
The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346
DOI 10.1186/s12859-016-1192-5

RESEARCH Open Access

Removing duplicate reads using graphics
processing units
Andrea Manconi1*, Marco Moscatelli1, Giuliano Armano2, Matteo Gnocchi1, Alessandro Orro1

and Luciano Milanesi1

From Twelfth Annual Meeting of the Italian Society of Bioinformatics (BITS)
Milan, Italy. 3-5 June 2015

Abstract

Background: During library construction polymerase chain reaction is used to enrich the DNA before sequencing.
Typically, this process generates duplicate read sequences. Removal of these artifacts is mandatory, as they can affect
the correct interpretation of data in several analyses. Ideally, duplicate reads should be characterized by identical
nucleotide sequences. However, due to sequencing errors, duplicates may also be nearly-identical. Removing nearly-
identical duplicates can result in a notable computational effort. To deal with this challenge, we recently proposed a
GPU method aimed at removing identical and nearly-identical duplicates generated with an Illumina platform.
The method implements an approach based on prefix-suffix comparison. Read sequences with identical prefix are
considered potential duplicates. Then, their suffixes are compared to identify and remove those that are actually
duplicated.
Although the method can be efficiently used to remove duplicates, there are some limitations that need to be
overcome. In particular, it cannot to detect potential duplicates in the event that prefixes are longer than 27 bases, and
it does not provide support for paired-end read libraries. Moreover, large clusters of potential duplicates are split into
smaller with the aim to guarantees a reasonable computing time. This heuristic may affect the accuracy of the analysis.

Results: In this work we propose GPU-DupRemoval, a new implementation of our method able to (i) cluster reads
without constraints on the maximum length of the prefixes, (ii) support both single- and paired-end read libraries, and
(iii) analyze large clusters of potential duplicates.

Conclusions: Due to the massive parallelization obtained by exploiting graphics cards, GPU-DupRemoval removes
duplicate reads faster than other cutting-edge solutions, while outperforming most of them in terms of amount of
duplicates reads.

Keywords: Next generation sequencing, Duplicate reads, Graphics processing units, CUDA

Abbreviations: CUDA, Compute unified device architecture; GPU, Graphics processing units; NGS, Next generation
sequencing

*Correspondence: andrea.manconi@itb.cnr.it
1Institute for Biomedical Technologies, National Research Council, Via Fratelli
Cervi, 93, 20090 Segrate (Mi), Italy
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1192-5-x&domain=pdf
mailto: andrea.manconi@itb.cnr.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 132 of 212

Background
Duplicate reads are one of the most problematic artifacts
generated during polymerase chain reaction amplifica-
tion. Ideally, duplicates should have identical nucleotide
sequences. However, due to sequencing errors, they may
end up to be nearly-identical [1]. Duplicates can affect the
accuracy of some analyses on NGS data. Removal of these
artifacts can be an essential pre-processing step, in partic-
ular on applications based on resequencing. For instance,
in SNP calling, errors introduced in early amplification
steps are shared by PCR duplicates, making very difficult
to distinguish between repeated (but identical) errors and
real SNPs [2, 3]. Duplicate removal is also a mandatory
step to detect CNVs using read-depth (RD) based meth-
ods [4]. These methods assume that the RD in a genomic
region depends on the copy number of that region. As a
consequence, duplicates need to be detected and removed
to avoid incorrect read count. Duplicates can also affect
the accuracy of de-novo sequencing. During scaffolding,
paired-end reads are mapped on contigs with the aim to
rank their order. In this phase, two contigs are considered
connected depending on the number of read pairs that
link them (the higher the number the stronger the connec-
tion). Hence, PCR duplicates may result in false-positive
connections between contigs.
Duplicate sequences can be natural or artificial. Ideally,

only artificial duplicates should be removed, while natural
ones should be retained. Unfortunately, natural and artifi-
cial duplicate sequences are indistinguishable. This is the
reason why a fraction of reads labeled as duplicates may
in fact be generated from distinct molecules, yielding a
loss of natural reads. However, this situation occurs typi-
cally during the analysis of single-end reads. In fact, as for
paired-end reads, the probability of finding independent
molecules identical at both ends being very low [5].
Removal tools proposed in the literature implement

methods that focus either on alignment-based or on
alignment-free strategies. Alignment-based tools assume
that duplicate reads will be mapped to the same position
on a reference genome. These tools analyze the align-
ments obtained by running an embedded procedure (or
a third-party aligner) with the goal of finding reads with
identical mapping coordinates. These reads are analyzed
and those that meet predefined quality constraints are
classified as duplicates. The performance of these tools
is affected by the alignment constraints and by the accu-
racy of the aligner. Moreover, it should be pointed out
that these tools cannot be used in absence of a complete
reference genome.
Picard MarkDuplicates [6], samtools rmdup [7], and

SEAL [8] are tools that implement an alignment-based
strategy. Picard MarkDuplicates identifies duplicates by
analyzing the alignments generated by a third-party
aligner. As for paired-end reads, it finds the 5’ coordinates

and mapping orientations of each read pair. All pairs
with identical coordinates and orientations are analyzed
and those having the highest sum of base qualities are
classified as duplicates. It also removes duplicates from
single-end libraries. Similarly, the rmdup function of sam-
tools analyzes alignments obtained with a third-party tool
to remove duplicates from both single- and paired-end
reads. However, differently from Picard MarkDuplicates,
rmdup is not able to remove interchromosomal duplicate
reads. SEAL provides a distributed version of BWA [9] to
perform the alignment and removes duplicates according
to the same criteria employed by Picard MarkDuplicates.
Alignment-free tools detect duplicates by comparing

read sequences. In particular, those reads characterized by
a similarity score higher than a given threshold are clas-
sified as duplicates. Notably, tools that comply with this
strategy are not affected by the bias introduced by a short-
read mapping tool and can also be used in absence of a
complete reference genome. Unfortunately, they may be
computationally onerous, as each sequence of the dataset
must be compared to all other sequences in the dataset.
This is the reason why heuristics are defined and adopted
to deal with the computational challenge.
Fastx-Toolkit Collapser [10], FastUniq [11], Fulcrum

