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Abstract

Background: The amount of scientific information about MicroRNAs (miRNAs) is growing exponentially, making it
difficult for researchers to interpret experimental results. In this study, we present an automated text mining approach
using Latent Semantic Indexing (LSI) for prioritization, clustering and functional annotation of miRNAs.

Results: For approximately 900 human miRNAs indexed in miRBase, text documents were created by concatenating
titles and abstracts of MEDLINE citations which refer to the miRNAs. The documents were parsed and a weighted
term-by-miRNA frequency matrix was created, which was subsequently factorized via singular value decomposition
to extract pair-wise cosine values between the term (keyword) and miRNA vectors in reduced rank semantic space. LSI
enables derivation of both explicit and implicit associations between entities based on word usage patterns. Using
miR2Disease as a gold standard, we found that LSI identified keyword-to-miRNA relationships with high accuracy. In
addition, we demonstrate that pair-wise associations between miRNAs can be used to group them into categories
which are functionally aligned. Finally, term ranking by querying the LSI space with a group of miRNAs enabled
annotation of the clusters with functionally related terms.

Conclusions: LSI modeling of MEDLINE abstracts provides a robust and automated method for miRNA related
knowledge discovery. The latest collection of miRNA abstracts and LSI model can be accessed through the web tool
miRNA Literature Network (miRLiN) at http://bioinfo.memphis.edu/mirlin.
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Background
There is growing recognition that miRNAs regulate vari-
ous diseases and biological processes [1–4] as evidenced
by the rapidly growing body of literature related to miR-
NAs (Additional file 1: Figure S1). There are manually
curated repositories such asmiRBase [5] andmiR2Disease
[6] that catalog miRNAs in several organisms as well as
summarize their associations with diseases and other bio-
logical processes. However, it is generally accepted that
manual curation is unable to keep up with the rapidly
growing genomic information [7]. For instance, miRBase
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has not been updated since 2014 and miR2Disease has
not been updated since 2009. It is therefore imperative to
devise automated methods that can keep pace with the
functional information which is deposited in the biomed-
ical literature with respect to miRNAs.
Information retrieval (IR) is a key component of text

mining [8]. It consists of three types of models: set-
theoretic (Boolean), probabilistic, and algebraic (vector
space). Documents in each case are retrieved based on
Boolean logic, probability of relevance to the query,
and the degree of similarity to the query, respectively.
The concept of literature-based discovery was intro-
duced by Swanson [9] and has since been extended to
many different areas of research. In the gene space, sev-
eral approaches have focused on mining both explicit
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associations based on co-occurrence [10], as well as
implicit associations based on higher order co-occurrence
and indirect relationships [11].
Several IR approaches have focused on mining miRNA

specific associations. miRCancer [12], miRSel [13] and
miRTex [14] use co-occurrence and sentence level nat-
ural language processing to automatically extract direct
relationships from text betweenmiRNAs and genes or dis-
eases. While useful, these tools may miss miRNA interac-
tions where direct relationships were not explicitly stated.
In such cases, automated extraction of semantic relation-
ships would be useful to associate genes and miRNAs
based on shared biological processes. Also, explicit rela-
tionships such as those based on co-occurrence count
between miRNAs and genes may be harder to prioritize
if they have the exact same score. In contrast, seman-
tic associations that take into account other relationships
could be useful for prioritization of miRNA and gene
associations [15].
Aside from exploring miRNA to gene associations,

semantic analysis could be useful for other research sce-
narios. For example, investigators may want to prioritize
candidate miRNAs for specific diseases or phenotypes.
Alternatively, investigators may want to understand the
functional pathways shared between different miRNAs.
To address these needs, we developed and evaluated an
LSI based text mining approach. Previously, we applied
LSI to extract functional relationships amongst genes [16]
as well as relationships between genes and transcription
factors [15] from MEDLINE abstracts. LSI uses Singular
Value Decomposition (SVD) [17, 18], which is a dimen-
sionality reduction technique that decomposes the origi-
nal term-by-document weighted frequency matrix into a
new set of factor matrices that can be used to represent
both terms and documents in lower-dimensional sub-
space. Previously, we demonstrated that LSI can extract
both explicit (direct) and implicit (indirect) semantic
relationships amongst genes. In addition, LSI allows
genes to be prioritized based on keyword queries as
well as gene-abstract queries with better accuracy than
term co-occurrence methods [16]. Here, we applied this
approach to miRNAs and demonstrate its utility to pri-
oritize, cluster and functionally annotate miRNAs. The
accompanying web based tool, miRNA Literature Net-
work (miRLiN), available at http://bioinfo.memphis.edu/
mirlin, provides an automated framework for interac-
tively extracting and discovering functional information
on human miRNAs based on up to date biomedical
literature.

Methods
miRNA document collection
For 1881 human miRNAs indexed in the miRBase
repository, 3 different abstract collections were built.

