2008, Styczynski et al. discovered miscalculations
in the clustering step of the matrix computation. Still, the RBLOSUM64 matrix based on the corrected BLOSUM code
was reported to perform worse at a statistically significant level than the BLOSUM62.
Here, we present a further correction of the (R)BLOSUM code and provide a thorough performance analysis of
BLOSUM-, RBLOSUM- and the newly derived CorBLOSUM-type matrices. Thereby, we assess homology search
performance of these matrix-types derived from three different BLOCKS databases on all versions of the ASTRAL20,
ASTRAL40 and ASTRAL70 subsets resulting in 51 different benchmarks in total. Our analysis is focused on two of the
most popular BLOSUMmatrices — BLOSUM50 and BLOSUM62.

Results: Our study shows that fixing small errors in the BLOSUM code results in substantially different substitution
matrices with a beneficial influence on homology search performance when compared to the original matrices. The
CorBLOSUMmatrices introduced here performed at least as good as their BLOSUM counterparts in ∼ 75 % of all test
cases. On up-to-date ASTRAL databases BLOSUMmatrices were even outperformed by CorBLOSUMmatrices in more
than 86 % of the times. In contrast to the study by Styczynski et al., the tested RBLOSUMmatrices also outperformed
the corresponding BLOSUMmatrices in most of the cases. Comparing the CorBLOSUM with the RBLOSUMmatrices
revealed no general performance advantages for either on older ASTRAL releases. On up-to-date ASTRAL databases
however CorBLOSUMmatrices performed better than their RBLOSUM counterparts in ∼ 74 % of the test cases.
Conclusions: Our results imply that CorBLOSUM type matrices outperform the BLOSUMmatrices on a statistically
significant level in most of the cases, especially on up-to-date databases such as ASTRAL ≥ 2.01. Additionally,
CorBLOSUMmatrices are closer to those originally intended by Henikoff and Henikoff on a conceptual level. Hence,
we encourage the usage of CorBLOSUM over (R)BLOSUMmatrices for the task of homology search.

Keywords: Substitution matrix, Homologous sequence search, BLOSUM, Correction, RBLOSUM, CorBLOSUM,
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Background
One of the most basic tasks in bioinformatics is the search
for homologous protein sequences, e.g. to classify newly
discovered proteins or to analyze evolutionary relation-
ships. Here, the elementary step is the computation of
sequence similarity of any two sequences by so called
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pairwise alignments using algorithms like Needleman-
Wunsch [1], Hirschberg’s algorithm [2], Smith-Waterman
[3], and Gotoh’s algorithm [4]. All of these algorithms use
substitution matrices to model evolutionary substitution
events and gap penalty models to represent evolutionary
insertion/deletion events.
The selection of the parameters in these models is a

non-trivial task and an important step in homology search
[5–7] and phylogeny [8, 9]. Over the years many dif-
ferent substitution matrices have been developed using
different techniques such as Markov chain models (PAM)
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[10], maximum likelihood estimation (VTML) [11] or
direct derivation from highly conserved amino acid blocks
(BLOSUM) [12].
In order to assess the performance of substitutionmatri-

ces the state of the art approach applies homologous
sequence search on a standardized database with known
sequence relations [13, 14]. Here, the ASTRAL database
[14, 15] — a subset of the SCOPe database [16, 17] —
serves as a gold standard for this benchmark [6, 13, 18–
20]. Typically, all sequences of the ASTRAL database are
searched against the entire database to obtain a list of
found homologs given a set of search parameters.
A well established method to measure the performance

of these parameters is the coverage measure at a given
errors per query (epq) [13]. In this context, the coverage
is similar to receiver operator characteristics (ROC) and
uses SCOPe sequence superfamily annotations to clas-
sify found homologs as true and false positives. In order
to compensate for different superfamily sizes quadratic
normalization of the coverage can be applied [6]. As the
coverage is strongly depending on the composition of
the search database, significance of the results can be
estimated via Concerted Bayesian bootstrapping [18].
A frequently used reference for benchmarking are the

BLOSUM matrices as these are standard parameters for
database search programs such as NCBI BLAST [21] and
SSEARCH [22]. While the BLOSUM matrix series was
introduced over two decades ago by Henikoff et al. [12],
previous work [19] revealed inconsistencies in the cluster
weighting procedure of the matrix calculation. Interest-
ingly, correcting these miscalculations did not improve
the search performance of the corrected BLOSUM vari-
ant (RBLOSUM) for the best benchmark at that time
(ASTRAL40 1.69).
Recently, Song et al. [20] presented another approach

to address inaccuracies in the BLOSUM matrices by
finding optimal unified eigenvectors. Nonetheless, for
homologous sequence search, their PBLOSUM matrix
was reported to perform consistently worse than BLO-
SUM62. Thus, BLOSUM serves as an upper bound on the
search performance.
The ever improving coverage of the protein sequence

