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Abstract

Background: An important challenge in cancer biology is to understand the complex aspects of the disease. It is
increasingly evident that genes are not isolated from each other and the comprehension of how different genes
are related to each other could explain biological mechanisms causing diseases. Biological pathways are important
tools to reveal gene interaction and reduce the large number of genes to be studied by partitioning it into smaller
paths. Furthermore, recent scientific evidence has proven that a combination of pathways, instead than a single
element of the pathway or a single pathway, could be responsible for pathological changes in a cell.

Results: In this paper we develop a new method that can reveal miRNAs able to regulate, in a coordinated way,
networks of gene pathways. We applied the method to subtypes of breast cancer. The basic idea is the identification
of pathways significantly enriched with differentially expressed genes among the different breast cancer subtypes and
normal tissue. Looking at the pairs of pathways that were found to be functionally related, we created a network of
dependent pathways and we focused on identifying miRNAs that could act as miRNA drivers in a coordinated
regulation process.

Conclusions: Our approach enables miRNAs identification that could have an important role in the development
of breast cancer.

Keywords: miRNAs, Pathway cross-talk, Breast cancer, Network of pathways

Abbreviations: AUC, Area under the curve; BC, Breast cancer; HER2, Human epidermal growth factor receptor 2;
IPA, Ingenuity pathway analysis; MI, Mutual Information; miR-r, miRNAs regulating; NGS, Next generation
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Background
The identification of breast cancer (BC) gene signatures
based on morphology (stage and grade) and two key
markers, estrogen receptor (ER) and human epidermal
growth factor receptor 2 (HER2), are a challenge for
current clinical practice [1–5].
However, the landscape of alterations in BC is more

complex and heterogeneous. With the introduction of
gene expression microarrays and next generation

sequencing (NGS), additional studies on the molecular
classification of BC were carried out. These have led to
the identification of four molecular subtypes associated
with distinct characteristics, distinct genetic mechanisms
of disease and differences in patient survival [6, 7]:
Luminal A, Luminal B, Triple Negative/Basal like and
HER2 subtypes [6].
By expression profiling, the large majority of ER+ and/

or progesterone receptor PgR+ tumours are “luminal
subtypes” [8, 9]: Luminal A and Luminal B; they have a
relatively good prognosis with the former being typically
low grade [10, 11]. Luminal A is the most common sub-
type and represents 50 %–60 % of all BC and typically
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highly expresses regulated gene SLC39A6 (solute carrier
family 39 (zinc transporter), member 6), transcription
factors GATA3, FOXA1 and XBP1, and luminal cytoker-
atins KRT8 and KRT18 [12, 13]. Luminal B comprises
15 %–20 % of BC and has a more aggressive phenotype
and lower survival rates after relapse [14–17]. It shows
an increased expression of proliferation-related genes such
as avian myeloblastosis viral oncogene homolog (v-MYB),
gamma glutamyl hydrolase (GGH), lysosome-associated
transmembrane protein 4-beta (LAPTMB4), nuclease sen-
sitive element binding protein 1 (NSEP1) and cyclin E1
(CCNE1) [18].
For a successful discrimination of luminal-B tumours

from luminal-A in clinical practice, Cheang et al. [8] sug-
gested an immunohistochemistry proliferation marker,
the Ki67 hormone receptor. The authors determined the
Ki67 cut off point (14 %) that discriminates luminal-A
from luminal-B tumours. However, Ki67 immunohisto-
chemistry shows some limitations, such as low intra- and
inter-laboratory reproducibility, the arbitrary selection of
standard antibodies for testing, in addition to potential
problems resulting from tumour heterogeneity [9].
Concerning the response to therapy of BC subtypes,

Luminal B responds better to neoadjuvant chemotherapy,
but is less responsive to hormonal therapy than Luminal
A [9]. Potential targets in Luminal B are insulin-like
growth factor 1 (IGF-1) signalling, fibroblast growth factor
(FGF) signalling, Phosphoinositide 3-kinase signalling
(PI3K) [19].
The interplay between ER and insulin-like growth

factor 1 receptor (IGF-1R) shows a critical role in
tamoxifen resistance. High circulating plasma levels of
IGF-1, a ligand for IGF-1R, are detected in women with
an increased risk of relapse on adjuvant tamoxifen [20].
Several studies indicate that the FGF factor, involved

in angiogenesis [21, 22], and its receptor FGFR1 are
amplified in cells resistant to endocrine therapy [23, 24].
Knockdown of FGFR1 and/or the use of a small molecule
FGFR tyrosine kinase inhibitor could reverse resistance to
endocrine therapy [23, 24].
Several methods to interrupt IGF-1 signalling, FGF

signalling, and PI3K have been proposed [19, 25, 26].
Creighton et al. [27] suggested that the combined effect
of endocrine therapy luminal-B BC cell lines and PI3K
inhibitor could increase growth inhibition induced by
the only endocrine therapy. Atzori et al. [26] developed
antibodies against IGF-1R that block IGF-1 ligand-
mediated activation and small-molecule inhibitors of the
IGF-1R tyrosine kinase domain.
Some antibodies and small-molecule inhibitors against

FGFR are currently in clinical testing, such as TKI-259
single agent, and Exemestane [27]. Agents targeting the
PI3K pathway comprise rapamycin analogues or mTOR
inhibitors [27].

The basal-like subtype, one of the most clinically ag-
gressive groups among the different subtypes, represents
8 %–37 % of all BC, and is the one with highest rate of
metastasis to the brain and lung [28]. It is more commonly
negative for all 3 markers—ER, PgR, and HER2—the
“triple-negative” phenotypic classification [16].
There are several other biomarkers associated with the

basal subtype as well as putative candidates suitable for
immunohistochemical screening [29–31].
An association between the basal subtype and germ-

line mutations in the BRCA1 gene, often termed the
“caretaker of the genome”, has been well described, and
it may be speculated that both inherent DNA damage–
sensing processes and DNA repair mechanisms are central
in the development of basal-like tumours [29–31]. How-
ever, currently, there is no specific international agreement
on complementary biomarkers that can define basal-like
cancers [32].
Given the lack of validated molecular targets in basal

BC, conventional chemotherapy has been the only thera-
peutic option for women with this kind of tumour [33].
Based on BRCA1 mutations, some studies explored the
use of platinum chemotherapy agents (carboplatin, cis-
platin, and others) [33]. Antiangiogenic therapies targeting
VEGF and its receptors have emerged as promising ther-
apies given the evidence of aberrant VEGF pathway ac-
tivation in basal BC [34]. Moreover, small-molecule and
antibody-based EGFR inhibitors are also explored as
targeted therapies [35].
HER2-positive (HER2+) cancer represents 15–20 % of

BC subtypes. HER2+ confers more aggressive biological
and clinical behaviour [36]. These tumours present a
high expression of the HER2 gene and of other genes
associated with the HER2 pathway [37].
Currently, the treatment in advanced HER2+ BC is the

combination of trastuzumab, pertuzumab, and the chemo-
therapy agent taxane [37]. High expression of HER2
promotes tamoxifen resistance and the addition of tras-
tuzumab could improve the tamoxifen response [38].
This BC variety has consequences in the diverse clinical

behaviour and provides critical insight for the develop-
ment of personalized therapies.
However, gene expression microarrays and NGS data

have many more genes than number of samples, and
methods to reduce the dimension of genes in functional
units, such as gene sets, pathways, and network modules,
have been recently explored [39, 40]. These aggregation
methods are based on the statement that the set of genes
involved in the same biological processes are often collab-
orative in the development and progression of BC, and
show an easier interpretation of the underlying biology
[41, 42].
Methodologies to identify the set of genes enriched

from a genetic signature whose combined expression
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pattern is that uniquely characteristic of a given pheno-
type are promising approaches.
Alterations of the interplay among pathways leading to

uncontrolled cellular proliferation, survival, invasion,
and metastases are hallmarks of the BC process.
The mitogen activated protein kinase (MAPK), phos-

phatidylinositol 3-kinase (PI3K), Akt and nuclear factor
kappa B (NF-kB) are commonly de-regulated in different
BC subtypes [36]. Raf/mitogen-activated and extracellu-
lar signal-regulated kinase (MEK)/extracellular signal-
regulated kinase (ERK) are critical for normal human
physiology, and also commonly dysregulated in several
human cancers, including BC [43].
Saini et al. [43] suggested, both in vitro and in vivo,

