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Abstract

Background: When the reads obtained from high-throughput RNA sequencing are mapped against a reference
database, a significant proportion of them - known as multireads - can map to more than one reference sequence.
These multireads originate from gene duplications, repetitive regions or overlapping genes. Removing the
multireads from the mapping results, in RNA-Seq analyses, causes an underestimation of the read counts, while
estimating the real read count can lead to false positives during the detection of differentially expressed sequences.

Results: We present an innovative approach to deal with multireads and evaluate differential expression events,
entirely based on fuzzy set theory. Since multireads cause uncertainty in the estimation of read counts during gene
expression computation, they can also influence the reliability of differential expression analysis results, by
producing false positives. Our method manages the uncertainty in gene expression estimation by defining the
fuzzy read counts and evaluates the possibility of a gene to be differentially expressed with three fuzzy concepts:
over-expression, same-expression and under-expression. The output of the method is a list of differentially
expressed genes enriched with information about the uncertainty of the results due to the multiread presence.
We have tested the method on RNA-Seq data designed for case-control studies and we have compared the
obtained results with other existing tools for read count estimation and differential expression analysis.

Conclusions: The management of multireads with the use of fuzzy sets allows to obtain a list of differential
expression events which takes in account the uncertainty in the results caused by the presence of multireads. Such
additional information can be used by the biologists when they have to select the most relevant differential
expression events to validate with laboratory assays. Our method can be used to compute reliable differential
expression events and to highlight possible false positives in the lists of differentially expressed genes computed
with other tools.
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Background
The advent of High-performance Next-Generation
Sequencing (NGS) technologies has improved the analysis
of differential expression of genes, by investigating both
the nature and the quantity of expressed mRNAs and
increasing the spectrum of applications of sequencing.
Increasingly faster mapping algorithms and more com-

plex statistical analyses have been developed to address
all the issues introduced by RNA-Seq data, but the dis-
cussion about the best workflows is still open.
A typical differential expression (DE) analysis work-

flow is composed by three main steps: (1) read mapping,
(2) gene expression computation and (3) identification
of noticeable differences between the samples. The re-
sults are generally output as a list of genes showing a
statistically significant variation in expression between
different experimental conditions. The confidence of the
result is usually defined through fold change values and
p-values obtained with statistical hypothesis testing.
Despite the continuous improvement of the sequencing

techniques, the results of DE analyses are not yet fully reli-
able. The variations in gene expression discovered from
RNA-Seq data must be confirmed with laboratory assays,
such as qPCR and these validations often reveal the pres-
ence of false positives in the bioinformatics analysis results
[1]. In order to obtain more accurate results, the second
and third steps of DE analysis workflow have been deeply
examined in the last years, also taking advantages from
the experience gained with the use of microarrays. Several
normalization techniques [2–4] and DE analysis models
[5–7] have been designed for sequence count data.
More recently some attention has been focused on an

issue that arises in the first step of DE analysis workflow,
i.e. the problem of multireads, which are those reads that
map to more than one transcript/genomic location in
the reference sequences and cause uncertainty in gene
counts.
The main source of mapping ambiguity is the presence

of genes with similar sequences (i.e., paralogous gene
families) and, since the sequenced reads do not span en-
tire transcripts, alignment algorithms are sometimes un-
able to uniquely determine the gene from which they are
derived. In addition, polymorphisms, inaccurate refer-
ence sequences and sequencing errors require mis-
matches and indels to be allowed in read alignments,
lowering out the quality of the mapping process.
When the number of multireads is small, many re-

searchers simply choose to exclude such reads from the
analysis, counting only uniquely mapping reads [8], but
this option always leads to an underestimation of the
read counts and it is not possible to a priori know if the
removed reads were relevant for the DE results.
Another approach is to estimate the real number of

read counts: the simplest way is to assign multireads to

genes proportionally to the expression of uniquely map-
ping reads (named Rescue Method) [9]; some more
complex techniques compute an estimation of the read
counts using probabilistic models, such as IsoEM [10],
RSEM [11], Rcount [12], TEtranscript [13], MMR [14].
These methods, starting from some assumptions on the
distribution of the data, model the generation of multi-
reads and estimate the final read counts. From each
method we obtain different estimated counts, and their
confidence value, when provided, is not considered by
the actual DE analysis tools and it cannot be used to
evaluate the results. In a recent work, Robert and Wat-
son [15] propose a two stage analysis: in stage 1, reads
are assigned uniquely to genes; in stage 2, reads that
map to multiple genes are assigned uniquely to multi-
map groups, but 30 % of such groups contains two or
more genes. The expression variation of a single gene
could either be hidden in the group, or it could require
a laboratory validation of all the genes in the group.
In this paper, starting from an approach for dealing

with multireads that preserves uncertainty information,
we present a novel DE analysis workflow. The main aim
of our work is to extract the results with high possibility
of being true positives, and hence to highlight those re-
sults that risk to be false positives, since their count
values are influenced by the presence of multireads. The
whole workflow we describe is based on fuzzy set
theory.
Fuzzy sets were introduced by Zadeh as a mean to

model imprecisely defined concepts in 1965 [16], by
handling partial truth with the concept of gradual mem-
bership to a set. Fuzzy logic is a generalization of clas-
sical logic based on fuzzy set theory. A fuzzy set could
be used to restrict the possible values a variable can as-
sume, thus providing a possibility distribution for the
variable [17].
Possibility theory is the theory of handling possibility

distributions; it was introduced by Zadeh and further de-
veloped by Dubois and Prade [18]. Possibility theory and
probability theory are only loosely related, and the
former seems more suitable to model uncertainty deriv-
ing from imprecision or lack of information.
The approach used in this paper is compliant with the