space, allowed us to conduct a more detailed analysis of
the RBLOSUM correction [19] and its impact on homol-
ogy search performance. Based on the corrections pre-
sented by Styczynski et al. [19] we modified the original
BLOSUM code [23] and noticed an additional inaccuracy
(corrected code shown in Additional file 1).
The coding problem affects cluster memberships of

sequences and necessitates modifications to both the
original BLOSUM and the RBLOSUM variant. In short,
the published code contains an inaccurate integer based
thresholding, so that sequences may be assigned to a
particular cluster, even though they do not meet the

user-specified clustering threshold. While — on the
surface — the induced inaccuracies appear to be minus-
cule, the resulting substitution matrix entries are sys-
tematically biased away from the actual conservation
tendency intended by Henikoff et al. [12].
The following example illustrates this effect. At a block

length of 93 amino acids, a minimum sequence similar-
ity of 62 % — corresponding to the threshold used to
generate the BLOSUM62 substitution matrix — leads to
a similarity threshold of 57.66 identical residues. Or in
other words, at least 57.66 identical amino acids between
two sequences are required to form a cluster. In the origi-
nal implementation, this value is truncated to 57 identical
residues. In fact, this corresponds to an effective cluster-
ing value of just 61.29 % which was not intended by the
user and may result in mistakenly clustered sequences. A
correction of this error in combination with the problems
reported earlier [19] prompted us to derive a new sub-
stitution matrix series, named CorBLOSUM hereafter. A
detailed description of this inaccuracy and an analysis of
its impact is discussed in Additional file 1.
In this paper, we analyze the influence of the abovemen-

tioned error corrections on the resulting matrices derived
from different BLOCKS database compositions in combi-
nation with their respective homologous sequence search
performance. We present an exhaustive analysis on all
available ASTRAL releases at different maximal sequence
identities. Hence, our analysis covers 51 test databases in
total and is to our knowledge the largest assessment of
BLOSUM-type matrix performance to date.
We show that fixing a small coding error results in

substantially different CorBLOSUM matrices which ben-
eficially influence homology search performance in com-
parison to the original matrix. In particular, these new
matrices outperform their BLOSUM counterparts in ∼
75 % of all tested scenarios, especially on recent test
databases (ASTRAL versions ≥ 2.01).

Method
Substitution matrices
We calculated the above introduced, different variants of
the BLOSUM matrix (BLOSUM, RBLOSUM and Cor-
BLOSUM) using the algorithms described in [12, 19]
and the aforementioned CorBLOSUM algorithm (see
Additional file 1).
As the magnitude of both error corrections is influ-

enced by the database composition and as newer BLOCKS
releases are reported to produce better performing
matrices [6], we derived matrices from three different
databases: BLOCKS 5, BLOCKS 13+ and BLOCKS 14.3.
The BLOCKS 5 database represents the initial database

used for the publication of the BLOSUM [12] and RBLO-
SUM matrices [19]. The BLOCKS 13+ covers a larger
sequence space and was reported to produce better
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performing matrices than those created with BLOCKS 5
[6]. BLOCKS 14.3 represents the latest BLOCKS release as
of April 2007. This release spans over the largest sequence
space available in BLOCKS and represents a more con-
served starting point for the parametrization of evolution-
ary models, such as substitution matrices. We added the
labels 5.0, 13+ and 14.3 as subscripts to the matrix names
to distinguish from which BLOCKS version a matrix is
derived.
For the calculation of the original BLOSUM variants,

we chose clustering thresholds of 50 and 62, since the
BLOSUM505.0 and especially BLOSUM625.0 are two of
the most commonly used BLOSUM matrices. For exam-
ple, these are used as default matrices in SSEARCH [22]
and BLAST [21]. Since two substitution matrices can only
be properly compared if the difference of their relative
entropies is small [24], we adapted the clustering values
of the RBLOSUM and CorBLOSUM variants according
to the BLOSUM50 and BLOSUM62 variants created from
the three different BLOCKS versions. These 18 matri-
ces assessed in our study, their clustering values, relative
entropies and matrix scales based on unrounded log-odd
scores are listed in Table 1.
Notably, the difference in the clustering thresholds is

rather small for matrices based on BLOCKS 5 when com-
pared to those based on BLOCKS 13+ and BLOCKS 14.3.

