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Abstract

Background: Comparing phenotypes of heterogeneous cell populations from multiple biological conditions is at
the heart of scientific discovery based on flow cytometry (FC). When the biological signal is measured by the average
expression of a biomarker, standard statistical methods require that variance be approximately stabilized in
populations to be compared. Since the mean and variance of a cell population are often correlated in
fluorescence-based FC measurements, a preprocessing step is needed to stabilize the within-population variances.

Results: We present a variance-stabilization algorithm, called flowVS, that removes the mean-variance correlations
from cell populations identified in each fluorescence channel. flowVS transforms each channel from all samples of a
data set by the inverse hyperbolic sine (asinh) transformation. For each channel, the parameters of the transformation
are optimally selected by Bartlett’s likelihood-ratio test so that the populations attain homogeneous variances. The
optimum parameters are then used to transform the corresponding channels in every sample. flowVS is therefore an
explicit variance-stabilization method that stabilizes within-population variances in each channel by evaluating the
homoskedasticity of clusters with a likelihood-ratio test.
With two publicly available datasets, we show that flowVS removes the mean-variance dependence from raw FC data
and makes the within-population variance relatively homogeneous. We demonstrate that alternative transformation
techniques such as flowTrans, flowScape, logicle, and FCSTrans might not stabilize variance. Besides flow cytometry,
flowVS can also be applied to stabilize variance in microarray data. With a publicly available data set we demonstrate
that flowVS performs as well as the VSN software, a state-of-the-art approach developed for microarrays.

Conclusions: The homogeneity of variance in cell populations across FC samples is desirable when extracting
features uniformly and comparing cell populations with different levels of marker expressions. The newly developed
flowVS algorithm solves the variance-stabilization problem in FC and microarrays by optimally transforming data with
the help of Bartlett’s likelihood-ratio test. On two publicly available FC datasets, flowVS stabilizes within-population
variances more evenly than the available transformation and normalization techniques. flowVS-based variance
stabilization can help in performing comparison and alignment of phenotypically identical cell populations across
different samples. flowVS and the datasets used in this paper are publicly available in Bioconductor.
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Background
We describe an algorithm that transforms a collection
of flow cytometry (FC) samples in order to stabilize
the variance within cell populations in each fluorescence
channel for the entire collection of samples. This trans-
formation enables cell populations (clusters of cells with
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similar phenotypes) with homogeneous variances to be
easily compared with each other by standard statistical
methods. Between-population comparisons are impor-
tant in detecting changes in populations across biological
conditions, which might help us to diagnose diseases,
develop new drugs, and understand the immune system in
general [1–5]. Hence, our variance-stabilization algorithm
could play a supporting role in automating biological
discovery based on flow cytometry and similar imaging
technologies.
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FC technology measures morphology (from light scat-
tering) and the expression of multiple biomarkers (from
fluorescence emission of fluorophores attached to anti-
bodies) at the single-cell level. An FC sample consists of
hundreds of thousands or more of such single-cell mea-
surements, and a study could consist of thousands of
samples from different individuals at different time points
under different experimental conditions [6, 7].
Variance inhomogeneity is an inherent problem in

fluorescence-based FC measurements and can be an
obstacle both for manual data analysis performed by
qualified cytometry operators and for automated multi-
sample comparisons, which typically rely on an inter-
mediate step of cell clustering using a plethora of
approaches from modified k-means to non-parametric
Bayesian methodologies [8, 9]. The origin of the prob-
lem is the physics of fluorescence signal formation and
the detection processes that monotonically increase the
variance of the fluorescence signal with the average sig-
nal intensity [10, 11]. For example, Fig. 1 demonstrates
how the variances of cell populations increase with their
mean fluorescence intensities (MFIs) in a set of FC sam-
ples collected from several healthy individuals. Owing to
such signal-variance dependence, a cell population with
higher levels of marker expressions (i.e., higher fluores-
cence emission) has higher variance than another pop-
ulation with relatively low levels of marker expressions
(i.e., low fluorescence emission). This inhomogeneity of
within-population variance creates problems in extracting

Fig. 1Mean fluorescence intensities (MFIs) of one-dimensional cell
populations (also called density peaks) are plotted against the
variances of the populations. Blood samples were collected from five
healthy individuals on different days and stained with labeled
antibodies against five biomarkers (see Section 3). Samples are
compensated and gated for the lymphocytes, but no transformation
is used. Populations identified in each fluorescence channel are
shown with the same symbol and color. We observe that without
proper transformation, variance increases monotonically with MFI

features uniformly and comparing cell populations with
different levels of marker expressions.
In order to demonstrate the flowVS results we evalu-