that PI3K/AKT/mTOR and Raf/MEK/ERK cascades are
interconnected and the inhibition of one pathway can
still result in a deregulation of the other. Notch signalling
pathway is associated with many oncogenic signalling
pathways, such as developmental signals, i.e., Wnt and
Hedgehog signalling, growth and transcriptional factors,
cytokines, and oncogenic kinases [44]. A review [45] ex-
amined the molecular basis of the collaboration and inte-
gration of the ER, and MAPK.
Currently, two main approaches have been proposed

to identify functional units deregulated in a disease. One
approach is to identify de novo functional units from the
data. Following this approach, van Vliet proposed an un-
supervised method to identify gene patterns using a
score applied to a Bayes classifier [46]. Ma et al. [47]
used weighted co expression networks and their module
to describe the collaboration among genes.
The other main approaches used existing functional

units to build prognostic or diagnostic analysis. Abraham
et al. proposed features derived from pre-specified gene
sets from the Molecular Signatures Database (MSigDB),
and, by using a statistical test aggregating the expression
levels of all genes within a set, they derived prognostic
gene sets [48]. Huang et al. [40] proposed a new pathway-
based de-regulation scoring matrix transforming the gene
features in combination with Cox regression and L1-
LASSO regularization to model survivals. A genomic
model consisting of fifteen cancer relevant pathways
was revealed and validated on three independent BCs.
Deregulation of signalling events in a given cancer

sample is of great clinical interest in order to identify
candidate drugs developed to specifically modulate up-
stream signalling events [49]. Recent progress in cancer
biology has revealed that miRNAs are potential thera-
peutic targets suggesting the introduction of the miRNA
mimic oligonucleotides in Phase I cancer clinical trials.
Oncogenic or tumour suppressive miRNAs have been

implicated in the regulation of central cellular pathways,
such as differentiation and apoptosis, across several
tumour types [50], but the discovery of how a miRNA

regulates its targets in tumour samples is still challen-
ging. Recent studies revealed, for instance, that Hsa-
miR-21 is up regulated in BC [51], while Hsa-miR-335
and Hsa-miR-200c have been shown to inhibit metastatic
cell invasion [52].
Emerging evidence demonstrates that miRNAs play an

essential role in controlling stem cell properties by regu-
lating, for instance, epithelial to mesenchymal transition
(EMT) [53]. EMT has a fundamental role in cancer cells
with the loss of intracellular junctions and epithelial polar-
ity. Several miRNAs, such as Hsa-let-7, Hsa-miR-10, Hsa-
miR-34, Hsa-miR-200, and Hsa-miR-205 are described as
regulator of this process [53].
Other miRNAs have been reported to have an active

role in tumour proliferation control. Hsa-miR-92a can
promote tumour proliferation by controlling the PI3K/
Akt/mTOR pathway [54]. Several other miRNAs were
found to be up-regulated in BC; these include the Hsa-
miR-221/222 cluster [55], Hsa-miR-9, Hsa-miR10b,
Hsa-miR-29a, Hsa-miR-96, Hsa-miR-146a, Hsa-miR-
181, Hsa-miR-373, Hsa-miR-375, Hsa-miR-520c, and
Hsa-miR589 [56], suggesting their potential use for BC
diagnosis, prognosis, and therapeutic studies [55, 56].
All these findings demonstrate the ability of miRNAs

to regulate the development of malignancies modulating
critical cancer-related genes and signalling pathways.
While many studies demonstrated the role of miRNA-

target interactions in a single pathway, there are little
evidence on the interaction of specific miRNAs with
genes of different pathways.
Hsa-miR-125, whose expression correlates with the

HER2 status [57], has been shown to be significantly
down regulated in BC [58]. Experimentally, the overex-
pression of Hsa-miR-125 decreases the expression level
of ERBB2 and ERBB3, reducing cell motility and inva-
siveness of numerous cancers, including BC [59]. The
Let-7 regulatory network suppresses metastasis acting
on the chromatin-remodelling protein HMGA2 and the
transcription factor BACH1 [60]. Both targets promote
the transcription of pro-invasive genes that regulate cell
invasion and metastasis to the bone [60].
Another important miRNA in BC is Hsa-miR-206. It

has been found to be down-regulated in ERα-positive
BC, both in patient samples and BC cell lines [61], and
in lymph node metastatic BC [62]. A critical role of Hsa-
miR-206 has been recently demonstrated in the regula-
tion of the 3′ UTR of cyclin D1, inducing G1 arrest and
a decrease in cell proliferation in BC cells [63], thus sug-
gesting a potential role as a tumour suppressor. It has
been also shown that Hsa-miR-206 regulates ERα via
interaction with its 3′ UTR [64], demonstrating a spe-
cific function in most aggressive types of BC.
In this work we developed a method to detect miRNAs

regulating pathway interactions, based on the integration
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of gene expression profiles and biological pathways and
miRNAs. We validated the approach in BC subtypes,
obtaining, for each BC subtype, a network of pathways
enriched from differentially expressed genes. We focused
on the pairs of pathways able to differentiate a particular
BC subtype with respect to the normal type. miRNAs sig-
nificantly enriched from their gene targets in at least two
pathways were found to be key regulators of interacting
pathways.

Methods
Breast cancer subtypes
In our study we focused on four different BC subtypes:
luminal A, luminal B, basal, and HER2 which we com-
pared with normal samples (NS). We considered the ex-
pression level of mRNAs and miRNAs extracted from a
TCGA BC data set. We performed a quantile analysis on
TCGA miRNAs and mRNA, in order to exclude genes
and miRNAs with a small variance, thus obtaining 1046
miRNAs and of 15243 genes. We then used BC matched
samples miRNA-mRNA for all the subsequent analyses.

Luminal A vs. NS
We used 233 BC luminal A samples and 113 NS for
mRNA analysis, and 233 BC luminal A samples and 87
NS for miRNA analysis.

Luminal B vs. NS
We used 103 BC luminal B samples and 113 NS for
mRNA analysis, and 103 BC luminal A samples and 87
NS for miRNA analysis.

Basal vs. NS
We used 74 BC Basal samples and 113 NS for mRNA
analysis, and 74 BC Basal samples and 87 NS samples
for miRNA analysis.

HER2 vs. NS
We used from 43 BC HER2 samples and 113 NS for
mRNA analysis, and 43 BC HER2 samples and 87 NS
for miRNA analysis.

Grouping and bootstrapping analysis
We performed an analysis based on several boots, with
each boot consisting of four steps and working on different
(randomly selected) training and testing data sets.
In order to perform bootstrapping, we implemented a

classifier based on Monte Carlo cross validation, that
randomly splits a part of the original data in the training
data set (60 % in our case) and the rest of original data
in the testing set (40 % in our case). The first, second
and third step are performed on the training data set,
the fourth step both on the training and testing data set.

In order to avoid problems of unbalanced classes of
BC and NS, we randomly selected classes with the same
number of BC and NS in both the training and testing
dataset.

Differentially expressed genes: 1st step
Differentially expressed genes between each subtype
class of BC samples and class of NS were identified by
statistical analysis using the function TCGAanalyze DEA
from the package TCGAbiolinks from Bioconductor.
The following parameters were used: quantile-adjusted
conditional maximum likelihood, abs(log fold change) > 1,
and FDR < 0.01 [65]. The obtained p-values were adjusted
by using the Benjamin-Hochberg procedure for multiple
testing correction [66].

Pathways enriched from differentially expressed genes:
2nd step
Given 589 pathways derived from the Ingenuity Pathway
Analysis (IPA) database, a pathway enrichment analysis
was applied. The enrichment was evaluated using the
Fisher’s Exact Test between differentially expressed
genes and IPA pathways. We considered a pathway to be
enriched if p-value was <0.01.

Interacting pathways: 3rd step
Interactions among the enriched pathways were quanti-
fied by an interaction score (IS), defined as:

IS ¼ Mx−My
� ��� ��= Sx þ Sy

� �

where MX, SX, MY and SY represent the mean and the
standard deviation of expression levels of genes in path-
ways X and Y, respectively. Maximum cross-talk was
found for IS near 0.
For every comparison (BC subtype vs NS), we ob-

tained a matrix of IS, with each raw corresponding to
each BC sample and each column corresponding to IS
related to each pair of significantly enriched pathways.