Table 1 Overview of the matrices assessed in this study and their
respective clustering values, relative entropies and
corresponding scale in bits per unit

Matrix Clust. value Rel. entropy Bit units

BLOSUM505.0 50 0.4808 1/3

RBLOSUM525.0 52 0.4918 1/3

CorBLOSUM495.0 49 0.4849 1/3

BLOSUM625.0 62 0.6979 1/2

RBLOSUM645.0 64 0.7003 1/2

CorBLOSUM615.0 61 0.6939 1/2

BLOSUM5013+ 50 0.2430 1/4

RBLOSUM5913+ 59 0.2410 1/4

CorBLOSUM5713+ 57 0.2479 1/4

BLOSUM6213+ 62 0.3672 1/3

RBLOSUM6913+ 69 0.3601 1/3

CorBLOSUM6613+ 66 0.3653 1/3

BLOSUM5014.3 50 0.1509 1/5

RBLOSUM5914.3 59 0.1477 1/5

CorBLOSUM5714.3 57 0.1515 1/5

BLOSUM6214.3 62 0.2685 1/4

RBLOSUM6914.3 69 0.2662 1/4

CorBLOSUM6714.3 67 0.2636 1/4

This effect is induced by the different sequence com-
positions in the different BLOCKS releases. While the
BLOCKS 5 release only provides 27,102 sequences for
the matrix calculation, the BLOCKS 13+ provides 663,288
sequences and the even larger BLOCKS 14.3 database
6,739,916 sequences. Similarly, the composition of the
database influences the relative matrix entropy. Whereas
the entropy of thematrices which originate fromBLOCKS
5 database is rather high, the distribution of substitution
events (i.e. the joint distribution) in the BLOCKS 13+
and BLOCKS 14.3 are closer to an independent event
(i.e. the product of the marginals) and hence the relative
substitution matrix entropy is smaller.

Databases
Analogous to previous studies [6, 19, 20], we chose the
ASTRAL database as basis for our performance analysis.
The ASTRAL database [14, 15] serves as a gold standard
for the assessment of homology search performance and
parameter selection [6, 13, 18, 19]. The database itself
is a subset of the SCOP/SCOPe databases [16, 17] and
consists of structural alignments [14, 15] based on the
hand-curated SCOP classification.
As mentioned earlier, the performance study by

Styczynski et al. [19] was solely based on the ASTRAL40
1.69 release with less than 40 % identical sequences. In
addition, we tested all generated substitution matrices
against all available ASTRAL database releases (versions
1.55 to 2.06). Inspired by Angermüller et al. [25], we used
for each release three different sequence similarity thresh-
olds (20, 40 and 70 %) resulting in 51 separate bench-
marks. In the following, we use the terms ASTRAL20,
ASTRAL40 and ASTRAL70 to distinguish between these
three similarity based subsets. Additionally, we use the
terms SCOP or SCOPe based ASTRAL datasets to refer
to ASTRAL versions 1.55 to 1.75 and 2.01 to 2.06, respec-
tively. Here, we would like to note, that SCOP based
ASTRAL releases are entirely manually curated while
SCOPe releases are based on a semi-automated approach
for the database generation.
This wide variety of databases allows for the assessment

of the effect of improving sequence space coverage and
different database compositions on matrix performance.

Search methods
In order to evaluate the performance of the different sub-
stitution matrices on the different ASTRAL databases,
we conducted a homology search for each of the 51
ASTRAL databases against itself. Here, we used the
Smith-Waterman alignment algorithm implemented in
SSEARCH (version 36.3.6d) [22], as SSEARCH has been
shown to possess higher accuracy than BLAST in assess-
ing the performance of different substitution matrices
[12, 18, 19].
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To address the potential bias from suboptimal gap
penalty settings on the matrix performance, we varied
the gap open penalty between 5 and 20 in spacings of 1
and the gap extension penalty between 1 and 2. These
penalties correspond to commonly used parameter set-
tings in homology search tools (BLAST [21] and SSEARCH

[22]) and previous performance studies such as [6]. For
each combination of matrix, gap open and gap extension
penalty, we obtained a list of homologs found for each
sequence in the benchmarkedASTRAL release ordered by
their respective E-value. The best performing gap param-
eter set for each matrix on each of the tested ASTRAL
databases are listed in Additional file 2.

Performance evaluation
In analogy to previous assessments [6, 19], we used the
coverage measure Q to evaluate the performance of the
different matrix/gap combinations.Q represents the frac-
tion of true positives found in the search results after
applying an E-value thresholding based on the errors per
query (epq) measure from [6, 18]. A widely used toolkit
[6, 19, 20], to calculate the coverage measure from
SSEARCH results is the PSCE toolkit by Green et al.
[18]. In order to handle the large amount of SSEARCH

results generated in our study, we used our own
CoverageCalculator tool, a performance optimized
reimplementation of the PSCE toolkit. The source code of
this tool is available at [26].
In our CoverageCalculator, a search result is consid-

ered as a true positive relation, if the superfamily annota-
tions, as provided by the ASTRAL database, are identical
for the query and the reported sequence. In order to mit-
igate potential bias from different superfamily sizes, we
used the quadratic normalized coverage Qquad (Eq. 1) as
the average of true positive relations found per superfam-
ily [6]:

Qquad = 1
S

S∑
i=1

ti
(s2i − si)

(1)