ate the pre- and post-processing cluster homogeneity, and
quantify the improvement offered by our approach. We
report the results using a simple measure of effect size,
rather than through a hypothesis-testing framework. As
an example, consider the population registration prob-
lem in which corresponding cell clusters from multiple
FC samples are identified based on the average levels of
markers expressed by the clusters [3, 12–14]. The clusters
of cells representing the same immunophenotype identi-
fied in multiple samples are represented by a hypothetical
metacluster (a biological generalization of the particu-
lar immunophenotype, observed across multiple sam-
ples). The existence of metaclusters is typically assessed
by hemopathologists or other skilled FC operators on
the basis of their experience and knowledge of previous
examples of normal and aberrant immunophenotypes.
The biological hypothesis behind assigning a cluster to a
metacluster can be formulated as “all clusters in a meta-
cluster represent the same cell type (immunophenotype).”
However, translating this hypothesis to a null stating “all
clusters in a metacluster have equal mean” and using
a traditional hypothesis-testing framework accompanied
by p-values may not be appropriate. First, we know that
such a null hypothesis is unrealistic: biological variabil-
ity, technical variability of blood or bone-marrow sample
measurements, and random effects associated with the
biochemistry of antibody binding will certainly produce
clusters of differing means. Second, a hypothesis-testing
framework addresses only the question of whether the
clusters have the same location, but it is not designed
to measure the magnitude of the difference or lack of
homogeneity within a postulated metacluster. Finally, the
p-values are affected by both cluster size and metacluster
homogeneity. Thus, the p-values obtained would not be
comparable for various metaclusters or different clusters
within metaclusters.
Variance stabilization (VS) is a process for dissociat-

ing data variability from mean signals [15–18]. Other
fluorescence-based technologies such as the microarrays
stabilize variance by data transformation [18–21]. How-
ever, unlike microarray data, explicit VS is not usually
performed in FC data analysis. Traditionally, FC data are
transformed with nonlinear functions to project cell pop-
ulations with normally distributed clusters – a choice
that usually simplifies subsequent visual analysis [22–27].
Recently, Finak et al. [27] used the maximum-likelihood
approach to explicitly satisfy normality of the cell popu-
lations. Ray et al. [28] transformed each channel with the
asinh function whose parameters are optimally selected
by the Jarque-Bera test of normality (a goodness-of-fit test
of whether sample data have the skewness and kurtosis
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matching a normal distribution). While these transforma-
tions approximately normalize FC data, they might not
stabilize variance, as may be seen in Figs. 6 and 7.
The VS problem in FC, however, cannot be solved

directly by applying mature VS techniques from the
microarray literature. In microarrays, each gene is mea-
sured multiple times (possibly under multiple conditions)
and the between-sample variance for each gene is sta-
bilized with respect to the average expression of the
gene across samples. By contrast, variance is defined by
within-population cell-to-cell variation in FC, and this
within-population variance is stabilized with respect to
the average expression of markers within each population.
These contrasting objectives prevent us from applying
VS methods from microarray literature directly to flow
cytometry.
We address the need for explicit VS in FC with a

maximum likelihood (ML)-based method, called flowVS,
which is built on top of a commonly used inverse hyper-
bolic sine (asinh) transformation. The choice of asinh
function is motivated by its success as a variance stabi-
lizer for microarray data [18, 21]. flowVS stabilizes the
within-population variances separately for each fluores-
cence channel z across a collection of N samples. After
transforming z by asinh(z/c), where c is a normalization
cofactor, flowVS identifies one-dimensional clusters (den-
sity peaks) in the transformed channel. Assume that a total
of m 1-D clusters are identified from N samples with the
i-th cluster having variance σ 2

i . Then the asinh(z/c) trans-
formation works as a variance stabilizer if the variances
of the 1-D clusters are approximately equal, i.e., σ 2

1 ∼
σ 2
2 ∼ . . . ∼ σ 2

m. To evaluate the homogeneity of vari-
ance (also known as homoskedasticity), we use Bartlett’s
likelihood-ratio test [29]. From a wide range of cofactors,
our algorithm selects one that minimizes Bartlett’s test
statistic, resulting in a transformation with the best pos-
sible VS. Note that, in contrast to other transformation
approaches, our algorithm applies the same transforma-
tion to corresponding channels in every sample. flowVS
is therefore an explicit VS method that stabilizes within-
population variances in each channel by evaluating the
homoskedasticity of clusters with a likelihood-ratio test.
Using a healthy-subject data set from Purdue and pub-

licly available immune tolerance network (ITN) data,
we demonstrate that flowVS removes the mean-variance
dependence from raw FC data and makes the within-
population variance relatively homogeneous. We demon-
strate that alternative transformation techniques might
not stabilize variance. Variance homogeneity is espe-
cially useful to build metaclusters from a collection
of phenotypically similar cell populations across sam-
ples [3, 27, 30, 31]. Previous studies (Hahne et al. [32],
for example) shifted the distribution of each fluores-
cence channel to ensure homogeneity in metaclusters, but

such shifting might hide useful biological signals present
in the MFIs of cell populations. By contrast, we can
build homogeneousmetaclusters from variance-stabilized
populations without removing the differences in their
MFIs. Hence, flowVS could provide additional flexibil-
ity in processing and analyzing a large collection of FC
samples.