[12] and CD-HIT [13–15] are all examples of tools that
implement an alignment-free strategy. Fastx-Toolkit Col-
lapser is able to identify and remove identical sequences
from single-end reads. Conversely, FastUniq has been
designed to remove identical duplicates from paired-end
reads. Removal is performed executing three steps in
pipeline. Initially, all paired reads are loaded into memory.
Then, read pairs are sorted according to their nucleotide
sequences. Finally, duplicates are identified by compar-
ing the adjacent read pairs in the sorted list. Fulcrum is
able to identify identical and nearly-identical duplicates
from both single- and paired-end reads. It identifies as
potential duplicates those reads with an identical prefix
of the nucleotide sequences. Potential duplicate reads are
binned in different files, whose maximum size is user-
defined. Read sequences within each file are compared to
identify duplicates. CD-HIT provides two different tools
to remove duplicates from single- and paired-end reads
generated with 454 or Illumina platform. CD-HIT-454
analyzes libraries generated with 454 to identify dupli-
cates that are either exactly identical or meet the fol-
lowing criteria: a) reads must be aligned at 5’-ends; b)
for sequences of different length, a shorter read must be
fully aligned with the longer one (the seed) and they have
less than user-defined percentage of indels and substi-
tutions. CD-HIT-DUP removes duplicates from Illumina
libraries analyzing the prefix of the read sequences. Read
sequences with identical prefix are considered duplicated.
For paired-end reads, prefixes at both ends are checked.
Features of the listed tools are summarized in Table 1.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 133 of 212

Table 1 Summary of existing removal tools listed together with some of their relevant features

Tool Strategy Libraries Platform Type

Picard MarkDuplicates alignment-based single- and paired-end Illumina and 454 nearly-identical

samtools rmdup alignment-based single- and paired-end Illumina and 454 nearly-identical

SEAL alignment-based paired-end Illumina nearly-identical

FastX-Toolkit Collapser alignment-free single-end Illumina and 454 identical

FastUniq alignment-free paired-end Illumina and 454 identical

Fulcrum alignment-free single- and paired-end Illumina and 454 nearly-identical

CD-HIT-454 alignment-free single- and paired-end 454 nearly-identical

CD-HIT-DUP alignment-free single- and paired-end Illumina nearly-identical

The second column indicates the implemented strategy. The third column reports whether the corresponding tool support single- and/or paired-end read libraries. The fourth
column reports the sequencing platforms supported. The fifth column reports whether the corresponding tool is able to remove only identical or nearly-identical duplicates

Recently, we proposed a new alignment-free method
aimed at removing duplicate reads using Graphics Pro-
cessing Units (GPUs) [16] generated with an Illumina
platform. In particular, we implemented a prefix-suffix
comparison algorithm which takes into account the per-
base error rates generate with Illumina. The method con-
sists of two phases, which have beenmassively parallelized
on GPU. Initially, potential duplicate sequences are clus-
tered according to their prefix. Then, the suffixes of the
sequences in each cluster are compared to detect and
remove duplicates.
Although the method can be efficiently used to remove

both identical and nearly-identical duplicates, there are
some constraints and limitations that need to be over-
come. In particular, it does not allow to detect potential
duplicates on prefixes longer than 27 bases, does not sup-
port paired-end read libraries, and imposes a constraint
on the maximum size of the clusters.
In this work we present GPU-DupRemoval (standing for

GPU-Duplicates Removal) a new implementation of our
method devised to overcome these limitations. In partic-
ular, i) cluster reads without constraints on the maximum
length of the prefixes are now allowed, ii) support for
both single- and paired-end read libraries is provided, and
iii) larger clusters of potential duplicates (without using
heuristics) can now be processed.

Implementation
Before going into relevant details of the proposed algo-
rithm, let us give a short introduction to GPUs.

Graphics processing units
GPUs are hardware accelerators that are increasingly used
to deal with different computationally intensive bioin-
formatics algorithms (e.g., [17–21]). From an architec-
tural perspective, the main difference between traditional
CPUs and GPUs is related to the number of available
cores. Indeed, the former are devices composed of few
cores, with lots of cache memory able to handle a few

software threads at a time. Conversely, the latter are
devices equipped with hundreds of cores able to handle
thousands of threads simultaneously, so that a very high
level of parallelism can be reached.
The intensive use of GPUs over the last years has yielded

a significant increases in the performance of several appli-
cations. However, it should be noted that only algorithms
based on the SIMD paradigm can be effectively paral-
lelized on GPUs. CPUs and GPUs should be considered
as complementary for different types of processing. CPUs
are optimized for flow control and low memory latency,
whereas GPUs are optimized for data parallel computa-
tions. In this context, the GPU computing model uses
CPUs and GPUs in a heterogeneous co-processing com-
puting model. Computationally-intensive parts of an algo-
rithm based on the SIMD paradigm can be accelerated by
GPUs, whereas CPU is used to control the GPU execution
while processing other parts of the algorithms not suitable
for the GPU.
As for GPU programming, CUDA (Compute Unified

Device Architecture) [22] and OpenCL (Open Comput-
ing Language) [23] offer two different interfaces for GPU
programming. It is worth pointing out that OpenCL is an
open standard that can be used to program CPUs, GPUs
and other devices from different vendors whereas CUDA
is specific to NVIDIA GPUs.

The algorithm
Analysis of short-read datasets generated with Illumina
highlighted a very low rate of indel errors (< 0.01 %) while
the number of occurrences of wrong bases increases with
the base position [24]. Therefore, it is possible to deduce
that: (i) the majority of duplicates will differ on few base
substitutions; (ii) most of identical and nearly-identical
duplicates are in fact characterized by an identical prefix.
Starting from these considerations, we devised a method
aimed at comparing only potential duplicate reads (i.e.,
reads with identical prefix) without taking into account
indels in sequence comparisons.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 134 of 212

Initially, potentially duplicated sequences are clustered
together (see Fig. 1). Then, for each cluster, the first
sequence is taken as a seed and its suffix is compared with
those of the other sequences that fall in the selected clus-
ter. Sequences that are identical or very similar to the seed
are classified as duplicates. Duplicates are condensed in
a new sequence and are removed from the cluster (see
Fig. 2). Then, the process is iterated for the remaining
sequences in the cluster (if any), until the cluster is empty
or contains only one read sequence.
Clustering is performed by sorting the prefixes of the

read sequences with our GPU-based CUDA-Quicksort
[25]. As CUDA-Quicksort sorts numerical values, it is
necessary to encode the prefixes of the read sequences.
To this end, we devised the encoding with the aim to rep-
resent as many nucleotides as possible with a numeric
value. In as doing, read sequence prefixes are subject to a
dual numeric encoding. Initially, prefixes are represented
with a base-5 encoding by replacing each nucleotide with
a numerical value ranging from 0 to 4 (i.e., A → 0,C →
1,G → 2,T → 3,N → 4). Representing items with 64
bit unsigned long long int data type allows to encode and
sort prefixes of up to 19 nucleotides. A longer prefix would
exceed the limit for this type of data. It is possible to over-
come this constraint using a different numerical base for
representing prefixes. In particular, converting to base-10
the prefixes encoded using a base-5 encoding, it is possi-
ble to represent a number consisting of up 27 digits with a
64 bit unsigned long long int (see Fig. 3).
For the sake of completeness, it should be pointed

out that regarding the problem addressed in this
work, quick-sort is more effective than other sorting