Here, ti is the number of true positive relations found
for a superfamily i with si sequences. S is the number of
superfamilies in the database.
The E-value threshold for the filtering is selected adap-

tively, depending on the average number of false positive
relations remaining in all search results after applying
the threshold. A search result is considered a false posi-
tive relation, if its superfamily annotation does not match
the annotation of the query sequence. This is contrary
to the PSCE toolkit, where search results with differ-
ent superfamily but same fold annotation are ignored
in the coverage calculation since their evolutionary rela-
tionship is unknown. Hence, our CoverageCalculator
takes all reported results into account and thus is not

overestimating the “real” coverage by skipping unknown
but real false positive relations within the same fold. Since
the true evolutionary relationship between the superfam-
ilies is not known, this may underestimate the “real” cov-
erage, but consistently assumes that all superfamilies are
not related. Hence, the coverages reported here, represent
the lower bound for substitution matrix performance.
In our study, we set the maximum number of

errors to 0.01 epq in accordance with previous studies
[6, 13, 18, 19]. This corresponds to a maximum of one
false positive relation identified per 100 queries on aver-
age for the entire database. For example, the search results
of ASTRAL40 1.69 database with its 7290 sequences are
filtered to contain no more than 72 false positives in total.
In order to evaluate the statistical significance of the

performance results for the tested matrix/gap combina-
tions, we used Concerted Bayesian bootstrapping [6, 18],
where sequence weights are derived from a Dirichlet dis-
tribution. This method effectively analyzes the influence
of slight changes in the database composition on the
resulting coverage values. Applying the quadratic cover-
age normalization to the Concerted Bayesian bootstrap-
ping yields the following equations for one bootstrap:

Q̂i =
si∑
j=1

Nj∑
m=1

δ(θj, θm)wjwm (2a)

Wi =
si∑

k=1

si∑
l=1

wkwl −
si∑

k=1
(wk)

2 (2b)

Q̂quad = 1
S

S∑
i=1

Q̂i
Wi

(2c)

In Eq. 2a, wj represents the weight of the jth query
sequence of superfamily i. θj represents its superfamily
annotation. Likewise, θm denotes the superfamily of the
mth query results for the jth sequence with the weight
wm. δ(θj, θm) is the Kronecker delta, returning 1 if θj and
θm are equal, i.e. if both sequences are members of the
same superfamily, and zero otherwise.Nj is the number of
homologs found for the query sequence and si denotes the
sequence count of the ith superfamily.
Thus, Eq. 2a describes the unnormalized coverage for

the ith superfamily — all found “true positive” relations.
Equation 2b is the quadratic normalization for the ith
superfamily, i.e. all possible positive interactions for the ith
superfamily. Summing over all relative coverages for the
S-numbered superfamilies (Eq. 2c) returns the quadratic
normalized coverage for a single bootstrap.
The significance of the coverage difference of two

matrix/gap combinations is tested by calculating aZ-score
from a two-sample parametric means test using the vari-
ance from the two corresponding bootstrap distributions
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[18]. Hereby, the Z-score measures the significance of the
difference of the two underlying distributions (see Eq. 3).

Zp,q = Q̄p − Q̄q√
σ 2
p+σ 2

q
N

(3)

For two different matrix/gap combinations p and q, Q̄p
and Q̄q represent the mean of the bootstrap coverages cal-
culated for the pth and qth matrix/gap combinations at an
errors per query (epq) of 0.01. σ 2

p and σ 2
q correspond to

the variance of the underlying bootstrap coverage distri-
butions. N represents the number of bootstrap rounds.
In our study, we set the number of bootstrap rounds

for each matrix/gap combination to 500 as previously sug-
gested [6]. We consider differences with Z ≥ 1.96 as
significant which corresponds to the 97.5 percentile.

Results and discussion
Matrix differences
In order to assess the impact of the code corrections (see
Additional file 1 and [19]) we derived all three matrix
variants from the here tested BLOCKS versions using
the same clustering value. Exemplary, Fig. 1 highlights
the difference in the respective matrix entries for a clus-
tering value of 62. Here, we can clearly see numerous
changes between the matrices created by the three algo-
rithms. While differences for BLOCKS 5 based substitu-
tion matrices are in the range of −1 to 1, BLOCKS 13+

and BLOCKS 14.3 based matrices can differ to a much
greater extend (ranging from −3 to 5) eventually imply-
ing a 105 fold change in frequency counts. Thus, changes
in the matrices cannot exclusively be related to rounding
issues, indicating substantially different algorithms.
To properly assess the performance difference between