work of Zadeh [17], who proposed possibility distribu-
tions as suitable interpretations of fuzzy sets. The possi-
bility measure used in this paper follows the notation
introduced by Pedrycz [19].
The method has been tested on public RNA-Seq data

and discussed by comparing the obtained results with
other bioinformatics tools. The read count estimations
have been computed with TopHat and Bowtie mappings
and with RSEM. The DE analyses were performed on the
counts with cuffdiff, DESeq2, edgeR and with Fisher’s
Exact test adjusted by false discovery rate (FDR).
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Methods
Our workflow starts with the quantification of gene ex-
pressions in presence of multireads through the defin-
ition of fuzzy read count. It applies fuzzy sets to build a
granular representation of read counts for each gene. A
whole new workflow is then introduced to extend DE
analysis to this expression measure.
For this purpose, we define the fuzzy fold change, the

possibility of over or under-expression and the possibility of
same-expression, that is useful to evaluate the presence of
false positives in the DE events. The output of the workflow
is a list of DE events with the additional information about
uncertainty correlated to multiread presence.

Fuzzy description of count data
When the NGS reads are compared to a database of ref-
erence sequences such as genes or transcripts, we obtain
a list of results as summarized by Table 1. The mappings
among reads and genes are provided one by row and the
multiread events are represented by multiple rows iden-
tified by the same read. If mismatches and indels are
allowed in the mapping results we can obtain, for the
same read, matches that differ in mapping accuracy.
In our approach, we start from the assumption that

the higher is the accuracy of the mapping, the higher is
the possibility that read actually originates from such
gene. Therefore, if a read maps to two genes with the
same accuracy, we consider – without any statistical as-
sumption – that it is equally possible for the read to ori-
ginate from any of such genes. On the other hand, if a
read is more similar to a gene than to another, then it is
more possible that the read originates from the former
than from the latter, yet without excluding this eventual-
ity (because a low similarity can be due to errors in
sequencing or variations in the genome of the sample).

We easily introduce these concepts in our method by
exploiting the possibility distribution emerging from the
representation of read count through fuzzy sets. If we
can define a numerical score to evaluate the accuracy of
the mapping results and if we can scale it between 0 and
1, we can exploit it as description of the possibility of
reconstructing the right mapping. For example, in NCBI
Blast results [20], the numerical score could be defined
by the identity of the mapping or by the product of iden-
tity and coverage (bit score); in a SAM file the 5th
column, which represents the mapping quality between
0 and 255, can be scaled and used as a possibility value.
After this computation of possibilities, we obtain a table
like Table 2, in which a possibility value is associated to
each mapping.
For each gene, we can now compute the possibility of

having a given read count. For example, the possibility
of having a read count = 1 for gene-1 is the best possibil-
ity of having one read as true match and all the others
as false match. In this way, we compute for gene-1 the
possibility distribution shown in Fig. 1. This figure is a
fuzzy set, and its interpretation is that the real read
count for the gene can possibly be 2 or 3, but it has also
an intermediate possibility of being 1, 4 or 5. This is just
a representation of what we observe from mapping re-
sults, without assumptions on the shape of the distribu-
tion and without probability evaluation. The computation
of such a fuzzy set is cumbersome; however some general
considerations can be drawn to obtain an effective
approximation.
In fact, we can observe that the lowest possible value

– denoted with an A in Fig. 1(a) – is the number of
reads uniquely mapping to gene-1 and the highest value
(D) is the total number of reads that map to that gene
(counts outside this interval have null possibility). The
plateau with highest possibility is delimited by two other

Table 1 Example of mapping results with multireads

Read ID Reference ID Identity Coverage

read-1 gene-1 100 100

read-2 gene-1 100 100

read-2 gene-2 99 80

read-2 gene-3 95 80

read-3 gene-1 100 100

read-3 gene-2 100 100

read-4 gene-1 96 90

read-4 gene-2 97 90

read-4 gene-3 100 100

read-5 gene-1 95 80

read-5 gene-2 100 100

For gene-1: one uniquely mapping read (read-1); two reads having only gene-1
as best match (read-1, read-2); three reads having gene-1 as best match (read-1,
read-2, read-3, the latter having also gene-2 as best match); five reads mapping
on gene-1, even if not as best match (from read-1 to read-5)

Table 2 Possibility values of mappings

Read ID Gene ID Mapping possibility

read-1 gene-1 1

read-2 gene-1 1

read-2 gene-2 0.792

read-2 gene-3 0.76

read-3 gene-1 1

read-3 gene-2 1

read-4 gene-1 0.864

read-4 gene-2 0.873

read-4 gene-3 1

read-5 gene-1 0.76

read-5 gene-2 1

In this example the possibility values are computed by scaling the product of
Identity and Coverage obtained in Table 1 in a value from 0 to 1
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values: the first (B) is the number of reads having the
gene as unique best match, the second (C) is the number
of reads having that gene as non unique best match (for
example read-3 in Table 1 maps both to gene-1 and
gene-2 with highest similarity).
We also observe that the possibility value always in-

creases between A and B and decreases between C and D.
We can use these four parameters to obtain a simplified
representation of the granular read count through a
trapezoidal fuzzy set, exemplified in Fig. 1(b) and formally
defined as:

Tr A0;B;C;D0½ � xð Þ ¼

0; x ≤A0 ∨ x ≥D0
x‐A0

B‐A0 ; A0 < x ≤ B

1; B < x < C
x‐D0

C‐D0 ; C ≤ x < D0

8>>>>><
>>>>>:

ð1Þ
where A′ = A-1 and D′ = D + 1 to give non-null possibil-
ity to counts A and D respectively. The support of the
fuzzy set (defined as D’-A’) quantifies the uncertainty in
the evaluation of the expression value, which in turn
generates uncertainty in differential expression evalu-
ation. The core of the fuzzy set (defined as C-B) repre-
sents the interval with the maximum possibility of
containing the real read count.
This kind of representation summarizes the computa-

tion of the read count possibility distribution, and it al-
lows to define the fuzzy read counts for each gene with
the only computation of parameters A, B, C and D.