Fig. 1 Clustering. Reads with an identical prefix of k nucleotides are
considered potential duplicate reads. Image from [16] used under the
terms of the Creative Commons Attribution License (CC BY)

algorithms, including radix-sort. With k number of dig-
its in a key and n number of keys, the computational
complexity of comparison-based radix-sort is O(k · n),
whereas the complexity of quick-sort is O(n · log(n)).
Hence, quick-sort outperforms radix-sort in the event that
k > log(n), and viceversa. The performance of CUDA-
Quicksort has been compared with Thrust Radix Sort
[26], a cutting-edge algorithm running on GPUs. The
comparative assessment has been made in the task of
sorting items with long keys -characterized by 19 digits
(i.e., the maximum number of digits used to represent the
encoded read prefixes). Experiments, performed ensur-
ing a uniform distribution on benchmark datasets (with
varying size from 1M to 32M elements), show that CUDA-
Quicksort outperforms Thrust Radix Sort with a speed-up
ranging from 1.58x to 2.18x, depending on the dataset at
hand [25].
Despite the fact that longer sequences (i.e., 27 instead

of 19 nucleotides) can be processed, the latter encod-
ing is still restrictive. As the quality of Illumina reads
decreases with the position that a base has in the sequence
being processed, more likely sequencing errors are local-
ized towards the 3’ end of a read rather than in proximity
of to the 5’ end. In GPU-DupRemoval, two sequences are
classified as nearly identical if they fulfill a given con-
straint on the maximum number of allowed mismatches.
In doing so, a mismatch is always considered a sequenc-
ing error, irrespective of the position (and of the quality)
that a base has in a read. This processing policy gives
rise to a fraction of natural nearly-identical sequences that
may be erroneously classified as artificial duplicates. An
approach to reduce the number of false positives in the
process of duplicate identification is to limit the analy-
sis of mismatches where is more likely sequencing errors
are localized, choosing the prefix length according to the
resulting quality scores obtained across all bases on the
dataset. This length must be chosen to permit the selec-
tion of all bases whose average quality score is higher than
a given threshold.
After that reads have been clustered, their suffixes are

compared. Basically, a base-per-base comparison of the
nucleotides of the suffix of the seed with those of the
other reads in a cluster should be performed in this phase.
This approach might require a very high number of com-
parisons. Let N be the length of the suffixes, and let m
be the minimum number of mismatches allowed to con-
sider two sequences as not duplicated. In the best case,
two sequences can be classified as not duplicated after m
comparisons. In the worst case N comparisons must be
performed. We implemented a different strategy aimed at
reducing the number of comparisons. Initially, suffixes are
split into fixed-length chunks. Each subsequence repre-
sentative of a chunk is subjected to the same dual numeric
encoding used to represent the prefixes for clustering.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 135 of 212

Fig. 2 Comparison. The first read of each cluster is taken as a seed and its suffix is compared with that of the other sequences in the cluster.
Sequences that differ from the seed for a number of mismatches lower than a user-defined threshold are considered duplicates of the seed. Each
set of duplicates is removed from the cluster and are represented with a consensus sequence. The process is iterated until the cluster is empty.
Image from [16] used under the terms of the Creative Commons Attribution License (CC BY)

Then, for each cluster, the numerical difference between
the i-th chunk of the seed and the related chunk of the
other suffixes in a cluster is calculated (see Fig. 4). The
order ofmagnitude of this difference provides information
about the position of the leftmost different nucleotides.
Then, subsequences are cut at the mismatch position.
The rightmost parts of the mismatch position are main-
tained and the process is re-iterated. In the worst case,
this approach is able to classify two sequences as not
duplicated afterm comparisons.
Suffix comparison has been massively parallelized on

GPU. In particular, the chunks representatives of the reads
in a cluster are loaded into the GPU memory and com-
pared in parallel with the chunk of the seed. It should be

noted that also the size of the clusters affects the overall
computing time. In fact, depending on both the size of a
cluster and the percentage of duplicates in it, a very high
number of comparisons among sequences could be per-
formed. In our method, very large clusters are split into
smaller ones of fixed size with the aim of reducing the
number of comparisons. In a similar manner, in Fulcrum,
potential duplicates are binned in file of user-defined
maximum size. On one hand this heuristic guarantees a
reasonable computing time. However, on the other hand,
it may affect the accuracy of the analysis. Therefore, in our
view, resorting to this heuristic appears not appropriate.
In the following, we describe the changes implemented
in GPU-DupRemoval to cope with the constraints on the

Fig. 3 Enconding. Prefixes are subjected to a dual encoding. Initially, the nucleotides in a prefix are encoded with a numerical value from 0 to 4 (i.e.,
A → 0, C → 1, G → 2, T → 3, N → 4). Then, these numerical representations are encoded using base-10. Finally, sorting is performed for clustering.
In the figure, prefixes of length k=8 are represented. Image from [16] used under the terms of the Creative Commons Attribution License (CC BY)

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 136 of 212

Fig. 4 Suffixes. Suffixes (in orange in the figure) are analyzed in chunks. Each chunk is subject to the dual encoding used for prefixes (in red in the
figure). The overall number of mismatches if obtained summing the partial number of mismatches obtained for each chunk. Image from [16] used
under the terms of the Creative Commons Attribution License (CC BY)

prefix length and the maximum size of a cluster, and to
support paired-end reads.

Prefix length
The proposed clustering strategy resulted be very effec-
tive. Its computing time depends on the size of the dataset,
whereas it does not depend on the prefixes length. More-
over, CUDA-Quicksort is able to cluster datasets of mil-
lions of reads very quickly. It should be pointed out that
CUDA-Quicksort resulted be the faster implementation
of the sorting algorithm on GPUs. In particular, it was
up to 3 times faster than the CDP-Quicksort released by
NVIDIA.
Starting from these considerations, we devised a multi-

step clustering strategy based on the existing one. For
prefix length of up to 27 nucleotides clustering does not
differ from the previous version of the tool. The approach
differs when longer prefixes must be analyzed. Initially,
prefixes are split into chunks of 27 nucleotides. Obvi-
ously, depending on the length of the prefixes, the last
chunk might be shorter than 27 nucleotides. Each pre-
fix is subjected to the dual numerical encoding previously
described. Then, CUDA-Quicksort is used to sort reads
according to two different criteria. The first sorting (say
A) is obtained according to the first chunk of prefixes.
It represents the partial sorting of the reads that will be
iteratively updated to build the final sorting. The second
sorting (say B) is obtained according to the second chunk
of the prefixes. This sorting is used to update the first
one in such a way that it becomes a sorting represen-
tative of both chunks. Basically, B is used to update the
ordering of the reads in the clusters generated according
to A. To this end, an array is initialized to store the new
sorting (say C). The array will be partitioned taking into
account the clusters generated with A. Then, according to
B, the reads of each cluster are copied in the new array.
Each read is copied in the first free position of the parti-
tion related to its belonging cluster generated with A (see
Fig. 5). After that all reads in a cluster generated with B
have been copied into the new array, both the number of
clusters and their size is updated. A cluster is split into