Identification of the best pathways for breast cancer
subtype classification: 4th step
For every comparison (BC subtype vs NS), for the training
data set, we used the matrix of IS to classify the class of
BC samples and NS. We used Random Forest algorithm
(RF) from the R-package [67], setting the following pa-
rameters: number of variables randomly sampled at
each split = sqrt(p), p being the number of variables in
the matrix of data; and the number of trees grown = 500.
In order to validate the classifier, we used a k-fold
cross-validation (k = 10 except in case of HER2 vs. nor-
mal samples, given the reduced number of samples we
used k = 5) obtaining Area Under the Curve (AUC).
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We thus selected the 10 pairwise pathways with the
best AUC in the classification of the different BC sub-
types vs NS.
We finally validated the classification using the top 10

pairwise pathways and the same k-fold cross-validation
on the testing data set in terms of AUC.
The four steps described above were repeated multiple

times (50 bootstraps).
Specifically, each bootstrap generated from a training

dataset i) 1 step: a list of differentially expressed genes,
ii) 2 step: a list of pathways significantly enriched by dif-
ferently expressed genes, iii) 3 step: a subtype-specific
matrix of IS for each pair of pathways significantly
enriched, and iii) 4 step: the top 10 pairwise pathways
with the best AUC performance.
In conclusion, for each subtype and for all 50 boot-

straps, we obtained the 10x50 (=500) pairwise pathways
with the best AUCs., from which we selected, by ranking
their frequency, the top 10 pairwise pathways.

miRNAs regulating the top 10 pairwise pathways
Mutual Information (MI) was applied between the
dataset of 1046 miRNAs and 15243 genes, providing a
linking index between miRNAs and genes. MI was cal-
culated using entropy estimates from K-nearest neigh-
bour distances [68] with the R-package parmigene [69].
In this step we obtained a list of candidate target genes
for each miRNA.

In order to link miRNAs with the top 10 pairs of path-
ways, we applied a Fisher’s Exact Test between candidate
target genes (as obtained from MI) and genes within
each pairwise pathway (when p-value <0.01 in both
pathways). We thus identified a group of miRNAs regu-
lating the top 10 pairwise pathways (miR-r). Then, we
focused only on those miR-r differentially expressed
between each BC subtype and NS (quantile-adjusted
conditional maximum likelihood, p-values adjusted
using the Benjamin-Hochberg procedure for multiple
testing correction [66]). Figure 1 shows the proposed
procedure.

Results
Luminal A vs. NS
After 50 bootstraps, among the 50x10 = 500 pairwise
pathways, we found 157 pairwise pathways enriched
with 4703 differentially expressed genes. Indeed, many
pathways were found in common among the 10 top
pairs in many bootstraps.
The final top 10 pairwise pathways, selected according

to their frequency in the top 10 in all bootstraps from
the 157 pairwise pathways, are shown in Table 1.
Figure 2 shows a boxplot with the AUC values for the

final 10 pairwise pathways in both the training and testing
phase. Both AUC values are good (median >90 %),
although the performance of training is better.

Fig. 1 Proposed approach
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Figure 3 shows, for each bootstrap, the AUC of the
top 10 pairs of pathways. We can see that some pairwise
pathways (e.g. Ethanol Degradation IV; Glioma Invasive-
ness Signalling, Intrinsic Prothrombin Activation Path-
way; Extrinsic Prothrombin Activation Pathway) have
excellent AUC in most bootstraps.
Figure 4 shows the inter-pathway coordination among

the final top 10 pairwise pathways in luminal A. Among
pathways, the role of Glioma Invasiveness Signalling,
hub of a network linking Tryptophan Degradation X
(Mammalian, via Tryptamine), Ethanol Degradation IV,
Dopamine Deregulation, Oxidative Ethanol Degradation
III, and Fatty Acid-oxidation appears dominant.
We found six pairwise pathways with 11 significant

miRNA regulators: 1) Acute Phase Response Signalling;
HIF1 Signalling, 2) Axonal Guidance Signalling; Acute
Phase Response Signalling 3) Ethanol Degradation IV;
Glioma Invasiveness Signalling, 4) Ethanol Degradation
IV; Estrogen Receptor Signalling 5) Glioma Invasiveness
Signalling; Oxidative Ethanol Degradation III, and 6)
Extrinsic Prothrombin Activation; Intrinsic Prothrombin
Activation. Four pairwise pathways were not significantly
deregulated by any miRNA.
Table 2 lists, for each of the six above mentioned

pairwise pathways, their miRNA-r regulators with, their
expression levels in BC luminal A and in NS, and the
statistical significance of the comparison (in terms of
log Fold Change).
The results of the MI analysis for the identification of

candidate genes target of miRNAs are shown in the
Additional file 1.

Table 1 Luminal A: frequency of pairwise pathways in the top
10 positions for all 50 bootstraps

Pairwise pathway Frequency

1) Ethanol Degradation IV;Glioma Invasiveness Signalling 31/50

2) Intrinsic Prothrombin Activation Pathway; Extrinsic
Prothrombin Activation Pathway

28/50

3) Ethanol Degradation IV;Estrogen Receptor Signalling 25/50

4) Axonal Guidance Signalling; Acute Phase
Response Signalling

17/50

5) Ethanol Degradation IV;Regulation of Cellular Mechanics
by Calpain Protease

16/50

6) Glioma Invasiveness Signalling; Dopamine Degradation 15/50

7) Glioma Invasiveness Signalling; Fatty Acid oxidation 12/50

8) Glioma Invasiveness Signalling; Tryptophan
Degradation X (Mammalian, via Tryptamine)

12/50

9) Acute Phase Response Signalling; HIF1 Signalling 11/50

10) Glioma Invasiveness Signalling; Oxidative Ethanol
Degradation III

10/50

11) Axonal Guidance Signalling; Gs Signalling 9/50

12) HIF1 Signalling; Fatty Acid-oxidation 9/50

13) Oxidative Ethanol Degradation III; Estrogen Receptor
Signalling

9/50

14) Retinoate Biosynthesis I; Estrogen Receptor Signalling 8/50

15) Tryptophan Degradation X (Mammalian, via Tryptamine);
Glioma Invasiveness Signalling

8/50

….

50) …. 1/50

Dots indicate the other pairs of pathways with minor frequency

Fig. 2 Boxplot of AUC values for the top 10 enriched pairwise pathways in luminal A, after all 50 bootstraps
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Luminal B vs. Normal
After 50 bootstraps, we found 129 pairwise pathways
enriched with 5590 differentially expressed genes. Simi-
larly to Luminal A. Many pathways were found in com-
mon among the top 10 pairs in many bootstraps.
The final top 10 pairwise pathways selected according

to their frequency in the top 10 in all bootstraps from
the 129 pairwise pathways, are shown in Table 3.

Figure 5 shows a boxplot with the AUC values for the
final 10 pairwise pathways in both the training and test-
ing phase, confirming the good AUC (median >95 %)
both for training and testing.
Figure 6 shows, for each bootstrap, the AUC of the

top 10 pairs of pathways. We can see that some pairwise
pathways (e.g. Wnt/ -catenin Signalling; Mitotic Roles of
Polo-Like Kinase and Epithelial Adherens Junction

Fig. 3 AUC values representation with the top 10 pairwise pathways for all 50 bootstraps in luminal A. Yellow square indicates AUC values when
the pairwise pathway was included in the top 10 for the corresponding bootstrap. Red square indicates that the pairwise pathways was not
present in top 10 for that bootstrap

Fig. 4 Interaction of the top 10 pairwise pathways in luminal and their miRNA-r in BC luminal A
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Signalling; Mitotic Roles of Polo-Like Kinase) have ex-
cellent AUC in most bootstraps.
Figure 7 shows the inter-pathway coordination among

the top 10 pairwise pathways in luminal B. We found
only 3 miRNAs significantly deregulating 1 pairwise path-
way (Epithelial Adherens Junction Signalling; EIF2 Signal-
ling) which are also shown. Among pathways, the role of
Mitotic Roles of Polo-like Kinase, hub of a network linking
RhoA Signalling, Epithelial Adherens Junction Signalling,
Wnt/catenin Signalling, Factors Promoting Cardiogenesis
in Vertebrates, and Growth Hormone Signalling appears
dominant.
Table 4 lists, for the above mentioned pairwise path-

way, its miRNA regulators, their expression levels in BC
luminal B and in NS, and the statistical significance of
the comparison (in terms of log Fold Change).
The results of the MI analysis for the identification of

candidate genes target of miRNAs are shown in the
Additional file 2.