Comparing two conditions
The aim of DE analysis is comparing two or more ex-
perimental conditions in order to highlight events in
which gene expression presents significant variations,
correlated to the experiment. Here we will consider the
most common DE analysis, the case–control study, in
which the experiment is built assuming that the different
conditions between case and control influences only a
minority of genes.
Figure 2 shows a graphical interpretation of comparing

fuzzy read counts for the same gene in a case versus con-
trol study. Two trapezoids representing the expression of
the same gene in different samples can be plotted on a 3-
dimensional graph, which is useful to fully understand the
use of fuzzy sets and the related possibility distributions.
The count values for the two experimental samples are
drawn on the x-axis and y-axis respectively, while the pos-
sibility degrees are represented on the z-axis. As shown in
Fig. 2(a), the Cartesian product of two trapezoidal fuzzy
sets, representing the expression of the same gene in dif-
ferent samples, yields a 3D fuzzy relation with the shape
of a truncated pyramid. The z-value of the pyramid is the
possibility degree that the first sample has x reads and the
second sample has y reads for the gene under consider-
ation. We are assuming that the two read counts are non-
interacting, i.e. the actual count in the case does not mod-
ify the possibility distribution of counts in the control.
This enables the representation of the joint possibility dis-
tribution by a Cartesian product.
Figure 2(b) shows that the tridimensional figure can

be summarized by projecting the two rectangles that
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Fig. 1 Discrete possibility distribution of read counts. For each gene (a) can be represented with a trapezoidal fuzzy set (b)
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contain the support and the core of the fuzzy relation.
Larger rectangles represent wider uncertainty, small
rectangles (possibly degenerating to a single point)
represent more definite results. The position of the rect-
angle with respect to the bisector line is indicative of the
differential expression result in the case–control com-
parison, but a computational method is required for the
analysis of a whole dataset.
First of all, we include in our method the fold change

(FC), a widely used metric for DE analysis. The FC is
computed as the logarithmic ratio between case and
control expression, and it gives an intuitive value of how
much the expression has changed between the condi-
tions, independently of the type of normalization applied
to the counts.
Through the application of the extension principle, we

can extend the definition of FC to granular read counts.
For ease of computation we approximate the fuzzy FC
by a trapezoidal fuzzy set defined as:

Tr log2
A0

1

D0
2
; log2

B1

C2
; log2

C1

B2
; log2

D0
1

A0
2

� �
ð2Þ

The shape of this fuzzy set gives information about DE
of the gene: the wider the range of the trapezoid, the
more uncertain is the result; the farther the fuzzy set
from FC = 0, the more significant is the DE event.

However, the FC alone is not adequate for the study of
DE because it is a ratio, and it is influenced by the mag-
nitude of its terms. The variability observed on gene ex-
pression values is amplified by the FC measure for the
smaller counts.
This trend can be studied by analyzing Fig. 3. If we

compare two sequencing runs performed on the same
sample, namely two technical replicates, we obtain the
plot in Fig. 3(a). The scatter plot has on the x-axis the
logarithmic mean expression value of each gene in the
two samples and on the y-axis its logarithmic FC value.
Logarithm is used on the x-axis to draw a more compact
image. For ease of representation, only a centroid is rep-
resented for uncertain read counts, while the real figure
for them would be a kind of tridimensional truncated
pyramid. The resulting distribution of data has a roughly
rhomboidal aspect: the left part of the rhomboid is
shaped by counts near 0, while the right part encloses an
area in which the FC reveals a high variability that
decreases, as expected, with the increase of mean gene
expression. Figure 3(b) shows the same scatter plot for a
true case-comparison study: here the DE events are vis-
ibly outside the rhomboidal figure.

Extraction of DE events
The DE analysis method proposed for the fuzzy read
counts takes in account all the aspects described so far.
We estimate the borders of the left part of the rhomboid

Fig. 2 Graphical interpretation of the fuzzy sets and their comparison for differential expression evaluation. The joint possibility distribution of the
same gene in two samples is represented by a Cartesian product (a). The projections on a 2-dimensional plots can be exploited to evaluate the results
(b). The green gene (i) has same-expression possibility = 1; the yellow gene (ii) has under-expression possibility = 1, same-expression possibility < 1; the
red gene (iii) has over-expression possibility = 1, same-expression possibility = 0
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by fitting on the data two hyperbolas (the curves in
Fig. 4, see details in Supplementary information
(Additional file 1). They act as a fuzzy threshold for the
significance of the fold change, which is as smaller as
the mean expression value increases. Each point in the
plot corresponds to a gene with a certain mean expres-
sion between case and control and the computed FC

value. By projecting the point on the x-axis, we intersect
the two hyperbolas on two symmetric FC values. We use
this two values as thresholds points for the definition of
three fuzzy concepts for DE: over-expression, under-
expression and same-expression. For this purpose, given
a mean expression value, we define two sigmoidal and
one Gaussian membership functions on the z-axis,