Related work
VS has been a widely studied topic in applied statis-
tics for its central role in making heteroskedastic data
easily tractable by standard methods. Heteroskedastic-
ity appears in various data sets mostly because the data
follow a distribution with correlated mean and variance,
e.g., Poisson or Gamma; there are many more exam-
ples, but these two are relevant for fluorescence. For
well-known distribution families, VS is usually performed
by transforming data with an analytically chosen func-
tion f. For example, f (z) = √

z + 3/8 works as a good
(asymptotic) stabilizer for a random variable z following
the Poisson distribution [33]. Variance stabilizers for sev-
eral well-known distribution families are described in [33,
34]. For unknown distributions, heuristic and data-driven
stabilizers are often used [15–17].
However, traditional transformations are often inad-

equate for low-count (photon-limited) signals [18, 35]
because of unknown error patterns in fluorescence data.
Past work developed ad hoc VS schemes for different
types of fluorescence data. For example, in microarrays,
the VS problem has been addressed by various non-linear
transformations [18–21]. Most notably, the widely used
approach byHuber et al. [18] uses an asinh transformation
whose parameters are selected by a maximum-likelihood
estimation.
For FC data, researchers have used various non-linear

transformations, such as the logarithm, hyperlog, general-
ized Box-Cox, and biexponential (e.g., logicle and general-
ized arcsinh) functions [22–27]. In past work, parameters
of these transformations were adjusted in a data-driven
manner to maximize the likelihood (flowTrans by Finak
et al. [27]), to satisfy the normality (flowScape by Ray et al.
[28]), and to comply with simulations (FCSTrans by Qian
et al. [36]). flowTrans estimates transformation parame-
ters for each sample by maximizing the likelihood of data’s
being generated by a multivariate-normal distribution on
the transformed scale. flowScape optimizes the normal-
ization factor of asinh transformation by the Jarque-Bera
test of normality. FCSTrans selects the parameters of
the linear, logarithm, and logicle transformations with
an extensive set of simulations. However, normalizing
data may not necessarily stabilize its variance, e.g., for a
Poisson variable z,

√
z + 3/8 is an approximate variance-

stabilizer, whereas z2/3 is a normalizer [16]. Therefore, we
consider an approach built upon the well-known asinh
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transformation and estimate transformation parameters
for explicitly stabilizing within-population variations.

Methods
Motivation
Consider two representative samples from the ITN data
set taken from the flowStats package in Bioconductor.
We gate the samples for lymphocytes, transform using
an asinh transformation (with cofactor set to 1), and plot
T-cell subpopulations and distribution of CD8 marker in
Fig. 2. Across these two samples, T-cell subpopulations
have different proportions andMFIs. For example, in Sub-
fig. 2a and 2c, CD8+ T-cell subpopulation is 35.4 % of total
T-cells with MFI 5.31. By contrast, CD8+ T-cell subpopu-
lation is 28.7 % of total T cells with MFI 6.23 in Subfig. 2b
and 2d. Should we consider the differences between CD8+
populations in these two samples to be biologically sig-
nificant? The answer to this question depends on our
assumption about the data. If we assume that a cell type
either expresses or does not express a biomarker and that
the biological information lies only in the proportion of
positively and negatively expressed cells, then MFI does
not bear meaningful information other than defining pos-
itive and negative cells. In this case, we could consider the
differences in MFIs across cell populations of the same
type as technical variations and eliminate them by aligning
cell populations described by Hahne et al. [32] and Finak
et al. [37]. However, past work has shown that both cell
proportion andMFI can possess biological information [2,
3, 38]. Hence, aligning cell populations to a common MFI
might remove meaningful biological signal from data. In

the latter case, we want to compare MFIs of cell popula-
tions to evaluate whether they are statistically different. A
common statistical approach to compare average expres-
sions of cell population is to use a statistical test in an
ANOVA model that explicitly requires that variance be
approximately stabilized in populations. Hence, VS is nec-
essary to detect statistically meaningful changes across
populations from different samples.

The goal of VS in flow cytometry
The aim of VS in FC is to make within-population vari-
ances of different cell populations approximately equal
and thereby independent of the average marker expressed
by populations. Recall that the expression of a marker
is measured by the intensity of light at a particu-
lar channel of fluorescence. VS therefore stabilizes the
within-population fluorescence variance and makes it
independent of the MFIs of the cell populations. In this
paper, we refer to fluorescence channels more frequently
because the nature of fluorescence emissions – not the
protein expressions – dominates the mean-variance rela-
tionship in FC data. We do not stabilize variance on the
scatter channels because, as pointed out by Finak et al.
[27], there are few benefits to transforming forward- and
side-scatter channels.

Channel-specific variance stabilization
We assume that correlations among fluorescence chan-
nels due to the overlap of spectra are removed by spectral
unmixing before we transform data. Even though the
expression of biomarkers can still be correlated [24], we

Fig. 2 Subfigs. (a) and (b) show the 2D-projections of T-cell subpopulations from two samples in the ITN data set. Distributions of CD8 marker are
shown below the corresponding samples in Subfigs. (c) and (d)
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Fig. 3 Identifying lymphocytes by a two-step gating from a representative sample in the HD data set. aWe select an approximate rectangular
region in the lower left corner of side-scatter vs. forward-scatter plot. b A dense elliptical region within the rectangular gate defines lymphocytes

do not incorporate such correlations in VS because the
nature of such correlation is difficult to model. There-
fore, we assume that compensated fluorescence channels
are independent and stabilize variance on each channel
separately.
Selecting an optimal transformation for FC data is a

nontrivial problem because the accurate error model of
FC data is often unknown. In previous work, researchers
have successfully used a number of functions to trans-
form FC data, such as logarithm, asinh, Box-Cox, logicle,
etc. [24, 27, 28]. In our flowVS algorithm, we decided to
use the asinh function to transform FC data. This choice
of asinh function is motivated by its success in FC data
visualization and normalization [27, 28] and in stabilizing
variance in fluorescence readouts from microarray data
[18, 21]. Stabilizing variance with other transformations
can be performed using the same flowVS framework but
is not discussed here.
To transform a fluorescence channel z, we use the asinh

transformation with a single parameter c:

asinh(z/c) = ln(z/c +
√

(z/c)2 + 1). (1)