the three different substitution matrix types it is nec-
essary to observe their capabilities at a similar rela-
tive entropy level [24]. Here, we compared for exam-
ple the BLOCKS 5 based matrices CorBLOSUM615.0,
BLOSUM625.0 and RBLOSUM645.0 (see Fig. 2). On
one hand, a total of 31 matrix entries are different
between the CorBLOSUM615.0 and BLOSUM625.0 (i.e.
14.8 %), with 17 entries being reduced (see Fig. 2,
lower triangle). On the other hand, only 7 entries dif-
fer between CorBLOSUM615.0 and RBLOSUM645.0, with
three entries being larger in absolute value. The compari-
son of thematrices comparable to BLOSUM505.0 is shown
in Additional file 3: Figure S1. The smaller number of dif-
ferences between RBLOSUM645.0 and CorBLOSUM615.0
are not unexpected, as the RBLOSUM correction is also
included in the CorBLOSUM algorithm. However, the
number of differences between CorBLOSUM and RBLO-
SUM type matrices increases for other BLOCKS ver-
sions. The large differences between CorBLOSUM- and
BLOSUM-type matrices observed for BLOCKS 5 can also
be observed for the other two BLOCKS releases. The com-
plete overview of differences for all entropy levels assessed
in this paper is given in Additional file 4: Figure S2 and

Fig. 1 Comparison of matrix entries using the same clustering value 62. Shown are the differences of BLOSUM62 and RBLOSUM62 to CorBLOSUM62
for BLOCKS 5, BLOCKS 13+ and BLOCKS 14.3. Blue tiles represent matrix entries where the respective CorBLOSUM62 values are larger than entries of
the compared matrix. Red tiles represent the opposite. While differences for BLOCKS 5 based substitution matrices only range from −1 to 1, the
range of these differences is substantially larger for newer BLOCKS versions
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Fig. 2 Comparison of CorBLOSUM615.0 with BLOSUM625.0 and RBLOSUM645.0. Differences between CorBLOSUM615.0 and BLOSUM625.0 are
displayed in the lower triangle and those between CorBLOSUM615.0 and RBLOSUM645.0 in the upper triangle, with CorBLOSUM615.0 values shown.
Light gray tiles represent entries where the CorBLOSUM615.0 matrix is one log-odd score point higher than the compared matrix, whereas dark gray
represent a one point lower score of CorBLOSUM615.0 matrix. Noticeably, the CorBLOSUM correction introduces further changes into the
RBLOSUM645.0 matrix (upper triangle) which results in numerous value adjustments when compared to the BLOSUM625.0 matrix (lower triangle)

Additional file 5: Figure S3. The comparison of matrices
based on a similar entropy level further highlights that the
three algorithms create substantially different substitution
matrices.

General matrix performance overview
Using the above described benchmarking method we
compared the different matrix variants BLOSUM, RBLO-
SUM and CorBLOSUM. The achieved coverage values
for these matrices and their respective best gap parame-
ter settings are shown in Fig. 3, Additional file 6: Figure
S4 and Additional file 7: Figure S5. For all test scenar-
ios we consider performance differences with Z-scores
< 1.96 as insignificant and thus assume matrix perfor-
mance to be almost equal. In cases where the coverage
difference between a BLOSUM- and CorBLOSUM-type
matrix is insignificant as denoted by its corresponding
Z-score value, an O is displayed above the bar. For the
CorBLOSUM/RBLOSUM comparison, we highlight this
with a smallX. The underlying Z-scores for estimating the
significance of these coverage differences are shown for

completeness in Additional file 8: Figure S6, Additional
file 9: Figure S7 and Additional file 10: Figure S8.
In order to obtain a general overview, we counted the

number of times a specific CorBLOSUM matrix per-
formed equally or better than its corresponding BLOSUM
counterpart. Considering all test scenarios, substitution
matrices computed with the CorBLOSUM algorithm per-
formed at least as good as their BLOSUM counterparts in
∼ 75 % of the time. On SCOPe based ASTRAL releases
this percentage increased to ∼ 86 %.
Since we cannot directly compare the performance of

substitutionmatrices derived from different BLOCKS ver-
sions due to their relative entropies, we compared the
performance of each substitution matrix on all three sim-
ilarity based ASTRAL subsets in identical manner to
the above described. Cases where CorBLOSUM matrices
performed at least as good as their corresponding BLO-
SUM variants derived from the three different BLOCKS
versions are shown in percent in Table 2. Here, the
CorBLOSUM matrices performed better than the BLO-
SUMmatrices with one interesting exception, the original
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Fig. 3 Progression of the maximum achieved coverage of CorBLOSUM-, RBLOSUM- and BLOSUM-type matrices for all ASTRAL40 test databases. The
upper row shows the results for the respective BLOSUM50 entropy level, the lower row for BLOSUM62 entropy level. Insignificant coverage
differences between CorBLOSUM and BLOSUM are indicated by an O and between CorBLOSUM and RBLOSUM by a small an X above the bars. The
corresponding gap parameter settings are listed in Additional file 2. Notably, the coverage increases for all tested substitution matrices dramatically
with the introduction of the semi-automatic database generation of SCOPe. For the BLOSUM50 entropy level, CorBLOSUM-type matrices performed
at least as good as their BLOSUM counterparts in ∼ 84 % of all tested scenarios and in ∼ 49 % showed a similar or better performance than the
RBLOSUM-type matrices. For the BLOSUM62 entropy level CorBLOSUMmatrices showed equally as good or better performance than BLOSUM in
∼ 67 % while improving performance over RBLOSUM in ∼ 60 % of all analyzed ASTRAL40 scenarios