Basal vs. Normal
After 50 bootstraps, we found 74 pairwise pathways
enriched with 6011 differentially expressed genes, since
many pathways were found in common among the top
10 pairs in many bootstraps.
The final top 10 pairwise pathways, selected ac-

cording to their frequency in the top 10 in all boot-
straps from the 74 pairwise pathways, are shown in
Table 5.
Figure 8 shows a boxplot with the AUC values for the

final 10 pairwise pathways in both the training and

Table 2 For each top 6 pairwise pathway in luminal A: miRNA regulators of pathways, their expression levels in BC and in NS, and
the statistical significance of the comparison (in terms of log Fold Change)

Pairwise pathways miRNA-r miRNA-r Exp. in BC miRNA-r Exp. in NS Statistical significance (log Fold Change)

1. a) Acute Phase Response Signalling;
b) HIF1 Signalling

Hsa-miR-205 13006.16 25001.9 -1.01017

2. a) Axonal Guidance Signalling;
b) Acute Phase Response Signalling

Hsa-miR-452
Hsa-miR-335
Hsa-miR-205
Hsa-miR-99a
Hsa-miR-337
Hsa-miR-1250

101.1974
333.4506
13006.16
4268.871
208.6352
0.746781

720.023
1391.644
25001.9
10953.55
547.3908
0.103448

-3.08782
-2.27528
-1.01017
-1.71181
-1.57547
1.636118

3. a) Ethanol Degradation IV;
b) Glioma Invasiveness Signalling

Hsa-miR-3199-1 1.793991 5.45977 -1.79743

4. a) Ethanol Degradation IV;
b) Estrogen Receptor Signalling

Hsa-miR-1-1 0.021459 1.62069 -3.82055

5. a) Glioma Invasiveness Signalling;
b) Oxidative Ethanol Degradation III

Hsa-miR-3199-1 1.793991 5.45977 -1.79743

6. a) Extrinsic Prothrombin Activation;
b) Intrinsic Prothrombin Activation

Hsa-miR-1537
Hsa-miR-210
Hsa-miR-99a
Hsa-miR-381

0.957082
1592.884
4268.871
138.0215

0.333333
317.8046
10953.55
259.954

1.091521
2.397213
-1.71181
-1.25098

Table 3 Luminal B: frequency of pairwise pathways in the top
10 for all 50 bootstraps

Pairwise pathway Frequency

1) Wnt/catenin Signalling;Mitotic Roles of Polo-Like Kinase 46/50

2) Epithelial Adherens Junction Signalling; Mitotic Roles
of Polo-Like Kinase

39/50

3) Mitotic Roles of Polo-Like Kinase; Growth Hormone
Signalling

26/50

4) Wnt/catenin Signalling;Cell Cycle Control of
Chromosomal Replication

20/50

5) LPS/IL1 Mediated Inhibition of RXR Function;
Assembly of RNA Polymerase II Complex

11/50

6) Calcium Signalling;Cell Cycle Control of Chromosomal
Replication

11/50

7) Mitotic Roles of Polo-Like Kinase;RhoA Signalling 11/50

8) Epithelial Adherens Junction Signalling;
Cell Cycle Control of Chromosomal Replication

10/50

9) Mitotic Roles of Polo Like Kinase; Factor Promoting
Cardiogenesis in Vertebrates

9/50

10) Epithelial Adherens Junction Signalling; EIF2 Signalling 9/50

11) Acute Phase Response Signalling; HIF1 Signalling 9/50

12) Cellular Effects of Sildenafil (Viagra); Cell Cycle Control
of Chromosomal Replication

9/50

13) ILK Signalling;Mitotic Roles of Polo-Like Kinase 9/50

14) Glioblastoma Multiforme Signalling; Mitotic Roles of
Polo-Like Kinase

8/50

15) LPS/IL-1 Mediated Inhibition of RXR Function;
linolenate Biosynthesis II (Animals)

7/50

….

50)… 1/50

Dots indicate the other pairs of pathways with minor frequency
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testing phase, confirming the good AUC (median >95 %)
both for training and testing.
Figure 9 shows, for each bootstrap, the AUC of the

top 10 pairs of pathways, confirming also for basal, that
some pairwise pathways (e.g. Ethanol Degradation IV;

Role of BRCA1 in DNA Damage Response, and Putres-
cine Degradation III; Mismatch Repair in Eukaryotes) have
excellent AUC in most bootstraps.
Figure 10 shows the inter-pathway coordination among

the top 10 pairwise pathways in BC basal. We found only

Fig. 5 Boxplot of AUC values for the top 10 enriched pairwise pathways in luminal B, after all 50 bootstraps

Fig. 6 AUC values representation with the top 10 pairwise pathways for all 50 bootstraps in luminal B. Yellow square indicates AUC values when
the pairwise pathway was included in the top 10 for the corresponding. Red square indicates that the pairwise pathway was not present in top
10 for that bootstrap
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2 miRNAs significantly deregulating 3 pairwise pathways:
1) Ethanol Degradation IV; Mismatch Repair in Eukary-
otes, 2) Putrescine Degradation III; Role of BRCA1 in
DNA Damage Response, 3) Tryptophan Degradation X
(Mammalian, via Tryptamine); Role of BRCA1 in DNA
Damage Response, which are also shown. Among path-
ways, the role of BRCA1 in DNA Damage Response, hub
of a network linking Putrescine Degradation III, Ethanol
Degradation IV, Ethanol Degradation II, Histamine Deg-
radation, Oxidative Ethanol Degradation III, and Trypto-
phan Degradation X appears dominant.
Table 6 lists, for the 3 above mentioned pairwise path-

ways, miRNA regulators of pathways, their expression
levels in BC basal and in NS, and the statistical signifi-
cance of the comparison (in terms of log Fold Change).
The results of the MI analysis for the identification of

candidate genes target of miRNAs are shown in the
Additional file 3.

HER2 vs. Normal
After 50 bootstraps, we found 222 pairwise pathways
enriched with 4464 differentially expressed genes.
The final top 10 pairwise pathways, selected according

to their frequency in the top 10 in all bootstraps from
the 222 pairwise pathways, are shown in Table 7.
Figure 11 shows a boxplot with the AUC values for

the final 10 pairwise pathways in both the training and

testing phase, confirming good AUC (median >90 %),
both for training and testing.
Figure 12 shows, for each boostrap, the AUC of the

top 10 pairs of pathways, confirming that some pairwise
pathways (e.g. Axonal Guidance Signalling;CXCR4 Signal-
ling, Atherosclerosis Signalling; Acute Phase Response
Signalling) have excellent AUC in most bootstraps.
Figure 13 shows the inter-pathway coordination among

the top 10 pairwise pathways in BC HER2. We found 14
miRNAs significantly deregulating 7 pairwise pathways
which are also shown 1) Acute Phase Response Signalling;
HIF1 Signalling, 2) Atherosclerosis Signalling; Acute
Phase Response Signalling, 3) Axonal Guidance Signal-
ling; CXCR4 Signalling, 4) Axonal Guidance Signalling;
P2Y Purigenic Receptor Signalling Pathway 5) HIF1 Signal-
ling; Glioblastoma Multiforme Signalling 6) HIF1 Signal-
ling; Growth Hormone Signalling, 7) Role of Macrophages,
Fibroblasts and Endothelial Cells in Rheumatoid Arthritis;
Growth Hormone Signalling. Among pathways, the role of
Growth Hormone Signalling, hub of a network linking
Axonal Guidance Signalling, HIF1 Signalling, Role of
Macrophages, Fibroblasts and Endothelial Cells in
Rheumatoid Arthritis appears dominant.
Table 8 lists, for each of the seven pairwise pathways,

miRNA regulators of pathways, their expression levels in
BC HER2 and in NS, and the statistical significance of
the comparison (in terms of log Fold Change).

Fig. 7 Interaction of the top 10 pairwise pathways in luminal B and their miRNA-r in luminal B BC

Table 4 For the top pairwise pathway in luminal B: miRNA regulators of the pathways, their expression levels in BC and in NS, and
the statistical significance of the comparison (in terms of log Fold Change)

Pairwise pathways miRNA-r miRNA-r Exp. in BC miRNA-r Exp. in NS Statistical significance (log Fold Change)

1. a) Epithelial Adherens Junction Signalling;
b) EIF2 Signalling

Hsa-miR-32
Hsa-miR-3074
Hsa-miR-577

114.3883
77.45631
4.640777

50.54023
33.32184
15.78161

1.579455
1.368266
-1.48828
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The results of the MI analysis for the identification of
candidate genes target of miRNAs are shown in the
Additional file 4.