In this transformation, c is called the normalization cofac-
tor, whose value is optimally selected to stabilize within-
population variance in channel z. Note that in a more
general form asinh transformation is expressed with three
parameters, a ∗ asinh(b + z/c), where in addition to the
cofactor c, a denotes a scaling after transformation, and
b denotes a translation before transformation. We set
a = 1 because scaling after transformation does not affect
downstream analysis and set b = 0 to avoid shifting cell
populations. Hence, we are left with a single parameter c
whose value is estimated in order to stabilize the variance.

The flowVS algorithm
Assume that we have a collection of N FC samples. Then
the objective of the flowVS algorithm is to transform
each sample such that the within-population variance is

stabilized in each fluorescence channel across N samples.
Here, we describe the algorithm for a single channel z; the
process can be applied independently to other channels.
First, we discuss the process of evaluating homoskedas-
ticity of a transformed channel for a selected cofactor
c by computing Bartlett’s likelihood-ratio test. Then, we
elaborate the process of selecting an optimum cofac-
tor that would stabilize variance when used with asinh
transformation.

Steps to compute Bartlett’s statistic on channel z for a
selected cofactor c

Step1: Transforming channel z in each sample. Let zj
be a vector denoting channel z in the j -th sample,
where 1 ≤ j ≤ N . We transform zj by the asinh
function: z′j = asinh(zj/c), where z′j is the
transformed channel.
Step2: Detecting 1-D density peaks (1-D clusters).
We estimate the density of z′j by a kernel density
estimation method (the density function of stats
package in R). The peaks in the density of z′j are
identified as regions of high local density and
significant curvature (also called landmarks in [32]).
We identify high-density regions in z′j by the
curv1Filter function of the flowCore package
[39] in Bioconductor. The boundaries of density
peaks are identified by detecting minima between
two adjacent density peaks. Here, a density peak
represents a 1-D cluster of cells. Let Pj be the
collection of all density peaks identified in z′j .
Step3: Collecting density peaks from all samples. Let
P be the set of density peaks collected from all
samples, i.e., P = ∪1≤j≤NPj. Let P contain a total of
m density peaks where the i -th peak contains ni cells
with mean μi and variance σ 2

i .
Step4: Computing Bartlett’s test statistic. Let
n = ∑

1≤i≤m ni be the total number of cells in P and
σ 2
p be the pooled variance of m density peaks. Then

we compute Bartlett’s statistic as follows:
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B(c) =
(n − m) ln

(
σ 2
p

)
− ∑m

i=1(ni − 1) ln
(
σ 2
i
)

1 + 1
3(m−1)

(∑m
i=1

1
ni−1 − 1

n−m

) .

(2)

This statistic B(c) is specific to the cofactor c used to
transform the data and measures the degree of
homogeneity across all 1-D clusters in the
transformed channel z′.

Finding a cofactor for optimumVS
The optimum variance-stabilizing cofactor c∗ is a cofactor
giving the minimum value of Bartlett’s statistic:

c∗ = argminB(c). (3)

Minimizing Eq. 2 is a nontrivial optimization problem
because Bartlett’s test statistic B(c) depends indirectly on
the cofactor c and is not differentiable with respect to
c. This prevents us from applying optimization methods
from the gradient-descent family. Therefore, we employ
a piecewise minimization without derivatives [40]. Let
clow and chigh be the lowest and highest possible values
of the cofactor on a logarithmic scale. By default, we set
clow = −2 and chigh = 10, i.e., the lowest and highest val-
ues of cofactor is exp(−2) ∼ 0.135 and exp(10) ∼ 22026,
respectively. Users can also supply these extreme values.
We assume that the optimum cofactor lies in the range
[ exp(clow), exp(chigh)]. Then the optimization procedure
works as follows:

(a) We divide the interval [clow, chigh] into
k = (chigh − clow) equal regions where the i -th region
is defined by the interval [ ci, ci+1] and ci+1 − ci = 1.
(b) For the i -th interval, we look for a cofactor in the
range [ exp(ci), exp(ci+1)] with minimum Bartlett’s
statistic. For each cofactor, we compute the Bartlett’s
statistic with the steps described in Sec. 3. For faster
convergence, we call the optimize function from
the stats package in R, which uses a combination of
golden section search and successive parabolic
interpolation [41]. Interested readers might see the R
documentation for a detailed description of the
function. Let c∗i be the optimum cofactor in the i -th
interval with the associated Bartlett’s statistic B(c∗i ).
(c) We identify the overall optimum cofactor c∗ as
follows:

c∗ = arg
k

min
i=1

B(c∗i ). (4)

Equation 4 provides an approximate solution to Eq. 3.
Since we divided the search space into smaller intervals,
the probability of having multiple local optima in an inter-
val is small. Hence, the procedure described above is
expected to return a variance stabilizing cofactor. After we

obtain the optimum cofactor c∗, channel z in each sam-
ple is transformed by asinh(zj/c∗) and used in subsequent
analysis.