BLOSUM625.0 matrix. This matrix still performed better
than its CorBLOSUM615.0 counterpart in most of the
cases on the ASTRAL20 and ASTRAL40 subsets.
Although, the achieved coverage range differs widely

between the ASTRAL20, ASTRAL40 and ASTRAL70
subsets, our results show a specific performance pattern
within each identity subset regardless of the BLOCKS

Table 2 Comparison of CorBLOSUM- with BLOSUM-type
matrices

ASTRAL subset BLOSUM50 BLOSUM62
entropy level entropy level

BLOCKS 13+ ASTRAL20 94.12 % 58.82 %

ASTRAL40 100 % 76.47 %

ASTRAL70 100 % 82.35 %

BLOCKS 14.3 ASTRAL20 76.47 % 76.47 %

ASTRAL40 76.47 % 100 %

ASTRAL70 88.24 % 70.59 %

BLOCKS 5 ASTRAL20 70.59 % 23.53 %

ASTRAL40 76.47 % 23.53 %

ASTRAL70 100 % 58.82 %

Shown in percent is the relative frequency for which a CorBLOSUMmatrix
performed at least as good as its BLOSUM counterpart

version and entropy level used for the computation of
the matrices. For ASTRAL40 and ASTRAL70, the cover-
age increases drastically for ASTRAL versions based on
SCOP (version ≤ 1.75) to those based on SCOPe (ver-
sion ≥ 2.01). Interestingly, this trend cannot be observed
for ASTRAL20. In the following sections, we discuss the
matrix performances on each of the three different simi-
larity based ASTRAL subsets in detail.

Matrix performance on ASTRAL40
The resulting coverage values for all tested ASTRAL40
versions and substitution matrices are shown in Fig. 3.
The reported values reflect the respective best matrix /
gap parameter combinations. The Z-scores representing
the statistical significance of the coverage differences are
shown in Additional file 8: Figure S6.
For the ASTRAL40 subset, a general performance trend

can be observed for all assessed relative entropy lev-
els. Starting from ASTRAL release 1.57 the performance
increases steadily until ASTRAL 1.69, the database used
by Styczynski et al. to measure the RBLOSUM perfor-
mance. Here, a drastic drop in the coverages can be
observed. From ASTRAL 1.71 the coverages continue to
steadily increase with a very large increment upon the
introduction of SCOPe at ASTRAL 2.01. The highest
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coverage over all entropy levels, BLOCKS versions and
ASTRAL releases was obtained for CorBLOSUM495.0
on ASTRAL 2.06 with a coverage of 0.4389 at a gap
open/extension penalty of 15/1.
For BLOCKS 5 derived substitution matrices at a

matrix entropy level of ∼ 0.7 bit, the original, inaccu-
rate BLOSUM625.0 dominates the corrected variants for
nearly every ASTRAL release but the newest three. For
these, CorBLOSUM615.0 and RBLOSUM645.0 performed
at least as well as BLOSUM625.0 at a statistical signif-
icant level. Our results for the ASTRAL 1.69 database
are in concordance with the results published in the
RBLOSUM study [19] — i.e. the BLOSUM625.0 signifi-
cantly outperforms the RBLOSUM645.0. Interestingly, the
used BLOCKS version significantly influences this per-
formance difference as RBLOSUMmatrices derived from
BLOCKS 13+ and BLOCKS 14.3 outperform their BLO-
SUM counterparts.
The CorBLOSUM495.0 showed higher coverages than

the BLOSUM505.0 for all databases but the oldest
ASTRAL and the oldest SCOPe derived ASTRAL
databases 2.01 and 2.02. In general, BLOSUM505.0
entropy level matrices achieve higher coverages than
those at the BLOSUM625.0 entropy level. This cannot be
observed for BLOCKS 13+ and BLOCKS 14.3.
For these, the CorBLOSUM5713+ and CorBLOSUM

6714.3 consistently outperformed their BLOSUM coun-
terparts on all test databases. CorBLOSUM6613+ and
CorBLOSUM5714.3 achieved a coverage at least as high
as the BLOSUM in ∼ 76 % of the tested scenarios. For
all SCOPe derived ASTRAL datasets CorBLOSUM substi-
tution matrices outperformed their respective BLOSUM
variant.
The comparison between CorBLOSUM- and RBLO

SUM-type matrices showed overall mixed results.
Notably, CorBLOSUM matrices derived from BLOCKS
13+ and BLOCKS 14.3 achieved higher coverages than
RBLOSUM matrices in ∼ 83 % of the analyzed SCOPe
based datasets.