Fig. 3 Variation of fold change results correlated to the expression value. The scatter plots show the variability of log2 fold change results for low
expression values, in the comparison between two technical replicates of the same sample (a) and between two samples in a case-control study

Fig. 4 The delimiters for fold change variability. We estimate the borders of the left part of the rhomboid by fitting on the data two hyperbolas.
In the comparison between two technical replicates, the curves enclose almost all the points (a), while between two samples in a case-control
study, the differentially expressed genes fall outside the boundaries. These curves act as a fuzzy threshold for the significance DE events
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covering the FC values in order to intersect the two
threshold points with membership degree 0.5 (see Fig. 5,
for two examples of the definition of the three fuzzy
concepts for DE). The Gaussian fuzzy set defines the
possibility distribution that a gene is not differentially
expressed between case and control (same-expression).
The sigmoidal functions describe the possibility of a
gene to be over-expressed or under-expressed. The
Gaussian and the sigmoidal functions were chosen be-
cause they have an infinite support and they are able to
describe a gradual increase/decrease of possibility for the
FC. In fact, the only aim of these functions is to convert
the boundaries defined by the hyperbolas into fuzzy
boundaries for the evaluation of the FC values.
When the expression of a gene does not involve multi-

reads, it coincides to a point in the scatter plot of FCs,
and its punctual FC value can be directly matched with
possibility values from the three fuzzy DE sets corre-
sponding to its mean expression value (Fig. 6(a)). On
varying the mean expression value, the 0.5 thresholds
are defined on different FC values, following the hyper-
bolas and the three fuzzy DE sets draw three surfaces in
the tridimensional space that are visible in Fig. 6(b).
When the expression of a gene is defined through the

fuzzy read count representation, it defines a more com-
plex fuzzy relation on the scatter plot, with a shape similar
to a truncated pyramid. In this case the three possibility
values of the gene – of under/same/over expression – are

obtained by intersecting the tridimensional fuzzy relation
of an uncertain gene expression with each of the three
surfaces representing the DE possibilities for that gene.
The intersection is implemented by the min operator and
the resulting DE possibility value is the max value ob-
tained in the intersection.
Once computed the three DE possibility values, we can

evaluate the variation of expression of a gene. A gene with
a relevant change in expression will show a high possibility
of over or under-expression, but when this result is ac-
companied by a high possibility of same-expression, we
are facing with the eventuality of a false positive result.
This DE analysis method is proposed only for case-
comparison studies, but it can be applied both in absence
and in presence of biological replicates. In the latter case,
the set of Gaussian and sigmoidal functions still holds,
while the introduction of replicates is included in the
fuzzy read count model (described below).

Result table
The three DE possibility values described are the main
output of the proposed method. As a result of the com-
putation we obtain the following values for each gene:

� fuzzy read counts for case (normalized), 4 values
defining A,B,C and D points of the trapezoid;

� fuzzy read counts for control (normalized), 4 values;
� fuzzy fold change, 4 values;

Fig. 5 Fuzzy sets for over/same/under-expression possibility. In these examples, we compute the three values of expression possibilities for two
points with the same fold change and a different mean expression value. The intersections of the fuzzy sets are defined by the projection of the
points on the curves defined in the previous figure, and a lower expression value corresponds to a wider same-expression fuzzy set (the Gaussian
membership function)
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� DE possibilities of under/same/over expression,
3 values;

� centroids of the fuzzy sets (for counts and fold
change).

In order to provide the user also with a punctual esti-
mation of gene expression in presence of multireads
(useful for the plots, for example), we also provide our
computation of the centroid of fuzzy sets. For the fuzzy
read counts, such values are computed with our “rescue-
like” method, a technique based on a modified version
of the Rescue Method [9]: while the original model as-
signs multireads to genes proportionally to the expres-
sion of uniquely mapping reads, we assign them
proportionally to the score obtained in the mapping.
This ensures us to obtain an estimation that is properly
centered in our trapezoid, and that respects the propor-
tions of reads of the sample (if we sum the centroid
values we obtain the total number of mapping reads). Fi-
nally, we provide a punctual fold change value computed
on the centroids.

Normalization
In order to compare two or more samples, we need to
normalize the expression values. Many type of
normalization have been proposed for RNA-Seq data,
and here we adopt the normalization proposed by
DESeq2 [6], in which each sample is scaled according to
a model based on the geometric mean of values obtained

for each gene across all the samples. Applying this type
of normalization requires punctual values, so we can
consider the genes with only unique matches if multi-
reads are sporadic. If the presence of multireads is im-
portant, we can compute a centroid of fuzzy read counts
(for example with the “rescue-like” method previously
introduced) and use such values for the normalization.
Once the scaling factor has been computed for each
sample, we can normalize the fuzzy sets by dividing the
four defining points of the trapezoids by the scaling
factor.