Results
Data sets
We demonstrate the use of flowVS and other related
methods by using a healthy-subject data set from Purdue
University (HD) and publicly available immune tolerance
network (ITN) data. The original HD data set consists
of 65 samples from five healthy individuals who donated
blood on different days [42]. Here, for simplicity, we used a
smaller subset of the HD data set consisting of 12 samples
from three healthy individuals, “A”, “C”, and “D”. From each
individual, we keep samples from two (randomly selected)
days and two technical replicates from each day. Each HD
sample was stained using labeled antibodies against CD45,
CD3, CD4, CD8, and CD19 protein markers. In this paper,
an HD sample “C_4_2” means that it is collected on day 4
from individual “C” and it is the second replicate on that
day. The healthy data set is part of our Bioconductor pack-
age flowVS. The ITN data set is collected from 15 patients.
It includes 3 patient groups with 5 samples each. Each
sample was stained using labeled antibodies against CD3,
CD4, CD8, CD69 and HLADr. The ITN data set is avail-
able in the flowStats package in Bioconductor.We selected
these data sets because they are available in standard R
packages. Hence, the results presented here can be easily
reproduced.
We identify lymphocytes in each sample of the HD and

ITN datasets by using a two-step gating shown in Fig. 3.
In this paper, we perform data transformation only on
lymphocytes.

Stabilizing variance in the HD dataset
At first, flowVs identifies an optimum cofactor for asinh
transformation for each fluorescence channel of the HD
dataset. This process is performed by identifying density
peaks in each channel and minimizing Bartlett’s statis-
tic, as described in Section 3. The top row in Fig. 4
shows Bartlett’s statistic computed from density peaks of
all samples after the data are transformed by asinh trans-
formation with different cofactors. The range of values
of the cofactor is selected by the automated algorithm
described in Section 3. An optimum variance-stabilizing
cofactor is obtained where Bartlett’s statistic is a mini-
mum. From Fig. 4, the variance-stabilizing cofactors for
different markers are: (a) 17,956 for CD45, (b) 5,685 for
CD3, (c) 6,317 for CD4, (d) 4,937 for CD8, and (e) 5,976
for CD19. For every channel except CD45, we obtain a
clear global minimum, denoting the existence of a unique
variance-stabilizing cofactor with respect to Bartlett’s test.
For CD45, we observe a sharp decrease in Bartlett’s statis-
tic at cofactor 17,000. Since CD45 is a common leukocyte
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Fig. 4 Transforming five fluorescence channels in HD data. Subfigures in the top row show Bartlett’s statistic computed from density peaks after
data are transformed by different cofactors. An optimum cofactor is obtained where Bartlett’s statistic reaches the minimum. The bottom row
shows the density plots after the data are transformed by an asinh transformation with the optimum cofactors

marker, it is always expressed on lymphocytes – the subset
of cells that we preselected for this study. Hence, most cells
are CD45+ in our preprocessed samples, whichmight pro-
duce a non-convex relationship between Bartlett’s statistic
and cofactors. For the same reason, the value of Bartlett’s
statistic at the optimum cofactor for CD45 is the small-
est (less than 700) compared to the minimum value of
Bartlett’s statistic achieved in other channels. Note that
the minimum Bartlett’s statistic denotes the degree to
which we are able to stabilize the within-population vari-
ance of a channel considering the between-sample varia-
tions.
We transform each sample of the HD data set by the

asinh function with the variance-stabilizing cofactors and
plot the density of the transformed channels in the bottom
row of Fig. 4. In each channel, we observe that den-
sity peaks (a.k.a. one-dimensional clusters) have approx-
imately equal width across all samples, which visually
confirms the homogeneity of within-population variances
in one-dimensional clusters. When both positive and neg-
ative peaks (i.e., clusters with high or low marker expres-
sion) are present in a channel, e.g., CD3, CD4, and CD8,
their variances are also approximately stabilized. Note that
the density peaks may not be well aligned owing to the
between-subject variations. Aligning density peaks across
samples is not an objective of flowVS, because such shift-
ing of density might potentially eclipse biological signals
present in the mean expressions of a cell populations.

When necessary, data normalization can be performed
after variance stabilization, as was done by Hahne et al.
[32] and Finak et al. [37].