Discussion
In a normal condition the biological pathways act in a
coordinated way to collaborate in a biological process.
Cancer can interfere in these coordinated processes,
since alterations in multiple genes that participate in dif-
ferent pathways result in an uncontrolled growth of
tumour cells, invasion and metastases.
In this work, by assessing the coordination among dif-

ferent pathways deregulated in BC subtypes, we observed
key pairwise pathways for each BC subtype, which enabled
the identification of a network of dependent pathways
characteristic of the disease. Furthermore, we identified
miRNAs that control this network with a potential role in
BC. These miRNAs could be crucial modulators of up-
stream signalling events linked by specific subtype of BC.

miRNAs regulating pathways in luminal A
In BC luminal A we identified 11 miRNAs (Hsa-miR-1-1,
Hsa-miR-1250, Hsa-miR-1537, Hsa-miR-205, Hsa-miR-
210, Hsa-miR-3199-1, Hsa-miR-335, Hsa-miR-337, Hsa-
miR-381, Hsa-miR-452, and Hsa-miR-99a) which could
be key modulators of six pairs of pathways: 1) Intrinsic
Prothrombin Activation, and Extrinsic Prothrombin
Activation; 2) Acute Phase Response Signalling, and
HIF1 Signalling 3) Axonal Guidance Signalling, and
Acute Phase Response Signalling; 4) Ethanol Degrad-
ation IV, and Glioma Invasiveness Signalling; 5) Ethanol
Degradation IV, and Estrogen Receptor Signalling; and
6) Glioma Invasiveness Signalling, and Oxidative Ethanol
Degradation III.

Intrinsic prothrombin activation and extrinsic prothrombin
activation, regulated by Hsa-miR-99a, Hsa-miR-210,
Hsa-miR-381, and Hsa-miR-1537
Intrinsic and extrinsic prothrombin activation pathways
perform an essential role in coagulation, an important
process for the establishment of metastasis also in ex-
perimental models of cancer [70].
Hsa-miR-99a has been already associated with BC; in

particular, its up regulation correlates with cells with
stemness properties [71]. Moreover, Hsa-miR-99a has
been identified in a screening of miRNA profiles able to
discriminate ductal carcinoma in situ, invasive BC, meta-
static BC and normal tissues. Hsa-miR-99a shows spe-
cific differential expression in the in situ subtype of BC
[72]. Among the other miRNAs regulating the two above
mentioned pathways, Hsa-miR-381 is one of the possible
circulating miRNAs able to discriminate between blood
samples of patients with BC and NC [73]. Hsa-miR-210
was demonstrated to be a potential predictor of the out-
come of different cancers, including BC [74]. Circulating
Hsa-miR-210 levels were associated with trastuzumab
sensitivity, tumour presence, and lymph node metasta-
ses, suggesting Hsa-miR-210 as a predictor and perhaps
a monitor of the response to therapies including trastu-
zumab [75].
Limited data about Hsa-miR-1537 is available for this

miRNA. Few publications, not related to BC, described
this miRNA as altered in the serum and bile of cholan-
gioma patients [76], where a speculation of a role for
Hsa-miR-1537 in inflammation is proposed.

Acute phase response signalling and HIF1 signalling,
regulated by Hsa-miR-205
The acute phase response is a rapid inflammatory
response that provides protection against infections,
including cancer [77]. Several studies found cross-talk
between HIF-1 signalling and inflammatory pathways
suggesting that the development of inflammation in
response to hypoxia is clinically relevant [78].

Table 5 Basal: frequency of pairwise pathways in the top 10 for
all 50 bootstraps

Pairwise pathway Frequency

1) Ethanol Degradation IV; Role of BRCA1 in DNA
Damage Response

41/50

2) Putrescine Degradation III; Mismatch Repair in Eukaryotes 40/50

3) Ethanol Degradation IV; Mismatch Repair in Eukaryotes 36/50

4) Role of BRCA1 in DNA Damage Response;
Oxidative Ethanol Degradation III

35/50

5) Ethanol Degradation II; Role of BRCA1 in DNA
Damage Response

31/50

6) Role of BRCA1 in DNA Damage Response;
Histamine Degradation

24/50

7) Tryptophan Degradation X (Mammalian, via Tryptamine);
Role of BRCA1 in DNA Damage Response

24/50

8) Putrescine Degradation III;Role of BRCA1 in DNA
Damage Response

23/50

9) Role of BRCA1 in DNA Damage Response; Putrescine
Degradation III

18/50

10) Cell Cycle Control of Chromosomal Replication;
Cellular Effects of Sildenafil (Viagra)

17/50

11) Cell Cycle Control of Chromosomal Replication;
Colorectal Cancer Metastasis Signalling

16/50

12) Oxidative Ethanol Degradation III; Role of BRCA1
in DNA Damage Response

14/50

13) Role of BRCA1 in DNA Damage Response;
Ethanol Degradation II

13/50

14) Cell Cycle Control of Chromosomal Replication;
eNOS Signalling

12/50

15) Mismatch Repair in Eukaryotes; Fatty Acid -oxidation I 12/50

....

50).... 1/50

Dots indicate the other pairs of pathways with minor frequency
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Hsa-miR-205 is an oncosuppressive miRNA lost in BC;
it is directly transactivated by the oncosuppressor p53 [79].
Sempere et al. [80] showed that Hsa-miR-205 expression is
restricted to the myoepithelial/basal cell compartment of
normal mammary ducts and lobules, and is reduced or

completely eliminated in matching tumour specimens.
Hsa-miR-205 regulates a number of important oncogenic
targets as ZEB1, VEGFA, and HER3. Moreover, it may
modulate additional targets, such as HMGB3, showing a
potential therapeutic benefit/role [81].

Fig. 8 Boxplot of AUC values for the top 10 enriched pairwise pathways in basal, after all 50 bootstraps

Fig. 9 AUC values representation with the top 10 pairwise pathways for all 50 bootstraps in basal. Yellow square indicates AUC values when the
pairwise pathway was included in the top 10 for the corresponding bootstrap. Red square indicates that the pairwise pathway was not present in
top 10 for that bootstrap
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Axonal guidance signalling and acute phase response
signalling, regulated by Hsa-miR-205, Hsa-miR-99a,
Hsa-miR-335, Hsa-miR-337, Hsa-miR-452, and Hsa-miR-1250
We found that two pathways, Axonal Guidance Signal-
ling and Acute Phase Response Signalling, are regulated
by a group of 6 miRNAs.
There are four families of secreted or membrane-

bound factors with repulsive or attractive activities for
growing axons and migrating neurons (i.e., netrin 1,
semaphorine, ephrins, and Slit, all with their receptors),
which have recently emerged as pivotal factors in
tumour progression. Far from being confined to the de-
veloping brain, axonal guidance signalling seems to play
an important role in tumour cell migration, tumour cell
survival and tumour angiogenesis [82].
Hsa-miR-205 has already been proposed as a circulat-

ing biomarker of the response of the BC luminal A sub-
type to neoadjuvant chemotherapy [83].
Hsa-miR-335 is down regulated in cancer stem cells

(CSC) targeting genes, such as Bmi1 and Suz12 compo-
nent, Zeb1/2, and Klf4, all belonging to a regulatory cir-
cuit that sustains the breast CSC state [84]. Hsa-miR-
335 could be used as prognostic marker [85] and could
suppress neuroblastoma cell invasiveness by directly tar-
geting multiple genes from the non-canonical TGF- β
signalling pathway [86].
Hsa-miR-337 plays a role in the reduction of gastric

cancer cell invasion capacity and its loss has been

associated with lymph node metastasis [87]. Further-
more, a study in prostate cancer revealed Hsa-miR-337
as a potential circulating biomarker able to identify
risk groups [88].
Hsa-miR-452 has been found to be associated with

adriamycin-resistance of BC cells, at least, partially, by
targeting the insulin-like growth factor-1 receptor (IGF-1R)
[89], and contributes to the docetaxel resistance of BC
cells [90].
Hsa-miR-1250 has been described in the white matter

tracts of the human brain. Although no publication is
available regarding its role in BC, Hsa-miR-1250 seems
to perform a role in oligodendrocyte proliferation and
differentiation [91].