Introduction of biological and technical replicates
Technical replicates must be merged and considered
as a single experiment. As in classic read counting,
the technical replicates can be merged before or after
the mapping step, and the counts can be merged by
sum. This can be done also with fuzzy gene counts,
by simply summing the four values obtained for each
gene:

Tr½A0 þ A
00
;B

0 þ B
00
;C

0 þ C
00
;D

0 þ D
00 � ð3Þ

where Tr[A′,B′,C′,D′] and Tr[A″,B″,C″,D″] are fuzzy
read count for the same gene in two technical replicates.
Biological replicates are different samples belonging to

the same condition. This case requires a more reasoned
approach, but, as a preliminary method, we propose to

(a) (b)

Fig. 6 The sigmoidals and Gaussian fuzzy sets and their surfaces. Given a mean expression value, two sigmoidal and one Gaussian fuzzy sets are
defined as in figure (a). On varying the mean expression value, the membership functions draw three surfaces in the 3-dimensional space (b)
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merge the fuzzy sets in order to cover all the possible
values:

Tr min A0;A 00ð Þ; min B0;B 00ð Þ; max C0;C 00ð Þ; max D0;D 00ð Þ½ �
ð4Þ

where Tr[A′,B′,C′,D′] and Tr[A″,B″,C″,D″] are fuzzy
read count for the same gene in two biological replicates.
When the two fuzzy read counts overlap, the resulting
trapezoid includes all the values, by widening its uncer-
tainty range. When the two fuzzy read counts are dis-
joint, we propose to consider as totally possible even all
the intermediate values lying between the observed
values. This proposal is based on the following biological
interpretation of the data.
The expression of a gene is something that can vary in

time. If in the same cell the expression of a gene varies
from N to M between t1 and t2, its variation is not in-
stantaneous (discontinue), but it changes gradually as
the copies of the gene are produced (or degraded). This
means that between t1 and t2 we have a maximum pos-
sibility of observing the intermediate values between N
and M. This is true for the same cell and it can be ex-
tended to non-independent cells like the ones represent-
ing the same condition, as the biological replicates do.

Results and discussion
The method described has been tested on public data-
sets and compared with other existing tools for gene
counts estimations and DE analysis. We have used
RNA-Seq experiments produced with Illumina and 454
Roche Sequencers and we have mapped the reads
against the Ensembl’s Vega database [21], evaluating the
gene expression. Two preliminary studies have been per-
formed in order to better understand the nature of mul-
tireads: an evaluation of the presence of overlapping
portions among the genes and an examination of the
variability of fold change results correlated to the magni-
tude of gene expression. All the parameters used to run
the different tools are described in Supplementary infor-
mation (Additional file 1).

Gene overlapping
The first preliminary study has been performed on
Human reference sequences in order to inspect the pres-
ence of overlappings and similarities among genes. Each
gene has been mapped against all the other genes
present in Vega database. Since a local alignment has
been adopted, a 100 % coverage would mean that the
queried gene is totally included in another gene. As
summarized by Fig. 7, the overlappings are widely
present. For example we notice that 50 % of the genes
has at least a portion of 45 % of their length in common
with at least another gene. In an RNA-Seq experiment,

the percentage of multireads is not constant, but it de-
pends on the set of genes involved in the expression pro-
file of the sample and on the accuracy of the sequenced
reads.

Fold change evaluation
The second preliminary study has been performed with
the aim of analyzing the range of variability of the fold
changes correlated to the mean gene expression value,
and the corresponding variation in the number of multi-
reads. This study has been performed through the com-
parison of two technical replicates obtained by
sequencing the same sample two times with the Roche
454 sequencer. We have already shown in Fig. 3(a) the
plot of the data for this experiment: the fold change has
a wider variation on low expression value that decreases
with the increase of expression values. Since this result
has been obtained on technical replicates, this means
that such variation of the fold change is primarily due to
the technical variability of sequencing data.
If we apply our fuzzy method to this data, we can

compare the identified trapezoids of fuzzy read counts,
with the aim of analyzing if the multiread presence is af-
fected by the technical variability of sequencing data.
We notice that 83 % of 19,669 identified genes have a
variation in the width of the plateau (the portion be-
tween B and C in the trapezoid) of less than 10 reads,
while only 8 genes have a variation of more than 20
reads. This means that the multiread presence seems
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Fig. 7 Gene to genes mapping. The result of mapping all the genes
against each other reveals that the 50 % of genes of Vega reference
database has at least a portion of 45 % of their length in common
with at least another gene. The 100 % of genes have a 9 % of their
sequence in common with at least another gene
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stable across the genes between two technical replicates
and then it does not depend on the technical variability,
while it is influenced by the experimental conditions and
by the set of expressed genes.

Multiple Sclerosis dataset
The method presented in this work has been tested on
public RNA-Seq data and discussed by comparing the
obtained results with other bioinformatics tools. The
read count estimations have been computed with
TopHat (both with uniquely mapping option and with
Rescue Method option) and with RSEM (on Bowtie
mapping results). We have also considered the centroids
of the fuzzy read counts and the number of uniquely
mapping reads only, obtained with Bowtie mappings,
just to compare RSEM values with other punctual read
count estimations.
The DE analyses were performed on the counts with

cuffdiff [5], DESeq2 [6], edgeR [7], and with Fisher’s
Exact test adjusted by false discovery rate (FDR) [22].
The tests were performed on Illumina HiSeq 2500

data, downloaded from the study SRP055874 [23] of the
SRA repository [24], grouped in two different trials. In
the first trial we have used only one sample for condition
(no replicates), and in the second trial we have selected
four biological replicates present in the SRA study, for
each condition (8 samples).

First trial
The main aim of this test is to analyze the influence of
multireads in read count estimations and in DE analysis
results. Read counts have been evaluated by using
TopHat mappings, the RSEM estimations, the centroids
of the fuzzy read counts, and the uniquely mapping
reads obtained with Bowtie.
For the DE analysis, cuffdiff was used only with

TopHat mappings, because these tools are parts of a
unique workflow. TopHat’s read counts are not provided
as output, but cuffdiff provides the FPKMs (Fragments
Per Kilobase per Million mapped reads), while DESeq2
requires in input the raw read counts. The other estima-
tions of read counts have been analyzed with DESeq2,
but the tool does not provide statistically significant dif-
ferentially expressed genes because of the lack of repli-
cates (a warning message informs the user). We have
then applied the Fisher’s Exact test to the counts and we
have adjusted the obtained p-values for multiple com-
parisons with FDR.
The mapping identified 25,918 genes, 36 % of reads

were multireads and 82 % of gene counts were influ-
enced by multireads. For each DE analysis performed,
we have selected the results with p-value < 0.05 and
abs(log2(FC) > 0.5 and evaluated the uncertainty of the
results with same-expression fuzzy set.