Matrix performance on ASTRAL20 and ASTRAL70
Overall, the matrix performances on the ASTRAL70 sub-
set showed the highest coverages followed by ASTRAL40
and ASTRAL20. On the latter the reported coverage val-
ues are well below 0.17 which indicates that all tested
substitution matrices do not perform well on diverse
sequence datasets.
While the coverage trend in respect to the ASTRAL

releases on the ASTRAL70 subset is similar to
ASTRAL40, a very different trend can be observed for the
ASTRAL20 subset (see Additional file 6: Figure S4 and
Additional file 7: Figure S5). On SCOPe based ASTRAL70
releases CorBLOSUM matrices outperformed their BLO-
SUM counterparts in ∼ 92 % of the test datasets, over

all BLOCKS versions and entropy levels. Similarly, on
the ASTRAL20 subset CorBLOSUM variants achieved a
rating of ∼ 94 % in comparison to BLOSUM at the BLO-
SUM50 entropy level. On the BLOSUM62 entropy level
CorBLOSUM outperformed BLOSUM in ∼ 66 % of the
times. A detailed discussion of the matrix performance
on the ASTRAL20 and ASTRAL70 subsets is given in
Additional file 1.

Conclusion
In this paper, we presented an additional error correc-
tion to the BLOSUM code resulting in a new and sig-
nificantly different matrix computation algorithm. The
matrices created by our CorBLOSUM algorithm are sub-
stantially different from (R)BLOSUM matrices and out-
performed the original BLOSUMmatrices in∼ 75 % of all
51 test scenarios. On up-to-date SCOPe based ASTRAL
releases, the current gold standard for homology search
performance assessment, the CorBLOSUM matrices out-
performed their BLOSUM counterparts in ∼ 86 % of
the cases. On these databases, the CorBLOSUM matri-
ces also achieved the highest reported coverages for all
three ASTRAL similarity subsets when compared with
their BLOSUM counterparts.
The aim of this study was not to assess optimal param-

eters for homologous sequence search, such as the best
matrix/gap-parameter combination. Nevertheless, this is
an interesting question which should be addressed in the
future, especially since our study showed that the rela-
tive entropy of substitution matrices is not necessarily an
indicator for matrix performance.
Our results for the BLOSUM625.0 vs. RBLOSUM645.0

setup concur with previous findings [19]. There, the test
covered only a very specific scenario (ASTRAL40 1.69)
in which the RBLOSUM645.0 was outperformed by the
BLOSUM625.0. These previous results would have been
quite different if at that time other available BLOCKS
and ASTRAL databases had been used. RBLOSUMmatri-
ces tested in this study performed in most of the times
equally or better than their BLOSUM counterparts. Our
study showed that for the RBLOSUM/CorBLOSUM com-
parison no consistent trend can be observed for older
ASTRAL releases prior to 2.01, as RBLOSUM and Cor-
BLOSUM matrices each being superior in ∼ 50 % of
the cases. However, on databases with increased sequence
and structure space coverage — as provided by SCOPe
based ASTRAL versions — CorBLOSUM-type matrices
achieved higher coverages than the RBLOSUM matrices
in ∼ 74 % of the tests.
Furthermore, our study revealed two contradicting

effects: on the one hand, matrices with very similar
entropies show a statistically significant differing perfor-
mance. On the other hand, we also showed that matrices
with very different entropies andmatrix scales can achieve
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similar coverages. The latter effect is apparently enhanced
by increasing sequence similarity within superfamilies and
the database itself. This raises an interesting question for
further research on the influence of changes in database
composition on its respective searchability.
We conclude that the CorBLOSUM algorithm introduced
here fixes errors of the original BLOSUM implementation
and that the resulting matrices perform better for homol-
ogous sequence search. Hence, we encourage the usage of
CorBLOSUMmatrices for this specific task.

Availability of data andmaterial
TheASTRAL databases supporting the conclusions of this
article are available at http://scop.berkeley.edu/astral/.
The reported coverage values supporting the conclusions
of this article are included within the article and its addi-
tional files. The matrices discussed in this article are avail-
able at http://www.cbs.tu-darmstadt.de/CorBLOSUM.
Information about the CoverageCalculator tool:

Project name: CoverageCalculator
Project home page: http://www.cbs.tu-darmstadt.de/
CorBLOSUM
Operating system(s): Linux (Tested on Ubuntu 14.04)
Programming language: C++11
Other requirements:OpenMP 3.0
License: GNU GPLv3

Additional files

Additional file 1: Detailed description of the CorBLOSUM error correction
with analysis of its impact related to BLOCKS 5 and BLOCKS 14.3 database
composition. Furthermore, a detailed discussion of the matrix
performances on ASTRAL70 and ASTRAL20 subsets is given. (PDF 189 kb)

Additional file 2: List of best performing matrix/gap parameter
combinations. (CSV 47.6 kb)