Stabilizing variance in the ITN dataset
We stabilize variance in each channel of the ITN dataset
and show the results in Fig. 5. Similar to the HD data set,
the top row shows Bartlett’s statistic computed from den-
sity peaks of all samples of the ITN data set after each
channel is transformed by asinh transformation with dif-
ferent cofactor for each one. From Fig. 5, the variance
stabilizing cofactors for different markers are: (a) 3.66
for CD3, (b) 25.1 for CD4, (c) .75 for CD8, and (d) 0.2
for CD69. The curves showing the relationship between
Bartlett’s statistic and cofactors might have multiple local
minima. Nevertheless, a clear global minimum is obtained
for channels in the ITN dataset.We note that the variance-
stabilizing cofactors for the HD data set are an order
of magnitude greater than those of the ITN data set.
For example, the variance-stabilizing cofactor for the CD
channel is 6317 in the former data set, whereas for the
same channel, variance is stabilized at a cofactor of 25.1 in
the latter. The primary contributing factor behind this dif-
ference is the maximum range of values in each channel.
The maximum value of a fluorescence channel is 10,000
for the ITN data set, and 1,048,575 for the HD data set.
Hence, variance is stabilized at higher cofactor values for
the channels in the HD data set.
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Fig. 5 Transforming four fluorescence channels in ITN data. Subfigures in the top row show Bartlett’s statistic computed from density peaks after
data are transformed by different cofactors. An optimum cofactor is obtained where Bartlett’s statistic reaches the minimum. The bottom row
shows the density plots after the data are transformed by the optimum cofactor

After identifying the optimum cofactors for each chan-
nel, we transform each sample of the ITN data set by asinh
functions with the variance-stabilizing cofactors and plot
the density of the transformed channels in the bottom
row of Fig. 5. Similar to the HD data set (Fig. 5), the
density peaks have approximately equal variance across
all samples, thus confirming the homogeneity of within-
population variances in one-dimensional clusters.

Comparing flowVS with other transformation methods
We compare flowVS with three automated methods
developed for transforming FC data: (a) flowTrans (b)
logicle (flowCore), and (c) FCSTrans. We selected these
three methods because they automatically select param-
eters for different transformations. As discussed earlier,
flowTrans estimates the parameters of different transfor-
mations (e.g., asinh, biexponential, linlog, and Box-Cox)
by maximizing the likelihood of data’s being generated
from normal distributions [27]. In this paper, we chose the
results of flowTrans with asinh transformation because
it generated relatively better segregation of populations
than the other options and is directly comparable to
flowVS that also uses the asinh transformation. We gen-
erate our results by calling the flowTrans function
of the Bioconductor package flowTrans. Next, we select
the logicle transformation implemented in the flowCore
package in Bioconductor. To estimate the parameters of
logicle transformation, we use the estimateLogicle
function of the flowCore package. Finally, FCSTrans also

uses the logicle transformation. We obtained the R source
code of FCSTrans from http://sourceforge.net/projects/
immportflock/files/FCSTrans.
The top row of Fig. 6 shows the densities of the trans-

formed CD4 channel of the HD data set after the samples
are transformed by four methods using their optimum
parameters. From visual inspection, we observe that the
logicle and FCSTrans stabilize variance of the CD4+ and
CD4- populations separately. However, these two meth-
ods do not stabilize variances across CD4+ and CD4-
populations. flowTrans fails to converge for six samples
(all samples from subject D and day 3 samples from sub-
ject C) and uses default cofactor=1 for these samples.
Hence, the peaks transformed by flowTrans are on dif-
ferent scales, and they are hard to compare against each
other. By contrast, flowVS stabilizes variance across all
peaks of CD4 channels, including CD4+ and CD4- popu-
lations. Furthermore, flowVS selects a single cofactor for
a channel across all samples in a data set, whereas flow-
Trans selects different parameters for different samples.
Thus, populations are more comparable after data are
transformed by flowVS.
Next, we quantitatively compare the stability of variance

across multiple transformation methods. This compari-
son, however, can not be performed on the actual trans-
formed data because different transformations convert
data to different scales. Hence, we convert each trans-
formed channel z to [0,1] scale by rescaling each element
zi with the following equation (zi − min{z})/(max{z} −

http://sourceforge.net/projects/immportflock/files/FCSTrans
http://sourceforge.net/projects/immportflock/files/FCSTrans
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Fig. 6 Transforming CD4 channels in HD data by four transformation algorithms. The top row shows the density plots after the data are optimally
transformed by different transformations. The bottom row shows the standard deviation of density peaks against the rank of MFI

min{z}). For each transformation, we identify the density
peaks in the converted CD4 channel and plot standard
deviations of density peaks against their ranks of MFI in
the bottom row of Fig. 6. Here we use rank of the means,
instead of actual means, to distribute the points evenly
along the x-axis. We observe that all four transforma-
tions are able to eliminate the systematic dependence of
variance on mean, which is typically observed in untrans-
formed fluorescence data, such as in Fig. 1. Therefore,
these transformations have inherent ability to stabilize
variance, mostly owing to the properties of the underly-
ing asinh and logicle transformations. However, flowVS is
able to stabilize variance more evenly than other trans-
formations, as can be seen in the bottom right plot in
Fig. 6.
The comparison of different transformations on the ITN

data set is shown in Fig. 7. As before, the top row shows
the densities of the transformed CD4 channel and the
bottom row plots the standard deviations of the density
peaks. As with the HD data set, flowVS stabilizes variance
more evenly than other methods.