The results are summarized by Fig. 8 and Table 3. The
figure plots the possibility of same-expression for the
genes evaluated as differentially expressed by each ana-
lysis. The higher the possibility of same-expression, the
more uncertain is the result of the gene, because of the
presence of multireads.
The uncertainty highlighted in the differentially

expressed genes is confirmed by an overall lack of con-
cordance among the DE analyses results, summarized by
Table 3. In this table, each cell represents the number of
DE genes selected by the two methods specified in the
corresponding row and column. Table 4 lists some ex-
amples of certain and uncertain results. For each gene in
the table we list all the read counts estimations (RPKM
for TopHat) and the results of the applied methods.

Second trial
The same test described for a case-control study with
just one sample per condition has been performed intro-
ducing biological replicates, downloaded from the same
SRA study. We have used four replicates for case and
four replicates of healthy controls. In this case the appli-
cation of DESeq2 to the data gave no warnings and sig-
nificant DE results, so we have used it for the p-value
computation of RSEM and rescue-like estimations. Also
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Table 3 Comparison of the results obtained in First Trial

Results filtered by adjusted p-value < 0.05
and abs(log2(FC)) > 0.5

TopHat (unique)
& cuffdiff

TohHat (rescue)
& cuffdiff

Unique & FDR RSEM
& FDR

Centroid
& FDR

TopHat (unique) & cuffdiff 17 12 12 13 15

TohHat (rescue) & cuffdiff 12 13 11 12 12

Unique & FDR 12 11 7170 3224 1244

RSEM & FDR 13 12 3224 4897 1381

Centroid & FDR 15 12 1244 1381 2159

Each cell represents the number of DE genes in common between two methods specified in the corresponding row and column. Despite the Fisher’s test with
FDR extracts a very large list of DE genes, all the results do not agree on at least one gene. The values on the diagonal (in bold) are the results obtained from
each method

Table 4 Examples of results of the First Trial

GENE: OTTHUMG00000031027|HLA-DRB5

FUZZY COUNTS Control Case Under-expr. Same-expr. Over-expr.

Tr[18,24,26,428] Tr[3732,4551,4666,6386] 1 0.003 0

ESTIMATED COUNTS Control Case STATS p-value Log2(FC)

TopHat-unique (RPKM) 0.2 250.7 cuffdiff 0.9996 10.3

TopHat-rescue (RPKM) 0.2 219.5 cuffdiff 0.9985 10.5

Uniquely mapping 18 3732 FDR 0 7.6

RSEM 23 4665 FDR 0 7.6

Centroid 25 4607 FDR 0 8.1

GENE: OTTHUMG00000036468|TTTY15

FUZZY COUNTS Control Case Under-expr. Same-expr. Over-expr.

Tr[0,1,1,17] Tr[43,43,43,52] 0.024 0.986 0.007

ESTIMATED COUNTS Control Case STATS p-value Log2(FC)

TopHat-unique (RPKM) 0 0.4 cuffdiff 0.0218 Inf

TopHat-rescue (RPKM) 0 0.4 cuffdiff 0.029 Inf

Uniquely mapping 0 43 FDR 1E-14 5.5

RSEM 1 43 FDR 2E-14 4.5

Centroid 1 43 FDR 2E-14 4.9

GENE: OTTHUMG00000129909|IGJ

FUZZY COUNTS Control Case Under-expr. Same-expr. Over-expr.

Tr[0,0,291,318] Tr[0,0,1227,1246] 1 1 0.217

ESTIMATED COUNTS Control Case STATS p-value Log2(FC)

TopHat-unique (RPKM) 16.4 84.9 cuffdiff 0.0218 2.4

TopHat-rescue (RPKM) 17.9 88.4 cuffdiff 0.029 2.3

Uniquely mapping 0 0 FDR 1 0.0

RSEM 250 1165 FDR 2E-208 2.2

Centroid 146 614 FDR 9E-103 2.7

The first gene, HLA-DRB5, despite the abundant presence of multireads in its read counts, shows a certain result, with an maximum under-expression possibility
and very low same-expression possibility. This results is not confirmed by cuffdiff, evenif it computes a high FC. The second gene, TTTY15 result is not reliable
because it has low read counts, but it is considered as a DE result by all the tools. Our method higlights the result as false positive, with a high same-expression
value, because of the low mean expression values obtained. The third example, the IGJ gene, is a possible false positive. Its counts are quite low and its fuzzy read
counts are mostly overlapping. The pvalues obtained by the other tools are confirmed by a high under-expression possibility, but the risk of having a false positive
is pointed out by a high same-expression possibility
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edgeR has been applied, thanks to the presence of
replicates.
The mapping identified 27,328 genes, 35 % of reads

were multireads and 88 % of gene counts were influ-
enced by multireads. The results of the analyses are
summarized by Fig. 9 and Table 5. In this case, the pres-
ence of biological replicates increases the same-
expression possibility of the selected results, and despite
the presence of biological replicates, there is still a very
low concordance among the various DE analysis results.
Multiple Sclerosis is a complex and multi-factorial dis-
ease and the introduction of biological variation in this
experimentation makes it difficult to extract significant
differential expression events. The list of genes selected
by at least two workflows, their possibility values and
their estimated read counts are showed in Supplemen-
tary information (Additional file 1).