Ethanol degradation IV, and glioma invasiveness signalling
regulated by Hsa-miR-3199-1
Looking to the list of genes in Ethanol Degradation IV,
we found that a lot of these genes belong to the family
of ALDH genes, and, although as they perform a role in
ethanol detoxification, they are also considered bio-
markers of CSCs [92].
ER+ cells are able to generate cell progeny of luminal

lineage both in vitro and in vivo. Loss of ALDH isoform,
ALDH1A1, plays a role in this process by weakening cel-
lular differentiation [93]. Several studies demonstrated
that ALDH1A1 correlates with ER status in BC, and that

Fig. 10 Interaction of the top 10 pairwise pathways in BC basal and their miRNA-r in BC basal

Table 6 For each top 3 pairwise pathway in BC basal: miRNA regulators of pathways, their expression levels in BC and in NS, and
the statistical significance of the comparison (in terms of log Fold Change)

Pairwise pathways miRNA-r miRNA-r Exp. in BC miRNA-r Exp. in NS Statistical significance (log Fold Change)

1. a) Ethanol Degradation IV;
b) Mismatch Repair in Eukaryotes

Hsa-miR-135b 342.0541 13.01149 4.96603

2. a) Putrescine Degradation III;
b) Role of BRCA1 in DNA Damage Response

Hsa-miR-365-2 153.5541 506.0575 -1.39949

3. a) Tryptophan Degradation X (Mammalian,
via Tryptamine);
b) Role of BRCA1 in DNA Damage Response

Hsa-miR-365-2 153.5541 506.0575 -1.39949
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ALDH1A1 is an independent predictor of poor clinical
outcome [94, 95].
Looking at the list of genes involved in glioma inva-

siveness signalling, we found several genes such as
ITGB5, belonging to the integrins family, the integrin
signalling members (Rhoh, Rhou and VTN) or some
members of phosphatidylinositol 3-kinase (PI3K) signal-
ling (PIK3C2B, PIK3CB). Integrins comprise a large family
of cell surface receptors and control cell attachment to the
extracellular matrix (ECM), growth, differentiation, apop-
tosis, cell motility, migration and survival. A role for integ-
rins in BC development has been already described [96].
Rhoh and Rhou proteins have a critical role in the tumour
progression and invasion, being important for the trans-
duction of the signal from integrins to the neighbourhood
cell during cell-cell communication [97, 98]. The PI3K sig-
nalling pathway in BC is associated with the poor out-
come luminal B subtype, as its activation leads to the
development of endocrine therapy resistance [99].
As regards Hsa-miR-3199-1, no publication is available

on BC or on other cancer types.

Ethanol degradation IV and estrogen receptor signalling,
regulated by Hsa-miR-1-1
We have already previously discussed the role of genes
comprised in the list of Ethanol Degradation IV
pathway.
As regards the pathway of Estrogen Receptor Signal-

ling, ERs are critical regulators of breast epithelial cell
proliferation, differentiation, and apoptosis. Nowadays

Fig. 11 Boxplot of AUC values for the top 10 enriched pairwise pathways in HER2, after all 50 bootstraps

Table 7 HER2: frequency of pairwise pathways in the top 10 for
all 50 bootstraps

Pairwise pathway Frequency

1) Axonal Guidance Signalling; CXCR4 Signalling 18/50

2) Atherosclerosis Signalling; Acute Phase Response
Signalling

16/50

3) Role of Macrophages, Fibroblasts and Endothelial
Cells in Rheumatoid Arthritis; Growth Hormone Signalling

12 /50

4) HIF1 Signalling; Glioblastoma Multiforme Signalling 11/50

5) Putrescine Degradation III; NAD biosynthesis II
(from tryptophan)

11/50

6) HIF1 Signalling; Growth Hormone Signalling 11/50

7) Axonal Guidance Signalling; P2Y Purigenic Receptor
Signalling Pathway

10/50

8) Acute Phase Response Signalling; HIF1 Signalling 8/50

9) Axonal Guidance Signalling; Growth Hormone Signalling 7/50

10) Cellular Effects of Sildenafil (Viagra); tRNA Charging 7/50

11) Hepatic Fibrosis/Hepatic Stellate Cell Activation;
Coagulation System

6/50

12) Acute Phase Response Signalling; Role of Macrophages,
Fibroblasts and Endothelial Cells in Rheumatoid Arthritis

6/50

13) Retinoate Biosynthesis I; Estrogen Receptor Signalling 6/50

14) Factors Promoting Cardiogenesis in Vertebrates;
tRNA Charging

6/50

15) Role of Macrophages, Fibroblasts and Endothelial
Cells in Rheumatoid Arthritis; Role of BRCA1 in
DNA Damage Response

6/50

…

50).... 1/50

Dots indicate the other pairs of pathways with minor frequency
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the role of ER pathway in BC malignancy development
is quite clear. This is the reason why several therapeutic
approaches have been directed against ER+ BC [100].
Hsa-miR-1-1 has been demonstrated to be a tumour

suppressor gene that represses cancer cell proliferation
and metastasis and promotes apoptosis by ectopic ex-
pression [101]. Hsa-miR-1-1 regulates downstream func-
tions of oncogenic signalling pathways such as Met,
HDAC4, PIM-1, Wnt, Cyclin D, FOXP1, Slug, and
TAGLN2 [101]. Down regulation of Hsa-miR-1-1 was

found to be associated with colorectal cancer progres-
sion [102].

Glioma Invasiveness Signalling, and Oxidative Ethanol
Degradation III regulated by Hsa-miR-3199-1
As regards the pathway of Glioma Invasiveness Signalling,
we have already discussed the role of its genes previously.
Looking at the list of genes involved in Oxidative

Ethanol Degradation III, regulated by Hsa-miR-3199-
1, we found some isoforms of the Phosphatidylinositol

Fig. 12 AUC values representation with the best top 10 pairwise pathways for all 50 bootstraps in HER2. Yellow square indicates AUC values
when the pairwise pathway was included in the top 10 for the corresponding bootstrap. Red square indicates that the pairwise pathway was not
present in top 10 for that bootstrap

Fig. 13 Interaction of the top 10 pairwise pathways in HER2 BC and their miRNA-r in BC HER2
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3-kinase (PI3K) protein. PI3K includes two subunits,
p85α and p110α, that are mediators of the pro-
survival PI3K/Akt pathway signalling. Some isoforms
of PI3K as well as p85 subunit have been already de-
scribed in HER2-positive BC patients, responding to
trastuzumab treatment [103]. Among the other genes,
particularly interesting if the finding of ITGB5, an
integrin belonging to a family of six genes (ITGA3,
ITGA6, ITGAv, ITGB3, ITGB4 and ITGB5), which
control cell attachment to the extracellular matrix and
play an important role in mediating cell proliferation, mi-
gration and survival [104]. A strong association between
integrin expression, mutation or polymorphism and BC
onset has been already described [104].
The two described pathways seem to be controlled by

a common miR, Hsa-miR-3199-1. No publication is cur-
rently available about the function of this miRNA in any
biological processes.

miRNAs regulating pathway in luminal B
In BC luminal B, we identified 3 miRNAs (Hsa-miR-32,
Hsa-miR-3074, and Hsa-miR-577), which could be key
modulators of the pair of pathways Epithelial Adherens
Junction Signalling - EIF2 Signalling.

Epithelial adherens junction signalling and EIF2 signalling
regulated by Hsa-miR-32, Hsa-miR-3074, and Hsa-miR-577
Adherens junctions are specialist structures for cell-cell
adhesion machinery. The adhesive process is directly re-
lated to the differentiation and normal development of

the tissue [105]. The development of cancer represents a
modification of normal tissue homeostasis and a change
in cell-cell interaction. In addition, cancer metastasis
spreads through the circulatory system due to cell adhe-
sion [105].
EIF2 Signalling is an essential factor for translation ini-

tiation and protein synthesis. No study showed a correl-
ation between these pathways.
Hsa-miR-32 is located in genomic regions, which

might be involved in malignancies via deletion, amplifi-
cation, or epigenetic modification mechanisms [106]. It
regulates phosphatase and tensin homologue (PTEN)
expression, and promotes proliferation, migration and
invasion in colorectal cancer [107].
Hsa-miR-3074 has been associated with papillary renal

cell carcinoma [108], but no publication is available
about its role in BC.
Hsa-miR-577 is mainly involved in proliferation control

in glioblastoma [109], hepatocellular carcinoma [110] and
in esophageal squamous cell carcinoma [111]. It is pos-
sible to hypothesise a role for Hsa-miR-577 also in BC
proliferation control.

miRNAs regulating pathway in basal
In BC basal, we identified 2 miRNAs (Hsa-miR-135b,
and Hsa-miR-365-2) that may play an important role in
the regulation of three pairs of pathways: 1) Ethanol
Degradation IV, and Mismatch Repair in Eukaryotes; 2)
Putrescine Degradation III, and Role of BRCA1 in DNA
Damage Response, and 3) Tryptophan Degradation X