Normality of the variance-stabilized clusters
Bartlett’s test assumes that the cell populations are nor-
mally distributed and is sensitive to departures from nor-
mality. Density peaks (1-D cell populations) in data sets
that we have studied approximately follow normal distri-
butions. This normality assumption is typical for many
FC data sets as well. Hence, a VS approach based on
Bartlett’s test is expected to work well for most FC data

sets. For example, in Fig. 8, we show the normality of
cell populations in a representative sample of the HD
data set with quantile-quantile plots (Q-Q plots) [43] of
eight 1-D clusters. In each Q-Q plot, the distribution
of a 1-D cluster is compared with the standard nor-
mal distribution by plotting their quantiles against each
other. If a cluster is normally distributed (i.e., linearly
related to the standard normal distribution), the points
in the Q-Q plot lie approximately on a straight line. We
observe that all eight Q-Q plots in Fig. 8 show linear-
ity in their central parts, except for small deviations at
the ends, indicating that the 1-D clusters approximately
follow normal distributions with heavier tails. Therefore,
flowVS based on Bartlett’s statistic works well for this
data.
However, if cell populations deviate significantly from

normality, we could use other likelihood ratio statistic
that is less sensitive to departures from normality, such as
Levene’s [44] or the Brown-Forsythe statistic [45]. In our
experiments, we found Bartlett’s approach working signif-
icantly better than Levene’s, and therefore, did not show
results of the latter method.

Impact of variance stabilization in comparing cell
populations
We now briefly demonstrate the impact of variance stabi-
lization on the homogeneity of metaclusters (i.e., groups
of phenotypically concordant clusters). In metacluster
homogeneity evaluation, the underlying assumption is
that all clusters in a metacluster represent the same
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Fig. 7 Transforming CD4 channels in ITN data by four transformation algorithms. The top row shows the density plots after the data are optimally
transformed by different transformations. The bottom row shows the standard deviation of density peaks against the rank of MFI

cellular immunophenotype. As mentioned before, the
hypothesis-testing framework may not be appropriate for
the described problem, since a null hypothesis claiming
that all clusters in a metacluster have equal mean is essen-
tially always false. Moreover, when the number of cells
(sampling units of the test) increases, the power of a sta-
tistical test such as a t-test or an F-test increases too. Con-
sequently, a statistical test would inevitably detect small
(i.e., statistically significant, but biologically irrelevant)
differences between clusters. For example, performing a
t-test with CD4+ cell clusters from the first and the sec-
ond samples of the ITN data set, we observe p-values less

than 10−10 for all transformations despite the fact that
the tested cell populations are biologically identical (in an
immunophenotypic sense).
Therefore, we use an effect size measure rather than

p-values to illustrate the impact of the proposed algo-
rithm on metacluster homogeneity. We employ the ratio
of between-cluster variation (σ 2

b ) to within-cluster varia-
tion (σ 2

w) [42]. Consider a set of k clusters where the i-th
cluster containing ni cells has mean μi and variance σ 2

i . If
N is the total number of cells in all clusters and μ is the
combined mean then the ratio of σ 2

b and σ 2
w is computed

as follows:

Fig. 8 The Q-Q plots for the eight 1-D clusters obtained from a representative sample in the HD data set. Every Q-Q plot shows linearity in the
central part, except for a little deviation at the end, indicating that the clusters approximately follow normal distributions with heavier tails
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Table 1 The ratio of between-cluster to within-cluster variations (a measure of effect size of metacluster homogeneity defined in Eq. 5)
after four transformations

Cell populations dataset flowTrans logicle FCSTrans flowVS

CD4+ metacluster HD 2.8 13.70 13.42 .87

ITN 1.3 1.55 1.54 .61

erronous CD4-/CD4+ metacluster HD 24.40 21.63 12.64 36.77

ITN 11.68 11.30 10.38 26.47

CD4+ cell populations are used in top two rows, and a mixture of CD4+ and CD4- cell populations are used in bottom two rows. Small and large values of the ratio denote
homogeneous and heterogeneous collections of clusters, respectively. In this example, flowVS transformation results in the highest homogeneity when only CD4+ clusters
are considered, and highest heterogeneity when CD4+ and CD4- clusters are mixed together

σ 2
b

σ 2
w

=
1

N−k
∑k

i=1(ni − 1)(μi − μ)2

1
N−k

∑k
i=1 (ni − 1) σ 2

i
. (5)

Unlike the F-test for comparing multiple clusters, the
above ratio does not depend on the sample size, and it
is constructed so that the increasing homogeneity of a
metacluster results in a progressively smaller value of the
ratio. Table 1 shows the σ 2

b
σ 2
w
values of CD4+ metacluster

and a biologically erroneous metacluster grouping CD4+
and CD4- cells. The values are computed after the data
are transformed by four transformations considered in
this paper. In this example, the flowVS transformation
gives the best homogeneity within the CD4+ metaclus-
ter, and an increased heterogeneity of the CD4+/CD4-
clusters mixture. Thus application of flowVS not only
results in the highest homogeneity of a set of known phe-
notypically identical cell clusters, but also provides the
best discrimination between homogeneous and hetero-
geneous collection of clusters. The result demonstrates
that the flowVS-based variance stabilization can help in
performing comparison and alignment of phenotypically
identical cell populations across different samples.