Simulation study
Since it is impossible to find experiments with informa-
tion about the real varied and unchanged reads, we have
set a simple simulation study to compare the proposed
method with other existing tools. We have used wgsim
by Samtools [25] to simulate 2 experimental conditions
with 2 biological replicates, by introducing 10 over-
expressed (with log2FC = +1) and 10 under-expressed
genes (with log2FC = −1). The simulated FASTQ files
have been processed with TopHat, Cuffdiff, RSEM,
DeSEQ2, edgeR and with our fuzzy method. Some ex-
amples of the read counts obtained with RSEM and our

method are showed in the Supplementary information
(Additional file 1).
The results obtained are summarized by Table 6. Cuff-

diff with TopHat and DESeq2 applied on the centroids of
the fuzzy trapezoids output no significant results (the ad-
justed p-values are > 0.05). DESeq2 applied on RSEM esti-
mation allows to obtain the best sensitivity, while the best
recall is obtained by edgeR applied on the centroids. Since
our method only ranks the genes, we cannot compare its
results in terms of sensitivity and specificity (or precision
and recall), and then we will compare the different rank-
ing obtained by all the methods. Anyway, it is interesting
to see that, while only 10 genes have a same-expression
possibility < 0.5 and all the listed genes have an over- or
under-expression possibility very close to 1, the fold
change obtained on the centroid values is useful to further
evaluate the results. In fact, the expected log2 fold changes
of about +1 (for over expressed genes) and about −1 (for
under-expressed genes) is correctly computed only by our
method and by edgeR. DESeq2 always underestimates the
fold change. Also Cuffdiff computes a correct fold change
for our varied genes, even if it does not consider them sig-
nificant. The last evaluation is made by comparing the
gene ordering given by the same-expression possibility
with the sorting of results obtained by the p-values of the
other workflows. The aim of this evaluation is to see
which workflows are able to put the most reliable results
in the top of their gene ranking (see Table 7).
The worst result is obtained by Cuffdiff on TopHat’s

mappings, because it puts a false positive gene at the
first position in the ranking. The best result is surpris-
ingly obtained by DESeq2 applied on the centroids of
the fuzzy read counts. This workflow did not output sig-
nificant results but it properly orders the genes, and it
puts the first false positive in the 20th position. The sec-
ond best result is obtained while ranking by same-
expression possibility. Here the first false positive result
is in the 16th position. Anyway, the good performance
obtained by the centroids with DESeq2 can be exploited
also to enhance the ranking of the method proposed in
this paper. In fact, if we filter the results by fold changes
(of centroids) > 0.8, we cleanse the list and we obtain the
first false positive in the 20th position.

Discussion
The tests performed on the selected NGS experiments re-
vealed a high percentage of multireads – 36 % of reads were
multireads – that influenced over 83 % of expressed genes.
The different approaches used to estimate the read counts
have influenced the DE analysis, and all the obtained lists
of differentially expressed genes showed some significant
differences in the results. In this situation, it is very difficult
to perform the choice of a subset of DE events to be con-
firmed with laboratory assays, such as qPCR. Moreover,
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Fig. 9 Same-expression possibility in the results of the Second Trial. In
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since it is impossible to establish which is the right mapping
for a multiread, it is also difficult to evaluate the better
choice for the estimation of read counts.
Our method is not designed to propose a further esti-

mation of read counts, but it provides a solution for man-
aging the uncertainty in read counts and in DE analysis
results due to the presence of multireads. Furthermore,
the quantification of under/same/over-expression possibil-
ity can be useful in the selection of the more reliable DE
events, in order to improve the following laboratory work.
The three possibility values can be used just to evaluate
the uncertainty of the results of a DE analysis tool, or they
can be used in place of it. In fact, a gene with a relevant
change in expression will show a high possibility of over
or under-expression, and when this result is accompanied
by a null possibility of same-expression, we are sure that
the multireads are not influencing the result.
The possibility values can be used to properly sort the

genes, and we do not propose to apply some thresholds
on them, but for an easier interpretation of the results,
one could consider an appropriate cut for the
discretization of the possibility values and the selection of
significant DE events. For instance, by applying a cut of
possibility = 0.75 in the results of the first trial of Multiple
Sclerosis dataset, we could select 37 DE genes, with the
worst same-expression possibility < 0.34. In the analysis of
biological replicates of the same datasest, the same-
expression possibility is quite high for all the genes. As
highlighted by Fig. 9, the lowest same-expression possibil-
ity is 0.53. This result can be due to the large amount of
multireads found in the experiment, but it might be also
caused by the rule that we have chosen to merge the fuzzy
read counts of the same gene coming from biological rep-
licates – described in the Methods section – that will be
matter of subsequent studies.