Table 8 For each top 7 pairwise pathway in BC HER2: miRNA regulators of pathways, their expression levels in BC and in NS, and
the statistical significance of the comparison (in terms of log Fold Change)

Pairwise pathways miRNA-r miRNA-r Exp. in BC miRNA-r Exp. in NS logFC

1. a) Acute Phase Response Signalling;
b) HIF1 Signalling

Hsa-miR-429
Hsa-miR-3617

434.2326
0.209302

71.18391
0.045977

2.604998
1.078421

2. a) Atherosclerosis Signalling;
b) Acute Phase Response Signalling

Hsa-miR-1910 1.581395 0.425287 1.501305

3. a) Axonal Guidance Signalling;
b) CXCR4 Signalling

Hsa-miR-584
Hsa-miR-190
Hsa-miR-148b
Hsa-miR-449c

152.5116
11.60465
719.4651
5.651163

482.4253
31.05747
315.1839
0.068966

-1.30985
-1.02572
1.550205
5.430282

4. a) Axonal Guidance Signalling;
b) P2Y Purigenic Receptor Signalling Pathway

Hsa-miR-92b
Hsa-miR-190
Hsa-miR-584

531.8605
11.60465
152.5116

171.1494
31.05747
482.4253

1.840728
-1.02572
-1.30985

5. a) HIF1 Signalling;
b) Glioblastoma Multiforme Signalling

Hsa-miR-190b
Hsa-miR-1246
Hsa-miR-429

31.90698
0.255814
434.2326

6.137931
0.034483
71.18391

2.680854
1.277809
2.604998

6. a) HIF1 Signalling;
b) Growth Hormone Signalling

Hsa-miR-490
Hsa-miR-429

5.395349
434.2326

0.298851
71.18391

4.276816
2.604998

7. a) Role of Macrophages. Fibroblasts and Endothelial Cells in
Rheumatoid Arthritis;
b) Growth Hormone Signalling

Hsa-miR-511-2
Hsa-miR-142
Hsa-miR-155

17.69767
11699.28
1931.163

56.51724
3246.46
616.9425

-1.49388
2.248187
1.707846
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(Mammalian, via Tryptamine), and Role of BRCA1 in
DNA Damage Response.

Ethanol degradation IV and mismatch repair in eukaryotes,
regulated by Hsa-miR-135b
Mismatch Repair plays a key role in maintaining genomic
stability. Cells possess multiple mechanisms to repair
DNA damage and thus prevent mutations [112]. No study
revealed a direct interaction between Ethanol Degradation
IV, and Mismatch Repair in BC.
Hsa-miR-135b levels are elevated in a variety of can-

cers including BC [113]. Lowery et al. [113] identified a
15-miRNA predictive signature related to the expression
of ER comprising also this miRNA (Hsa-miR-135b, Hsa-
miR-190, Hsa-miR-217, Hsa-miR-218, Hsa-miR-299, and
Hsa-miR-342). Up regulation of Hsa-miR-135b is more
robust in highly invasive than less invasive lines. In colo-
rectal cancer, Hsa-miR-135b promotes cancer progres-
sion by acting as a downstream effector of oncogenic
pathways [114].

Putrescine degradation III, and role of BRCA1 in DNA
damage response regulated by Hsa-miR-365-2
Putrescine is a known metabolite that plays an important
role in cancer and CSCs [115]. Putrescine belongs to the
class of polyamine, involved in numerous processes in
normal and cancer cells, such as proliferation, apoptosis,
cell-cell interactions, and angiogenesis [116]. An associ-
ation between the basal subtype and BRCA1 gene has
been well described, and it may suggest that both in-
herent DNA damage–sensing processes and DNA re-
pair mechanisms are crucial in the development of
basal-like tumours [22, 23].
Hsa-miR-365-2 negatively regulates BCL2 protein levels,

and its overexpression combined with the deregulation of
other 2 miRNAs have an apoptotic effect thus suggesting
a therapeutic potential [117]. In pancreatic cancer Hsa-
miR-365 was found to induce gemcitabine resistance by
targeting the adaptor protein SHC1 and pro-apoptotic
regulator BAX [118].

Tryptophan degradation X (Mammalian, via Tryptamine),
and role of BRCA1 in DNA damage response regulated by
Hsa-miR-365-2
Altered tryptophan metabolism is linked to cancer
development and progression [119, 120]. In particular,
indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme in-
volved in tryptophan degradation, has been docu-
mented to have therapeutic potential, alone or in
combination with chemotherapy or immunotherapy
[121]. Several studies confirmed its immunosuppressive
role and the inhibition of the IDO1 pathway therefore rep-
resents a promising therapeutic approach. Clinical trials
evaluating the first IDO1 inhibitors have already started

[122, 123]. The role of Hsa-miR-365 in cancer has been
already reported above.

miRNAs regulating pathway in HER2
In HER2 BC, we identified 14 miRNAs (Hsa-miR-1246,
Hsa-miR-142, Hsa-miR-148b, Hsa-miR-155, Hsa-miR-190,
Hsa-miR-190b, Hsa-miR-1910, Hsa-miR-3617, Hsa-miR-
429, Hsa-miR-449c, Hsa-miR-490, Hsa-miR-511-2, Hsa-
miR-584, Hsa-miR-92b) that may have an important role
in the regulation of seven pairs of pathways: 1) Axonal
Guidance Signalling; CXCR4 Signalling; 2) Axonal
Guidance Signalling; P2Y Purigenic Receptor Signalling,
3) Role of Macrophages, Fibroblasts and Endothelial
Cells in Rheumatoid Arthritis; Growth Hormone Sig-
nalling, 4) HIF1 Signalling; Growth Hormone Signal-
ling, 5) HIF1 Signalling; Glioblastoma Multiforme
Signalling, 6) Acute Phase Response Signalling; HIF1
Signalling, and 7) Atherosclerosis Signalling; Acute Phase
Response Signalling.

Axonal guidance signalling and CXCR4 signalling, regulated
by Hsa-miR-148b, Hsa-miR-190, Hsa-miR-449c, Hsa-miR-584
The role of Axonal Guidance Signalling in cancer has
already been mentioned above. CXCR4 Signalling shows
a down regulation in metastasised BC cells [124].
CXCR4, the receptor for stromal-derived factor-1, is
already reported as involved in breast carcinogenesis and
invasion. Recent studies showed that the inhibition of
CXCR4 expression resulted in an anti-invasive effect re-
vealing the potential for the treatment of BC [125].
CXCR4, the receptor of SDF-1, plays a crucial role

in modulating axonal responsiveness through a cyclic
nucleotide-dependent signalling pathway [126].
Four miRNAs could be important regulator of this

interaction.
Hsa-miR-148b was found to be a major coordinator

of malignancy influencing invasion, survival to anoikis,
extravasation, lung metastasis formation, and chemo-
therapy response [127]. Circulating Hsa-miR-148b was
validated and found elevated in the plasma of BC pa-
tients compared to healthy women [128, 129]. Cimino
et al. [127] showed that Hsa-miR-148b expression en-
hances chemotherapy-induced apoptosis.
Hsa-miR-190 was associated with lymph node metasta-

sis and its increased expression inhibited cell migration
and invasiveness. The target of Hsa-miR-190 was protease-
activated-receptor 1 (PAR-1), which is a metastasis pro-
moting protein in several cancers [130].
Hsa-miR-449c showed a decreased expression in human

gastric tumours and induces senescence and apoptosis by
activating the p53 pathway [131]. No information is
reported about Hsa-miR-449c and BC.
Hsa-miR-584 was found to be down-regulating TGF-β

in BC cells. PHACTR1, an actin-binding protein, is also
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regulated by Hsa-miR-584. Overexpression of Hsa-miR-
584 and knockdown of PHACTR1 resulted in a drastic
rearrangement of the actin cytoskeleton and in a loss of
TGF-β-induced cell migration [132].