two clusters each time that its related partition in the new
array is only partially written. At the end of the process, A
is replaced by C. Then, the process is re-iterated with the
following chunks (if any).
It might seem that the described algorithm imple-

ments a radix sort. However, there are considerably dif-
ferences between the two algorithms. Radix-sort is a
non-comparative sorting algorithm that performs a digit-
by-digit sorting on keys. In the proposed multi-step clus-
tering strategy, GPU-DupRemoval uses CUDA-Quicksort
to perform (at each step) a comparison-based sorting of
numbers (not digits), representative of sub-sequences of
the available reads. Furthermore, let us recall that two
variants of the radix-sort (RS) exist, able to process keys
from the less to the most significant digit (i.e., LSD/RS)
and from the most to the less significant digit (i.e.,
MSD/RS). The apparent resemblance of multi-step clus-
tering algorithm with radix-sort in fact applies more to
LSD/RS than to MSD/RS. However, only MSD/RS could
be used to address the problem at hand as, unlike LSD/RS,
MSD/RS dispatches all digits with identical value into a
specific bucket and recursively repeats the same operation
with all buckets, until sorting is complete. Notably, keys
that occur in a bucket are sorted independently from those
in other buckets. Conversely, in the proposed approach,
sorting is performed by analyzing all sequences at each
step.
This multi-step clustering strategy has been used to

optimize also the removal of identical duplicate reads.
In the first implementation the same approach was used
to remove identical and nearly-identical reads. However,
identical reads can be removed more easily than nearly-
identical ones. In particular, identical reads can be iden-
tified by clustering the reads by their entire sequences.
In GPU-DupRemoval identical duplicates are automati-
cally removed by clustering reads according to their entire
sequences. It should be pointed-out that the multi-step
clustering is not used to remove identical duplicates when
GPU-DupRemoval is run to remove both identical and
nearly-identical read sequences. It is solely used when
GPU-DupRemoval is used to remove identical reads.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 137 of 212

Fig. 5Multi-step clustering. To simplify the graphical representation, we assume that the multi-step clustering is enabled for prefixes longer than 5
nucleotides. In this example 15 reads are clustered analyzing prefixes of 10 nucleotides. a Initially, the prefixes are split into two chunks of 5
nucleotides. In the figure, the nucleotides of the first chunk are represented in blue, and those of the second chunk are represented in red. The
clustering consists of three steps. b Reads are clustered by sorting them according to the first chunk of the prefixes (sorting A in the figure).
Clustering generates 5 clusters of different size (CA1, CA2, CA3, CA4, CA5). Reads clustered together are represented with the same background color.
Subsequently, reads are clustered by sorting them according to the second chunk of the prefixes (sorting B in the figure). This clustering generates 6
clusters unrelated from those of the previous clustering (CB1, CB2, CB3, CB4, CB5, CB6). c A new array is initialized and partitioned according to the size
of the clusters of A. The sequences of each cluster in B are copied in the new array in the partition associated to their belonging cluster in A. Each
read is copied into the first free position of the partition. The process is represented in the C box. Each row reported therein represents the process
of copying the reads of a cluster in C. On the left it is shown where the reads are copied, whereas on the right it is shown how clusters are split after
each iteration. Initially, the reads R13 and R6 of CB1 are copied in the new array. R13 belongs to CA5 in A and R6 belongs to CA2 in A. Being the first
reads to be analyzed, they are copied in the first position related to its cluster in A. Cluster CA2 and CA5 are partially filled after this step. This implies
that the reads in these clusters are not identical, according to the second chunk of their prefix. In fact, R15 and R1 have not been clustered together
with R6 in B. Similarly, R6 has not been clustered together with R13 in B. Therefore, the clusters are split (see first row in C box). Cluster CA2 is split into
two clusters. A cluster contains R6 and the other cluster (of size 2) is empty. Similarly, CA5 is split into two clusters of size 1. The process is iterated (as
represented in the C box) until all clusters in B have been analyzed. The final sorting generates 11 clusters

Maximum size of a cluster
As previously described, in the first implementation of our
method large clusters are automatically split into smaller.
On one hand, analyzing small clusters may improve the

performance in terms of computing time; on the other
hand, it may worsen the performance in terms of accu-
racy. The smaller the cluster is, the faster the process-
ing is, as fewer comparisons are required. Unfortunately,

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 138 of 212

duplicates separated during the splitting will be not
identified.
The problem has been addressed in GPU-DupRemoval,

which is able to analyze large clusters without the need for
splitting them. Originally, only a level of parallelism was
implemented. At each iteration, the first read in each clus-
ter (i.e., the seed) is compared with the other reads in the
cluster. Depending on both the size of a cluster and on the
percentage of duplicates, this approach may require many
iterations. Let N be the size of the cluster, when each read
is uniquely represented in the cluster (worst case), N-1
iterations must be performed. This computational chal-
lenge can be efficiently addressed by adding a second level
of parallelism aimed at comparingmultiple seeds of a clus-
ter in a single iteration. In the current implementation, at
each iteration the possibility to compare in parallel multi-
ple seeds of a cluster is assessed. It should be pointed out
that depending on the size of the dataset at hand, an itera-
tion might require one or more kernel launches. Notably,
GPU-DupRemoval applies different strategies, depending
on the number of kernel launches required to analyze
the dataset. Initially, GPU-DupRemoval determines the
thread block size, the number of thread blocks and the
GPUmemory required to analyze the given dataset and to
compare the read chunks that occur in each cluster with
a single seed. As long as more than one kernel launch
is required in an iteration, GPU-DupRemoval compares
reads that occur in a cluster with a single seed. Conversely,
when a single kernel launch is made in an iteration, GPU-
DupRemoval checks the feasibility of comparing multiple
seeds in parallel. The upper limit of seeds that can be com-
pared in parallel for each cluster (say n) is determined
according to the constraints on the maximum number of
blocks that can be created per kernel launch and on the
memory of the device. At each iteration, up to n seeds are
compared in parallel for each cluster. The upper limit for
the seeds that can be compared in parallel will increase
with a decrease of the read sequences to be analyzed. As
the number of reads decreases at each iteration, the value
of n is re-calculated after each kernel launch. In so doing,
when multiple seeds are analyzed in parallel, a read is
compared with two or more seeds in the same iteration,
and, depending on the results of comparisons, it may be
classified as duplicated of two or more seeds. In these
cases, the read will be considered as duplicated of the first
seed.