Conclusions
In this paper we have presented a method for dealing with
the problem of multireads without statistical assumptions

and probability estimations. The method exploits fuzzy
sets to describe the presence of uncertainty in read counts
estimation and in DE analysis results, whenever the evalu-
ation of the expression of a gene is influenced by
multireads.
We have described the trapezoidal fuzzy read counts and

fuzzy fold change, and we have modeled the DE events with
three fuzzy concepts: over-expression, same-expression and
under-expression. The result of the computation is a list of
DE events that can be sorted by the possibility of having a
change in expression. The DE events are enriched with an
evaluation of the possibility of same-expression, that de-
scribes the uncertainty of the result due to the presence of
multireads mapping to each gene.
In fact, the main aim of this work was to highlight the

most reliable DE events and to warn about the more un-
certain others, in order to exclude possible false positives
from the laboratory assays that follow the bioinformatics
analyses.
We have tested the method on some public datasets,

and the results revealed that 36 % of the mapped reads
were multireads and over 83 % of expressed genes were
influenced in their read count by the mapping uncer-
tainty. We have not proved how many DE events that
showed high uncertainty are really false positives, be-
cause it is very difficult to obtain public dataset in which
all DE events have been validated via qPCR, especially
because false positive results are not published, usually.
Some studies have compared RNA-Seq data with micro-
array data, but none of the two technologies have been
showed to be more reliable than the other on all the
genes [26, 27].
In order to give an example of how the multireads in-

fluence the discovery of true positive DE events, we have
tested the method on a simulated dataset with 10 over-
expressed and 10 under-expressed genes. The results
showed an overall disagreement in the selection of DE
genes, but the proposed method is able to properly rank
the most reliable results.

Table 5 Comparisons of the results obtained in Second Trial

Results filtered by adjusted
p-value < 0.05 and abs(log2(FC)) > 0.5

TopHat (unique)
& cuffdiff

TohHat (rescue)
& cuffdiff

Unique
& DESeq2

RSEM
& DESeq2

Centroid
& DESeq2

Unique
& edgeR

RSEM
& edgeR

Centroid
& edgeR

TopHat(unique) & cuffdiff 56 36 2 2 2

TopHat(rescue) & cuffdiff 36 36 1 1 1

Unique & DESeq2 2 1 9 7 5

RSEM & DESeq2 2 1 7 19 6 3

Centroid & DESeq2 2 1 5 6 12 1 1

Unique & edgeR 1 1 1

RSEM & edgeR 3 4

Centroid & edgeR 1 1 1

Even in this case, the comparison of DE analyses show a significant disagreement on the selection of DE genes. The values on the diagonal (in bold) are the
results obtained from each method
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The problem of multireads is frequent in high
throughput data analysis and even with longer reads it
does not decrease as expected, because there is a high
overlapping across genetic portions. We have noticed
that in a gene reference database, 50 % of the genes have
at most one read that covers a portion of 45 % of their
length. The same problem is present in other studies in-
volving read mapping against a reference database. In
this paper we have applied our method to gene expres-
sion evaluation, but the same concepts can be applied to
other studies, such as isoform expression evaluation,
ncRNA identification and genomic or metagenomic
classification of DNA-Seq reads.
As a future development, we plan to improve the mer-

ging of biological replicates step and we will compare
our method to other emerging tools. For example, sev-
eral alignment-free transcript quantification pipelines
(e.g., kallisto [28], Salmon [29]) have recently been pro-
posed. These incorporate multi-mapping reads and pro-
vide uncertainty estimates for gene counts using
bootstrap sampling. Moreover, the same-expression pos-
sibility could be directly compared to the output of the
DE analysis tool sleuth [30], which evaluates the DE
events by considering also the confidence values com-
puted by kallisto.

Additional file

Additional file 1: Supplementary information about the proposed
method and the experimentations performed are provided in “Additional
file 1.pdf”. The file is a PDF document and it contains the parameters
used for the analyses, the description of the hyperbolic fuzzy boundaries,
some additional results on Multiple Sclerosis dataset and simulated
dataset. (PDF 642 kb)
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Table 7 Rankings of the genes for the simulated data

Ranking Same-expression Possibility Cuffdiff + TopHat
(p-value)

DESeq2 + Centroids
(p-value)

DESeq2 + RSEM
(p-value)

edgeR + Centroids
(p-value)

edgeR + RSEM
(p-value)

1 IGF1R false positive HLA-DRA PDE4DIP IGF1R PDE4DIP

2 POSTN CD177 MUC5AC WAC PDE4DIP POSTN

3 FADS2 CLCA1 FADS2 IGF1R WAC FADS2

4 MUC5AC EEF1A1 HLA-DQB1 U2AF1 FADS2 IGF1R

5 WAC false positive WAC HLA-DQB1 POSTN IFI6

6 CLCA1 FADS2 IGF1R FADS2 HLA-DQB1 WAC

7 IFI6 HLA-DQB1 POSTN MUC5AC U2AF1 U2AF1

8 S100A8 HLA-DRA PDE4DIP POSTN CLCA1 MUC5AC

9 SCGB1A1 IFI6 S100A8 HLA-DRA false positive S100A8

10 CD177 IGF1R CD177 EEF1A1 S100A8 NSUN5P1

11 PDE4DIP false positive EEF1A1 NSUN5P1 MUC5AC false positive

12 HLA-DQB1 LYZ CLCA1 false positive HLA-DRA false positive

13 LYZ MUC5AC IFI6 CD177 IFI6 HLA-DQB1

14 UBBP4 PDE4DIP UBBP4 CLCA1 CD177 CD177

15 MTRNR2L12 POSTN NSUN5P1 LYZ EEF1A1 HLA-DRA

16 false positive S100A8 LYZ false positive UBBP4 SCGB1A1

17 false positive U2AF1 MTRNR2L12 false positive SCGB1A1 CLCA1

18 HLA-DRA WAC SCGB1A1 IFI6 LYZ false positive

19 false positive false positive U2AF1 BPG254F23.5 NSUN5P1 LYZ

20 false positive false positive false positive UBBP4 MTRNR2L12 EEF1A1

In order to highlight the true positives, the other genes are hidden by a “false positive” label
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