Application to microarray data
The VS approach based on optimizing Bartlett’s statistic
can also be used to stabilize variance in microarray data.
However, the initial steps of flowVS need to be adapted
for microarrays. Assume that the expression of m genes
are measured from N samples in a microarray experi-
ment. After transforming the data by the asinh function,
the mean μi and variance σ 2

i of the ith gene gi are com-
puted from the expressions of gi in all samples. flowVS
then stabilizes the variances of the genes by transform-
ing data using the asinh function with an optimum choice
of cofactor. Unlike FC, a single cofactor is selected for all
genes in microarrays.
We have applied the modified flowVS to the publicly

available kidney microarray data provided by Huber et
al. [18]. The kidney data report the expression of 8704
genes from two neighboring parts of a kidney tumor, using

cDNA microarray technology. For different values of the
cofactor, flowVS transforms the kidney data with the asinh
function and identifies the optimum cofactor by minimiz-
ing Bartlett’s statistic. Figure 9 shows that a minimum
value of Bartlett’s statistic is obtained when the cofactor is
set to exp(6) (∼ 400). The optimum cofactor is then used
with the asinh function to transform the kidney data.
We compare the VS performance of flowVS with two

software packages, VSN by Huber et al. [18] and DDHFm
by Motakis et al. [46]. Similar to flowVS, VSN uses an
asinh transformation whose parameters are optimized by
maximizing a likelihood function [18]. DDHFm applies
a data-driven Haar-Fisz transformation (HFT)[46, 47] to
stabilize the variance. Both VSN and DDHFm are devel-
oped for stabilizing variance in microarray data and can
not be applied to FC.
In Subfig. 10, we plot the mean and standard deviation

of every gene before transforming the kidney data and
after transforming it by flowVS, VSN, and DDHFm. In
this figure, we have applied a loess regression to obtain

Fig. 9 For kidney microarray data [18], flowVs selects the optimum
cofactor for the asinh transformation by minimizing Bartlett’s statistic.
The cofactors are shown in the natural logarithm scale
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Fig. 10 The standard deviation and mean of each gene from the
kidney data are plotted before transformation and after variance
stabilization by flowVs, VSN, and DDHFm. Loess regression is used to
smoothen the curves

smooth average curves. We observe in Subfig. 10 that
the standard deviation of the untransformed kidney data
increases monotonically with the mean. Both VSN and
flowVs approximately stabilize the variance across all
genes in this data. However, the Haar-Fisz transformation
achieves good VS properties only for genes with higher
levels of expression.
To take a closer look at the transformed data by flowVS

and VSN, we plot the variances of genes against the ranks
of their means in Fig. 11. These figures are generated by
the meanSdPlot function from the VSN package. Here,
the ranks of means distribute the data evenly along the x-
axis and thus make it easy to visualize the homogeneity

of variances. We also show the running median estimator
of standard deviation by the red lines. Both VSN and
flowVS remove the mean-variance dependence because
the red lines are approximately horizontal for both trans-
formations. Hence, flowVS performs at least as well as a
state-of-the-art approach developed for microarray data.

Conclusions
We describe a variance-stabilization framework, flowVS,
that removes the mean-variance correlations observed
in cell populations from FC samples. This framework
transforms each fluorescence channel by the asinh func-
tion whose normalization cofactor is optimally selected
by Bartlett’s likelihood-ratio test. Variance homogeneity
(homoskedasticity) is a desirable property for comparing
populations across conditions, buildingmetaclusters from
phenotypically similar populations, and analyzing meta-
clusters in an ANOVA model. However, unlike the earlier
approach by Hahne et al. [32], flowVS does not artificially
shift populations to align them in the marker space. By
stabilizing the variances, flowVS homogenizes similar cell
populations and establishes the foundation of biologically
meaningful metaclusters and templates.
flowVS is built on several assumptions that limit our

approach. First, flowVS stabilizes variance separately in
each channel. Thus it might be unable to stabilize covari-
ances across multiple channels when they are correlated.
Second, flowVS identifies 1-D density peaks and evalu-
ates the homogeneity of populations by the likelihood-
ratio test. Therefore, this algorithm might not perform
well when density peaks are not easily identifiable. Third,
flowVS stabilizes variance more accurately when a num-
ber of samples are simultaneously passed to the algorithm.
Hence, this approach is not suitable for normalizing a sin-
gle sample or stabilizing variances of sequentially arriving
samples. Finally, Bartlett’s test used in flowVS assumes

Fig. 11 Variance stabilization of the kidney microarray data [18] by (a) flowVs and (b) VSN [18]. Each black dot plots the standard deviation of a gene
against the rank of its mean. The red lines depict the running median estimator. If there is no mean-variance dependence, then the red lines should
be approximately horizontal
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that the deviation from normality is relatively modest. If
data deviate significantly from normality, other likelihood
ratio tests can be employed, such as Levene’s test [44] or
the Brown-Forsythe test [45].
flowVS operates as an independent module in the FC

data analysis pipeline. It does not depend on the prepro-
cessing algorithms applied before VS nor on the post-
analysis methods such as matching, metaclustering, and
classification. Hence, flowVs is capable of working with
most automated clustering and metaclustering algorithms
developed for flow cytometry.

Abbreviations
asinh, inverse hyperbolic sine; FC, flow cytometry; ITN, immune tolerance
network; MFI, mean fluorescence intensity; VS, variance stabilization.
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