Supporting paired-end reads
GPU-DupRemoval has been devised to support both
single- and paired-end reads. It should be noted that
duplicates from paired-end reads can be removed simi-
larly to that concerning single-end reads. In fact, paired-
end reads with an identical prefix at both ends can
be considered as potential duplicates. Hence, potential

duplicates can be identified by clustering reads accord-
ing to the prefixes that occur at both ends. To this end,
GPU-DupRemoval builds a new sequence representative
of both reads for each pair in the dataset. Each sequence
is build by merging separately prefixes and suffixes, as
shown in Fig. 6. Subsequently, these sequences are ana-
lyzed according to the same method used for single-end
reads. Finally, after that duplicates have been removed,
sequences are demerged (see Fig. 7). It should be pointed
out, that this strategy to support paired-end reads is well
suited to the current implementation of the algorithm that
gives a viable solution to the issue concerning the maxi-
mum length of prefixes. The limitation on the length of
the prefixes of the previous implementation would neg-
atively affect the capability of removing duplicates from
paired-end reads.

Results and discussion
Experiments have been designed to assess the perfor-
mances of GPU-DupRemoval to remove identical and
nearly-identical duplicates from single- and paired-end
read libraries, with both synthetic and real life data. In this
section, we first introduce experiments on synthetic data,
which aremainly aimed at assessing the reliability of GPU-
DupRemoval. Experimental results obtained on real data
are reported afterwards.

Performance evaluation on synthetic data
Synthetic libraries have been generated with the Sher-
man simulator [27]. It should be pointed out in advance
that Sherman does not permit to set the percentage of
duplicates in a library. Initially, we used Sherman to gen-
erate a library consisting of 750 thousands of 100 bp
single-end reads. Subsequently, synthetic reads have been
processed to generate 250 thousands of 100 bp dupli-
cate reads. Duplicates consist of identical duplicates (100
thousands), duplicates generated by simulating a 1 % of

Fig. 6Merging paired-end reads. Paired-end reads with identical
prefix at both ends can be considered potential duplicates. The same
clustering strategy used to identify potential duplicates in single-end
reads can also be used for paired-end reads. In this case, paired-end
reads need to be merged as represented in the figure. A sequence
representative of a pair is obtained by merging the prefixes and the
suffixes of both forward and reverse read. With N the length of the
read sequence and p length of the prefixes, the new sequence
consists of 2 · N nucleotides and is represented by a prefix of 2 · p
nucleotides

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 139 of 212

Fig. 7 De-merging paired-end reads. After that duplicates have been
removed, sequences are demerged to generate both forward and
reverse reads

sequencing error (100 thousands), and duplicates gener-
ated by simulating a sequencing error ranging between 2
and 3 % (50 thousands). Similarly, we generated a library
consisting of 1 millions of 100 bp paired-end reads. In this
case, the sequencing error has been uniformly simulated
on both ends. As for both single- and paired-end reads,
duplicates have been generated by simulating sequencing
errors using an error rate curve that follows an exponen-
tial decay model, with the aim of mimicking real data.
As for the single-end library, GPU-DupRemoval has

been compared with Fastx-Toolkit Collapser, CD-HIT-
DUP, and Fulcrum. Experiments have been defined to
assess the reliability of the tool to identify and remove
duplicates according to the sequencing errors injected
therein. Results reported in Table 2 show the percentage
of reads removed from each tool when used to identify
duplicates according to a sequencing error ranging from
0 to 3 %. Apart from CD-HIT-DUP, the other tools work
properly and have been able to identify all duplicates.
Similar behavior has been observed for paired-end reads
(see Table 3). In this case, GPU-DupRemoval has been
compared with FastUniq, CD-HIT-DUP, and Fulcrum. It
should be pointed out that both Fastx Toolkit Collapser
and FastUniq does not support removal of nearly-identical
reads.

Performance evaluation on real data
To assess the performance of GPU-DupRemoval on real
data, we used it to remove duplicates of two libraries gen-
erated with the Illumina platform; i.e., library SRR921897

consisting of 50 millions of 100 bp single-end reads, and
library SRR005718 consisting of 32 millions of 36 bp
paired-end reads. Experiments have been carried-out to
identify and remove identical and nearly-identical dupli-
cates with up to 1 and 3 mismatches.
Experiments described hereinafter have been carried

out on a 12 cores Intel Xeon CPU E5-2667 2.90 GHz with
128 GB of RAM. An NVIDIA (Kepler architecture based)
Tesla k20c card with 0.71 GHz clock rate and equipped
with 4.8 GB of global memory has been used to execute
GPU-DupRemoval.
Experiments have been designed with the goal of pro-

viding a rigorous comparison among the tools. In this
context, it should be pointed out that Fulcrum consid-
ers as aNy those bases with a quality score under a user
defined-threshold. Being not supported by the other tools,
this option has been disabled as it can affect the percent-
age of duplicates removed. Moreover, differently from the
other tools, Fulcrum parallelizes the computation on mul-
tiple CPU cores. Therefore, to provide a rigorous compar-
ison in terms of computing time with GPU-DupRemoval,
Fulcrum has been run parallelized on all available CPU
cores.
Identical parameters have been used to perform the

clustering in both GPU-DupRemoval and Fulcrum. Clus-
tering has been performed according to different lengths
of the prefixes with the aim to show how this parameter
affects the removal of duplicates. As for nearly-identical
duplicates, clustering has been performed by analyzing
prefixes of 25/35/45/55 bases for SRR921897 and prefixes
of 10/15 bases for SRR005718. As for identical dupli-
cates, GPU-DupRemoval automatically clusters the reads
by their entire nucleotide sequences. The same constraint
has been used in Fulcrum to remove identical duplicates.
Table 4 summarize the results obtained by remov-

ing duplicates from the SRR921897 library in terms of
removed reads, computing time, and peak of memory
required. GPU-DupRemoval, CD-HIT-DUP, and Fastx
Toolkit Collapser removed the same percentage of

Table 2 Percentage of removed duplicates are reported, varying the allowed number of differences from 0 to 3 mismatches for a
synthetic single-end read library consisting of 1 millions of 100 bp reads. The library consists of 25 % of duplicates