Additional file 3: Figure S1. Plot of the differences in entries for
BLOSUM505.0, RBLOSUM525.0 and CorBLOSUM495.0 with similar entropy.
Differences of CorBLOSUM495.0 and BLOSUM505.0 displayed in the lower
triangle and of CorBLOSUM495.0 and RBLOSUM525.0 in the upper triangle,
with CorBLOSUM495.0 values shown. Light gray tiles represent entries
where the CorBLOSUM495.0 matrix is one log-odd score point higher than
the compared matrix, whereas dark gray represent a 1 point lower score of
CorBLOSUM495.0 matrix. White squares represent entries where the
CorBLOSUM495.0 is two points higher than the compared matrix.
Noticeably, the CorBLOSUM correction introduces further changes into the
RBLOSUM525.0 matrix (upper triangle) which results into numerous value
adjustments when compared to the BLOSUM505.0 matrix (lower triangle).
(PDF 18.3 kb)

Additional file 4: Figure S2. Comparison of all analyzed CorBLOSUM
matrices with their corresponding counterparts for all three BLOCKS
databases at their respective BLOSUM62 entropy level. Entries for which
the CorBLOSUM is higher than the compared matrix are displayed in blue
and red vice versa. White entries symbolize no change in value. Noticeably,
the CorBLOSUM-type matrices differ to a great extend from the
BLOSUM-type matrices, while the changes between CorBLOSUM and
RBLOSUM are fewer but still numerous. (PDF 16.3 kb)

Additional file 5: Figure S3. Comparison of all analyzed CorBLOSUM
matrices with their corresponding counterparts for all three BLOCKS
databases at their respective BLOSUM50 entropy level. Entries for which
the CorBLOSUM is higher than the compared matrix are displayed in blue

and red vice versa. White entries symbolize no change in value. Compared
to Additional file 4: Figure S2 the differences of the CorBLOSUM-type
matrices to BLOSUM-type matrices increase in number and extend, while
the frequency of changes compared to RBLOSUM is similar. (PDF 16.6 kb)

Additional file 6: Figure S4. Progression of the maximum achieved
coverage of CorBLOSUM-, RBLOSUM- and BLOSUM-type matrices for all
ASTRAL70 test databases. The upper row shows the results for the
respective BLOSUM50 entropy level, the lower row for BLOSUM62 entropy
level. An insignificant coverage difference between CorBLOSUM and
BLOSUM is indicated by an O and between CorBLOSUM and RBLOSUM by
an X. The corresponding gap parameter settings are listed in Additional file
2. Similar to the ASTRAL40 test scenarios, a drastic increase in coverage can
be observed for SCOPe based ASTRAL databases. For the BLOSUM50
entropy level, CorBLOSUM-type matrices performed at least as good as
their BLOSUM counterparts in ∼ 94 % of all tested scenarios and in ∼ 51 %
showed a similar or better performance than the RBLOSUM-type matrices.
For the BLOSUM62 entropy level CorBLOSUMmatrices showed equally as
good or better performance than BLOSUM in ∼ 75 % while improving
performance over RBLOSUM in ∼ 59 % of all analyzed ASTRAL70 scenarios.
(PDF 9.69 kb)

Additional file 7: Figure S5. Progression of the maximum achieved
coverage of CorBLOSUM-, RBLOSUM- and BLOSUM-type matrices for all
ASTRAL20 test databases. The upper row shows the results for the
respective BLOSUM50 entropy level, the lower row for BLOSUM62 entropy
level. An insignificant coverage difference between CorBLOSUM and
BLOSUM is indicated by an O and between CorBLOSUM and RBLOSUM by
an X. The corresponding gap parameter settings are listed in Additional file
2. The BLOSUM62 entropy level substitution matrices derived from
BLOCKS13+ and BLOCKS14.3 consistently achieved higher coverages than
those on the BLOSUM50 entropy level. For the BLOSUM50 entropy level,
CorBLOSUM-type matrices performed at least as good as their BLOSUM
counterparts in ∼ 80 % of all tested scenarios and in ∼ 53 % showed a
similar or better performance than the RBLOSUM-type matrices. For the
BLOSUM62 entropy level CorBLOSUMmatrices showed equally as good or
better performance than BLOSUM in ∼ 49 % while improving performance
over RBLOSUM in ∼ 70 % of all analyzed ASTRAL20 scenarios. (PDF 9.69 kb)

Additional file 8: Figure S6. Z-scores for the coverage comparison of
CorBLOSUM with BLOSUM and RBLOSUM based on Bayesian bootstrap for
the ASTRAL40 datasets. (PDF 8.61 kb)

Additional file 9: Figure S7. Z-scores for the coverage comparison of
CorBLOSUM with BLOSUM and RBLOSUM based on Bayesian bootstrap for
the ASTRAL70 datasets. (PDF 8.55 kb)

Additional file 10: Figure S8. Z-scores for the coverage comparison of
CorBLOSUM with BLOSUM and RBLOSUM based on Bayesian bootstrap for
the ASTRAL20 datasets. (PDF 8.91 kb)
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