Axonal guidance signalling and P2Y purigenic receptor
signalling pathway, regulated by Hsa-miR-190, Hsa-miR-
584, and Hsa-miR-92b
The role of Axonal Guidance Signalling in cancer has
already been mentioned above. A recent study showed
that P2Y Purigenic Receptor Signalling Pathway is
included in a potential pathway signature for testing
Gemcitabine (Gem)-based chemotherapies sensitivity of
gallbladder cancer patients [133].
P2Y receptors (e.g., P2Y1, P2Y2) have strong direct ef-

fects on the tumour by modulating cell growth. In vivo
data support in vitro evidence that lowering the intratu-
mour adenosine concentration and targeting the P2X7
receptor have a strong antitumour effect [134]. No study
showed a direct interaction between Axonal Guidance
Signalling and P2Y Purigenic Receptor Signalling.
Hsa-miR-190 has already been discussed above. As

regards Hsa-miR-584, the involvement of this miRNA
in the pathway controlled by TGF-β [132] has been
already described. In particular, TGF-β is able to de-
crease the expression of Hsa-miR-584. This in turn
leads to the increase of protein phosphatase and actin
regulator 1 (PHACTR1), a protein required for TGF-β-
induced cell migration of breast cancer cells [132]. The
drastic reorganization of the actin cytoskeleton is im-
portant in axonal guidance signalling, playing a role in
tumour cell migration, tumour cell survival and tumour
angiogenesis.
Hsa-miR-92b, regulating these pairwise pathways, was

found over-expressed in brain primary tumours, suggest-
ing a functional link between neuronal stem cells and
brain tumourigenesis [135]. The involvement of this
miRNA in radiation resistance was also found [136].

Role of macrophages, fibroblasts and endothelial cells in
rheumatoid arthritis and growth hormone signalling,
regulated by Hsa-miR-142, Hsa-miR-155, Hsa-miR-511-2
Tumours comprise proliferating tumour cells and stro-
mal cells, including endothelial cells, inflammatory cells,
and fibroblasts [137].
Macrophages play a crucial role in the innate and adap-

tive response to pathogens. Recently, it was also found
that tumour-associated macrophages interact with CSCs
thus leading to tumourigenesis, metastasis, and drug re-
sistance [138]. As regards Hsa-miR-511-2, several publica-
tions demonstrated that this miRNA plays an important
role in modulating tumour-associated macrophages. The
upregulation of Hsa-miR-511 affects the pro-tumoural
gene signature of tumour-associated macrophages, which

are endowed with tissue-remodelling, proangiogenic, and
protumoural activity [139, 140].
Hormones play an important role for normal develop-

ment and possibly also for tumour formation in the
mammary gland. Human growth hormone could also
stimulate the tumour initiating capacity and metastasis
of estrogen receptor-negative BC [141]. Hsa-miR-142
plays a role as potent inhibitor of human growth
hormone signalling in normal and cancer cells thus
suggesting the development of miRNA inhibitors as
therapeutic agents in growth hormone-related disease,
including cancer [142].
Hsa-miR-155, described as oncomiR, is implicated in

EMT, cell migration, and invasion control. Roth et al.
[143] found Hsa-miR-155 in the serum of patients
with BC and not in healthy controls; this miRNA has
been used to monitor the effect of taxane treatment
on BC. Sun et al. observed the decreased expression
of Hsa-miR-155 in serum after chemotherapy, which
reached levels comparable to those of healthy sub-
jects [144].

HIF1 signalling and growth hormone signalling, regulated
by Hsa-miR-490, Hsa-miR-429
Resistance to hormonal therapy is still unknown, but
hypoxia could play an important role, for instance, in
down-regulating ER-alpha expression as well as ER-alpha
function in BC cells [145]. Furthermore, hypoxia and es-
trogen are interchangeable as both similarly modulate
epithelial-endothelial cell interaction [146].
Previous studies showed the role of Hsa-miR-490 as

potential drug resistance in ovarian cancer [147] and as
a potential novel biomarker for diagnosing of colorectal
cancer [148].
Down regulation of Hsa-miR-429 was highlighted in

the 3D culture-specific miRNA profile better than that
in the 2D culture-specific profile, by correlating with
the 3D invasive capacity of the MDA-MB-231 BC cell
line [149].
Hsa-miR-429 could be also a regulator of HIF1 Signal-

ling, Glioblastoma Multiforme, Acute Phase Response
Signalling and HIF1 Signalling.

HIF1 signalling and glioblastoma multiforme signalling
regulated by Hsa-miR-190b, Hsa-miR-1246, Hsa-miR-429
The role of HIF1 Signalling in cancer has already been
mentioned above. As regards Glioblastoma multiforme
Signalling pathway, among all the altered genes in com-
mon with HIF1 Signalling pathway, the main genes are
those of the Ras family (i.e., KRas and NRas), already
found mutated in triple-negative BC [150], the genes of
the PI3K pathway (i.e., PIK3C3, PIK3CA), which has
been already found silenced or mutated in aggressive BC
[151, 152], and those of the serine/threonine protein
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kinase family, like ATM, already associated with hor-
mone negative early stage BC [153].
As regards miRNAs able to regulate these couples of

pathways, we identified Hsa-miR-429 (already described
above), Hsa-miR-190b and Hsa-miR-1246. Hsa-miR-
190b is indicated as a higher discriminating miRNA
between ER+ and ER- BC. This miRNA has also an im-
pact on metastasis-free survival and event-free survival
rates, independently of ER status [154]. Hsa-miR-1246
was included in a 5-miRNA signature with good diag-
nostic features, able to discriminate between healthy and
early stage BC samples [155].

Acute phase response signalling and HIF1 Signalling
regulated by Hsa-miR-429, Hsa-miR-3617
The role of HIF1 Signalling in cancer has already been
mentioned above. Acute Phase Response Signalling has a
clear role in both ER+ and triple negative BC [156].
Looking to the genes involved in Acute Phase Response
Signalling in common with those of HIF1 Signalling,
they belong to the MAP kinase pathway (i.e. MAPK8,
MAPK14) or to the RAS protein family (i.e. NRas), as
discussed above. Hsa-miR-429 has already been discussed.
As regards Hsa-miR-3617, no publication is currently
available about the function of this miRNA in any bio-
logical processes.

Atherosclerosis signalling and acute phase response
signalling regulated by Hsa-miR-1910
The Acute Phase Response Signalling plays a clear role
in BC, as already mentioned. There are only a few publi-
cations that associate Atherosclerosis Signalling to BC.
However, one of the main molecule involved in tissue
remodelling and in atherosclerosis is tenascin-C. Its
serum level of expression has no predictive or prognos-
tic ability in BC, although it is elevated in BC patients
[157]. As regards miRNAs involved in the control of this
couple of pathways, we identified a single miRNA, Hsa-
miR-1910. This miRNA is included in a group of 8 miR-
NAs, whose silencing by methylation leads to the onset
of BC [158].

Conclusions
We identified pairwise pathways for BC subtypes able to
discriminate BC vs. normal samples. From these pairs,
we created a network of pathways specific for each sub-
type. Following an enrichment analysis, we focused on
miRNAs with an important role in the regulation of the
network.
In the network of pathways for BC luminal A, we found

11 miRNAs: Hsa-miR-1-1, Hsa-miR-1250, Hsa-miR-1537,
Hsa-miR-205, Hsa-miR-210, Hsa-miR-3199-1, Hsa-miR-
335, Hsa-miR-337, Hsa-miR-381, Hsa-miR-452, and Hsa-
miR-99a. Among them, Hsa-miR-210, and Hsa-miR-205

have a potential therapeutic role, acting as biomarkers of
the response to trastuzumab, and to neoadjuvant chemo-
therapy, respectively.
In the network of pathways for BC luminal B, we

found 3 miRNAs: Hsa-miR-32, Hsa-miR-3074, and Hsa-
miR-577. Among them, Hsa-miR-32 has been already
associated with cancer progression.
In the network of pathways for BC basal we found 2

miRNAs: Hsa-miR-135b, and Hsa-miR-365-2. Among
them, Hsa-miR-365-2 showed an apoptotic role and
could play a therapeutic role.
In the network of pathways for HER2 BC, we found 14

miRNAs: Hsa-miR-1246, Hsa-miR-142, Hsa-miR-148b,
Hsa-miR-155, Hsa-miR-190, Hsa-miR-190b, Hsa-miR-
1910, Hsa-miR-3617, Hsa-miR-429, Hsa-miR-449c, Hsa-
miR-490, Hsa-miR-511-2, Hsa-miR-584, Hsa-miR-92b.
Among them, Hsa-miR-148b, Hsa-miR-92b, Hsa-miR-
142, Hsa-miR-155 are interesting for drug design, as a
role in the response to different therapeutic strategies
has been already described.
The identification of a network of dependent pathways

and their regulatory miRNAs is a current challenge in
order to have an overview of a complex disease such as
cancer. In particular, miRNAs, once validated in a
laboratory assay, could be suitable for translation to a
clinical environment. The low-cost procedures and the
possibility to be measured by non-invasive tests make
miRNAs important diagnostic and therapeutic tools for
further studies.
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