Mismatches

Tool 0 ≤ 1 ≤ 2 ≤ 3

GPU-DupRemoval 10.0 % 20.0 % 22.5 % 25.0 %

CD-HIT-DUP 10.0 % 10.0 % 16.0 % 25.0 %

Fastx-Toolkit Collapser 10.0 % - - -

Fulcrum 10.0 % 20.0 % 22.5 % 25.0 %

Clustering for GPU-DupRemoval and Fulcrum has been performed analyzing prefixes of 25 bases when used to remove nearly-identical duplicates. As for identical duplicates
clustering has been performed on the entire length of the reads for both tools. It should be pointed out that GPU-DupRemoval automatically clusters the reads according to
their length when used to remove identical duplicates. Tool settings: i) GPU-DupRemoval -g 0 -D 0 (for identical duplicates) and -g 0 -p 25 -D<nb_of_mismatches> (for
nearly-identical duplicates); ii) CD-HIT-DUP -u 0 -c<nb_of_mismatches>; iii) Fulcrum -b<prefix_length> -s -t s (for clustering) and -q 0 -s -t s -c <nb_mismatches>.
<nb_of_mismatches>: the allowed number of mismatches. It has been set to 0, 1, 2, 3 for the different experiments. <prefix_length> was set to 100 for identical duplicates
and to 25 for nearly-identical duplicates. Fastx-Toolkit Collapser does not require any parameter apart those aimed at specifying the input and the output files

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 140 of 212

Table 3 Table reports the percentage of removed duplicates varying the allowed number of difference from 0 to 3 mismatches for a
synthetic paired-end read library consisting of 1 millions of 100 bp reads. The library consists of 25 % of duplicates

Mismatches

Tool 0 ≤ 1 ≤ 2 ≤ 3

GPU-DupRemoval 10.0 % 20.0 % 22.5 % 25.0 %

CD-HIT-DUP 10.0 % 10.0 % 16.2 % 17.5 %

FastUniq 10.0 % - - -

Fulcrum 10.0 % 20.0 % 22.5 % 25.0 %

Tool settings: i) GPU-DupRemoval -g 0 -D 0 (for identical duplicates) and -g 0 -p 10 -D<nb_of_mismatches> (for nearly-identical duplicates); ii) CD-HIT-DUP -u 0 -c
<nb_of_mismatches>; iii) Fulcrum -b<prefix_length> -s -t p (for clustering) and -q 0 -s -t p -c <nb_mismatches>. As for Fulcrum, <prefix_length> was set to 100 for
identical duplicates and to 25 for nearly-identical duplicates. FastUniq does not require specific parameters apart from those aimed at specifying input and output files

Table 4 Performance comparison on the SRR921897 library among GPU-DupRemoval, Fastx Toolkit Collapser, CD-HIT-DUP, and
Fulcrum

Tool Prefix length Mismatches Removed Time Memory

GPU-DupRemoval1 100 0 7.4 % 4 m 13.1 GB

25 1 9.2 % 18 m 16.6 GB

3 12.2 % 17 m 16.6 GB

35 1 8.9 % 12 m 17.2 GB

3 11.5 % 11 m 17.2 GB

45 1 8.7 % 7 m 16.5 GB

3 10.8 % 7 m 16.5 GB

55 1 8.4 % 6 m 17.5 GB

3 10.0 % 5 m 17.5 GB

GPU-DupRemoval2 25 0 7.4 % 22 m 16.6 GB

1 9.0 % 18 m 16.6 GB

3 12.0 % 15 m 16.6 GB

CD-HIT-DUP N/A 0 7.4 % 17 m 33.3 GB

1 8.0 % 15 m 49.2 GB

3 9.8 % 28 m 53.5 GB

Fulcrum 100 0 7.3 % 53 m 1.8 GB

25 1 9.8 % 47 m 1.8 GB

3 13.1 % 57 m 1.8 GB

35 1 9.6 % 36 m 2.3 GB

3 12.3 % 37 m 1.6 GB

45 1 9.4 % 28 m 1.9 GB

3 11.7 % 29 m 1.7 GB

55 1 9.2 % 25 m 2.1 GB

3 10.9 % 26 m 2.3 GB

Fastx Toolkit Collapser N/A 0 7.4 % 12 m 10.2 GB

As for GPU-DupRemoval the table reports the results for both the current (GPU-DupRemoval1) and the first implementation (GPU-DupRemoval2) of the algorithm. The library
consists of 49.999.923 of 100 bp single-end reads generated with Illumina platform. The first column reports the name of the tool. The second column reports the prefix
length used for clustering the reads for GPU-DupRemoval and Fulcrum. The third column reports the constraint on the allowed number of mismatches. The fourth column
reports the percentage of reads that have been removed. The fifth and sixth column report the computing time and the peak of memory required to perform the experiment.
Tool settings: i) GPU-DupRemoval1 -g 0 -D 0 (for identical duplicates) and -g 0 -p<prefix_length> -D<nb_mismatches> (for nearly-identical duplicates); ii) GPU-DupRemoval2

-g 0 -p 25 -D<nb_mismatches>; iii) CD-HIT-DUP -u 0 -c<nb_of_mismatches>; iv) Fulcrum -b<prefix_length> -s -t s (for clustering) and -q 0 -n 12 -s -t s -c <nb_mismatches>.
<prefix_length> was set to 100 for identical duplicates and to 25/35/45/55 for nearly-identical duplicates. No parameter is required for Fastx Toolkit Collapser

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 141 of 212

identical read sequences (7.4 %). A slightly lower amount
(7.3 %) of identical reads has been removed by Ful-
crum. As for nearly-identical reads, Fulcrum removed
a slightly higher amount of sequences with respect to
GPU-DupRemoval. In particular, clustering the reads with
a prefix length of 25/35/45/55 bases GPU-DupRemoval
removed 9.2/8.9/8.7/8.4 % of nearly-identical sequences
with up to 1mismatch, whereas the percentage reached by
Fulcrum was 9.8/9.6/9.4/9.2 %. Similar results have been
obtained to remove nearly-identical sequences with up
to 3 mismatches. In this case, clustering the reads with
a prefix length of 25/35/45/55 bases GPU-DupRemoval
removed 12.2/11.5/10.8/10.0 % of sequences, whereas
the percentage of sequences removed by Fulcrum was
13.1/12.3/11.7/10.9 %. As for CD-HIT-DUP, it has been
able to remove 8.0/9.8 % of duplicates with up to 1/3
mismatches.
We deem that this slight discrepancy on the percentage

of sequences removed by GPU-DupRemoval and Fulcrum
depends on the different strategies implemented to com-
pare the reads in a cluster. In Fulcrum, initially, a list of
groups of strongly similar reads is initialized using the first
read of each cluster (say r). Subsequently, each read in a
cluster is compared to r and if considered similar to r it
is added to the group and a new consensus sequence r is
calculated and used for the following comparison. Unlike,
GPU-DupRemoval does not compare the reads in a cluster
with a consensus sequences. In GPU-DupRemoval dupli-
cates are detected by comparing each read in a cluster to
all other sequences in the cluster.
Results show how the prefix length used for cluster-

ing can affect the percentage of removed reads. Analysis
of results show that the percentage of sequences clas-
sified as duplicates decreases with increasing the pre-
fix length. For instance, with a prefix of 35 bases the
percentage of nearly-identical sequences with up to 1/3
mismatches removed by GPU-DupRemoval decreased of
0.3/0.7 % with respect to the percentage obtained using
a prefix of 25 bases. Similar results have been obtained
by Fulcrum.
Performance in terms of computing time shows that

GPU-DupRemoval is the fastest tool. It resulted to be 3.0x
faster than Fastx Toolkit Collapser in removing identical
duplicates, whereas it resulted to be up to 4.2x/2.1x/5.6x
faster than CD-HIT-DUP and up to 13.2x/4.1x/5.2x faster
than Fulcrum to remove duplicates with up to 0/1/3 mis-
matches.
As for memory consumption, Fulcrum outperforms

the other tools, the worst being CD-HIT-DUP, which
requires a notable high amount of memory. Experi-
ments show that the memory required increases with
the allowed number of mismatches. In particular, CD-
HIT-DUP required 33.3 GB of memory to remove
identical duplicates and 49.2/53.5 GB of memory to

remove duplicates with up to 1/3 mismatches. As for
GPU-DupRemoval, the amount of memory required
depends on both the size of the dataset and the type of
duplicates removed, whereas it is unrelated from the num-
ber of differences allowed among duplicates. To perform
the experiments, GPU-DupRemoval required 13.1 GB to
remove identical duplicates and 16.6/17.2/16.5/17.5 GB
to remove nearly-identical sequences clustering the reads
with a prefix length of 25/35/45/55 bases.
Experiments have also been performed to compare

the performance of the current implementation of GPU-
DupRemoval with that obtained with the previous release.
Experiments with the first release of the algorithm has
been performed clustering the reads with a prefix length
of 25 bases. As for identical duplicates, both releases of
the tool have been able to remove the same percentage of
identical duplicates. However, due to the multi-clustering
strategy the current release of the tool resulted to be 5.5x
faster than the previous implementation. As for nearly-
identical reads both versions of the tool exhibit compara-
ble performance in terms of computing time and memory
consumption. However, the current version of the tool,
which is able to analyze large clusters without heuristics,
has been able to remove a slightly higher percentage of
duplicates.
Similar results are reported in Table 5 for SRR005718

library. As for identical duplicates, all tools removed the
same amount of reads (2.9 %). GPU-DupRemoval and Ful-
crum show almost identical results. GPU-DupRemoval
removed 3.6/3.5 % of duplicates with up to 1 mismatch
clustering the reads with a prefix length of 10/15 bp,
whereas Fulcrum removed always 3.6 % of duplicates. As
for nearly-identical duplicates with up to 3 mismatches
GPU-DupRemoval removed 4.0/3.9 % of duplicates clus-
tering the reads with a prefix length of 10/15 bases,
whereas Fulcrum removed 4.2/4.1 % of duplicates. As for
CD-HIT-DUP, it removed 3.3/3.0 % of duplicates with up
to 1/3 mismatches.
As for computing time, the performance of GPU-

DupRemoval to remove identical reads are similar with
those obtained by CD-HIT-DUP and FastUniq, whereas
it resulted to be 7.0x faster than Fulcrum. As for nearly-
identical duplicates GPU-DupRemoval resulted be up to
1.6x/2.3x faster than CD-HIT-DUP, and up to 12.8x/17.5x
faster than Fulcrum to remove duplicates with up to 1/3
mismatches.
As for memory consumption, a behavior similar to

the one observed on the SRR921897 library has been
observed. In particular, Fulcrum outperforms all remain-
ing tools, requiring in the worst case 1.4 GB of mem-
ory, whereas CD-HIT-DUP required 26.9/35.2/37.7 GB
of memory to remove duplicates with up to 0/1/3 mis-
matches. As for GPU-DupRemoval, it required 6.6 GB of
memory to remove identical duplicates, and 8.2/6.9 GB to

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 142 of 212

Table 5 Performance comparison on the SRR005718 library among GPU-DupRemoval, FastUniq, CD-HIT-DUP, and Fulcrum. The library
consists of 32.160.546 of 36 bp paired-end reads generated with an Illumina platform

Tool Prefix length Mismatches Removed Time Memory

GPU-DupRemoval 36 0 2.9 % 5 m 6.6 GB

10 1 3.6 % 5 m 8.2 GB

3 4.0 % 4 m 8.2 GB

15 1 3.5 % 5 m 6.9 GB

3 3.9 % 4 m 6.9 GB

CD-HIT-DUP N/A 0 2.9 % 6 m 26.9 GB

1 3.3 % 8 m 35.2 GB

3 3.0 % 11 m 37.7 GB

Fulcrum 36 0 2.9 % 35 m 720 MB

10 1 3.6 % 1h 4 m 720 MB

3 4.2 % 1h 10 m 720 MB

15 1 3.6 % 34 m 1.4 GB

3 4.1 % 36 m 1.0GB

FastUniq N/A 0 2.9 % 6 m 10.1 GB

The first column reports the name of the tool. The second column reports the prefix length used for clustering the reads for GPU-DupRemoval and Fulcrum. The third column
reports the constraint on the allowed number of mismatches. The fourth column reports the percentage of reads that have been removed. The fifth and sixth column report
the computing time and the peak of memory required to perform the experiment. Tool settings: i) GPU-DupRemoval -g 0 -D 0 (for identical duplicates) and -g 0 -p
<prefix_length> -D<nb_of_mismatches> (for nearly-identical duplicates); ii) CD-HIT-DUP -u 0 -c<nb_of_mismatches>; iii) Fulcrum -b<prefix_length> -s -t p (for clustering)
and -q 0 -n 12 -s -t p -c <nb_mismatches>. <prefix_length> was set to 36 for identical duplicates and to 10/15 for nearly-identical duplicates

remove nearly-identical ones by clustering the reads with
a prefix of 10/15 bases.

Conclusions
In this work we presented GPU-DupRemoval, a tool
aimed at removing identical and nearly-identical dupli-
cates from sequencing libraries generated with Illumina
platforms. GPU-DupRemoval implements an alignment-
free strategy and exploits the computational power of
modern GPUs to remove duplicates from both single- and
paired-end libraries.
Experimental results show that GPU-DupRemoval is

very effective at removing duplicate reads, as it outper-
forms almost all analyzed tools. In terms of ability to
identify and remove duplicates, its performance are com-
parable with that of Fulcrum. However, it resulted to be
very faster than Fulcrum, especially at removing dupli-
cates from paired-end reads.
The current implementation of GPU-DupRemoval

overcomes almost all limitations highlighted with respect
to its first implementation. Currently, the constraint on
maximum size of the sequencing library still holds. As
highlighted in the previous work, sorting requires all
prefixes to be loaded into the memory of the GPU
device. Therefore, the maximum size of the library that
can be analyzed depends on the memory of the GPU
card used.

Availability and requirements
Project name: GPU-DupRemoval
Project home page: http://www.itb.cnr.it/web/
bioinformatics/gpu-dupremoval
Operating system(s): Linux
Programming language: CUDA C
Other requirements: NVIDIA GPU card with compute
capability ≥ 3.5
License: free for academic use
Any restrictions to use by non-academics: license
needed

Acknowledgements
Not applicable.

Declarations
This article has been published as part of BMC Bioinformatics Vol 17 Suppl 12
2016: Italian Society of Bioinformatics (BITS): Annual Meeting 2015. The full
contents of the supplement are available online at http://bmcbioinformatics.
biomedcentral.com/articles/supplements/volume-17-supplement-12.

Funding
The work has been supported by the Italian Ministry of Education and
Research through the Flagship InterOmics (PB05) project, by the Lombardy
Region through the FRRB grant, and the European MIMOmics (305280) and
ELIXIR (https://www.elixir-europe.org) projects. Publication costs have been
funded by the Flagship InterOmics project.

Availability of data andmaterial
Not applicable.

Authors’ contributions
Conceived the tool: AM. Conceived and designed the experiments: AM, LM.
Performed the experiments: AM, MG, GA. Analyzed the data: AM, AO, GA, MM,

http://www.itb.cnr.it/web/bioinformatics/gpu-dupremoval
http://www.itb.cnr.it/web/bioinformatics/gpu-dupremoval
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-12
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-12
https://www.elixir-europe.org

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):346 Page 143 of 212

MG, LM. Wrote the manuscript: AM. Revised the manuscript: AM, GA, LM.
Wrote the program: AM. Generated the synthetic data: AM. Coordinated the
project: LM. All authors read and approved the final manuscript.

Authors’ information
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Institute for Biomedical Technologies, National Research Council, Via Fratelli
Cervi, 93, 20090 Segrate (Mi), Italy. 2Department of Electrical and Electronic
Engineering, University of Cagliari, P.zza D’Armi, 09123 Cagliari (CA), Italy.

Published: 8 November 2016

References
1. Gomez-Alvarez V, Teal TK, Schmidt TM. Systematic artifacts in

metagenomes from complex microbial communities. ISME J. 2009;3(11):
1314–7.

2. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet. 2011;43(5):491–8.

3. Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, et al. SNP detection for
massively parallel whole-genome resequencing. Genome Res. 2009;19(6):
1124–32.

4. Magi A, Tattini L, Pippucci T, Torricelli F, Benelli M. Read count approach
for DNA copy number variants detection. Bioinformatics. 2012;28(4):
470–8.

5. Zhou X, Rokas A. Prevention, diagnosis and treatment of high-throughput
sequencing data pathologies. Mol Ecol. 2014;23(7):1679–700.

6. Picard MarkDuplicates. Available from http://broadinstitute.github.io/
picard/.

7. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/map format and SAMtools. Bioinformatics.
2009;25(16):2078–9.

8. Pireddu L, Leo S, Zanetti G. SEAL: a distributed short read mapping and
duplicate removal tool. Bioinformatics. 2011;27(15):2159–60.

9. Li H, Durbin R. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

10. Fastx-Toolkit Collapser. Available from http://hannonlab.cshl.edu/
fastx_toolkit/.

11. Xu H, Luo X, Qian J, Pang X, Song J, Qian G, et al. FastUniq: a fast de
novo duplicates removal tool for paired short reads. PLoS ONE.
2012;7(12):e52249.

12. Burriesci MS, Lehnert EM, Pringle JR. Fulcrum: condensing redundant
reads from high-throughput sequencing studies. Bioinformatics.
2012;28(10):1324–27.

13. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):
1658–9.

14. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the
next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.

15. Li W, Fu L, Niu B, Wu S, Wooley J. Ultrafast clustering algorithms for
metagenomic sequence analysis. Brief Bioinform. 2012;13(6):656–68.

16. Manconi A, Manca E, Moscatelli M, Gnocchi M, Orro A, Armano G, et al.
G-CNV: a GPU-based tool for preparing data to detect CNVs with
read-depth methods. Front Bioeng Biotechnol. 2015;3(28):28.

17. Manavski SA, Valle G. CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinforma.
2008;9(Suppl 2):S10.

18. Luo R, Wong T, Zhu J, Liu CM, Zhu X, Wu E, et al. SOAP3-dp: fast, accurate
and sensitive GPU-based short read aligner. PLoS ONE. 2013;8(5):e65632.

19. Zhao K, Chu X. G-BLASTN: accelerating nucleotide alignment by graphics
processors. Bioinformatics. 2014;30(10):1384–91.

20. Klus P, Lam S, Lyberg D, Cheung MS, Pullan G, McFarlane I, et al.
BarraCUDA-a fast short read sequence aligner using graphics processing
units. BMC Res Notes. 2012;5(1):27.

21. Yung LS, Yang C, Wan X, Yu W. GBOOST: a GPU-based tool for detecting
gene–gene interactions in genome–wide case control studies.
Bioinformatics. 2011;27(9):1309–10.

22. Nvidia-CUDA. Compute unified device architecture programming guide.
http://docs.nvidia.com/cuda/index.html.

23. The opencl specification. 2015. https://www.khronos.org/registry/cl/
specs/opencl-2.1.pdf.

24. Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in
ultra-short read data sets from high-throughput DNA sequencing.
Nucleic Acids Res. 2008;36(16):e105.

25. Manca E, Manconi A, Orro A, Armano G, Milanesi L. CUDA-quicksort: an
improved GPU-based implementation of quicksort. Concurrency Comput
Pract Experience. 2016;28(1):21–43.

26. Hoberock J, Bell N. Thrust: A parallel template library; 2010. http://thrust.
googlecode.com.

27. Sherman Simulator. http://www.bioinformatics.babraham.ac.uk/projects/
sherman/.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://docs.nvidia.com/cuda/index.html
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
http://thrust.googlecode.com
http://thrust.googlecode.com
http://www.bioinformatics.babraham.ac.uk/projects/sherman/
http://www.bioinformatics.babraham.ac.uk/projects/sherman/

	Abstract
	Background
	Results
	Conclusions
	Keywords
	Abbreviations

	Background
	Implementation
	Graphics processing units
	The algorithm
	Prefix length
	Maximum size of a cluster
	Supporting paired-end reads

	Results and discussion
	Performance evaluation on synthetic data
	Performance evaluation on real data

	Conclusions
	Availability and requirements
	Acknowledgements
	Declarations
	Funding
	Availability of data and material
	Authors' contributions
	Authors' information
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