Firstly, a curated collection limited to manually assigned
abstracts was constructed. A total of 8110 unique
abstracts (citations) cross referenced in the linkouts from
miRBase as well as Entrez Gene [19] were collected.
These citations (identified by unique PubMed identi-
fiers or PMIDs) have been assigned either by profes-
sional staff at the National Library of Medicine, or by
the scientific research community via Gene Reference
into Function (GeneRIF) portal, or by curators of miR-
Base. Since these abstracts are manually curated, they
are expected to have a very high precision for tagging
correct citations to miRNAs but at the same time the
number of citations referenced for each miRNA is a
small proportion of the total number of relevant cita-
tions in MEDLINE for that miRNA, resulting in low
recall.
In order to increase the information content for the

miRNAs, a retrieved collection was built by querying the
PubMed repository. A single miRNA can be referenced in
the literature in several spelling variants e.g.,mir19a,mir-
19a,microRNA19a,microRNA-19a etc. For each miRNA,
all such tentative synonyms with and without hyphens
were constructed, and a PubMed query with the form ‘
synonym #1 OR synonym #2 OR...OR synonym #n’ was
submitted using the NCBI efetch utility for retrieving rel-
evant citations that have at least one synonym present in
either title or abstract. Further restrictions were added
to the query to limit the search to abstracts relevant to
humans and miRNAs. A total of 19191 unique citations
were retrieved.
The two collections were merged to get 19527 unique

citations. We further filtered the nonspecific citations by
removing PMIDs that referred to 7 ormoremiRNAs. Typ-
ically, these citations described sequencing experiments
which mentioned a large number of miRNAs without
substantive biological or mechanistic information. This
threshold of 7 was derived as the smallest right out-
lier in the distribution of numbers of miRNAs linked to
each unique citation. The outlier calculation was based on
the IQR (interquartile range). The IQR is Q3 (75th per-
centile) – Q1 (25th percentile). The designated outliers
were > Q3 + 1.5 ∗ IQR. Post filtering, 17076 unique cita-
tions and 878 active miRNAs (the ones referenced by at
least one citation) remained in the collection, which com-
prised of less than half of the original number of 1881
miRNAs. Thus a large number of miRNAs were excluded
from our collection because they lacked a specific citation.
The number of citations assigned to the active miRNAs
ranged from 1 (28 % of the collection) to 1451. The aver-
age and median number of citations in the collection
were 38 and 4, respectively. For each of 878 active miR-
NAs, a miRNA document was created by concatenating
the titles and abstracts of all citations referenced by the
miRNA.
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Construction of the LSI model
The outline of the LSI approach used in this study is
depicted in Fig. 1. Sixty eight thousand five hundred
ninety-six terms (keywords) were parsed from the collec-
tion of 878 miRNA documents using Text to Matrix Gen-
erator software [20]. All punctuation (excluding hyphens
and underscores) and capitalization were ignored and, in
addition, articles and other common, non-distinguishing
words were discarded using the stop list from Cor-
nell’s SMART project repository [21]. A term-by-miRNA
matrix was created where the entries of the matrix were
log-entropy weighted frequencies of terms across the
miRNA document collection. Term weighting schemes
are typically employed in order to normalize the matrix
and discount the effect of common terms while at the
same time increasing the importance of terms that are bet-
ter delineators between miRNA documents. Each matrix
entry aij is transformed into a product of a local compo-
nent (lij) and global component (gi):

lij = log2(1 + fij) (1)

gi = 1 +
∑

j pij log2 pij
log2 n

(2)

pij = fij
∑

j fij
(3)

where fij is the frequency of the ith term in the jth miRNA-
document, pij is the probability of the ith term occurring in
the jth miRNA-document and n is the number of miRNA
documents in the collection. The log-entropy weighting
scheme is based on information-theoretic concepts and

takes into account the distribution of terms over miRNA
documents and has been found to be more useful in
extracting implied relationships [22].
Singular value decomposition (SVD) [17, 18] was

applied to the term-by-miRNA log-entropy weighted fre-
quency matrix. A data matrix A with n rows (terms) and
m columns (miRNAs), where n >> m, can be construed
as n term row vectors inm-dimensional miRNA space and
m miRNA-document column vectors in n-dimensional
term space. SVD transforms the two sets of vectors into
a new r-dimensional orthogonal space in which the maxi-
mum variation is expressed along the first dimension axis,
as much variation independent of that is expressed along
an axis orthogonal to the first, and so on. The new set
of axes may reveal the true dimensionality of the data if
the dataset is not inherently m-dimensional. The SVD is
formulated as:

A = USV ′ (4)

where ′ indicates transpose of the matrix obtained by per-
muting the modes, i.e., transforming rows into columns
and vice versa, U is n × r, S is r × r, and V is m × r (V ′
is r × m). Both U and V are orthogonal, i.e., UU ′ = I
and VV ′ = I where I is the identity matrix. S is a diago-
nal matrix with non-negative and non-increasing entries
σ1, σ2, ..., σr which are known as singular values. r is the
rank of the matrix, which is the number of linearly inde-
pendent rows or columns of A. It is however, known from
observation, for most practical datasets, r = m. The third
matrix V is written as a transpose so that the rows of

Fig. 1 Overview of Latent Semantic Indexing. In a vector-space model, the semantic structure of a document is represented as a vector (essentially, a
bag of words) in word space, and the degree of similarity between documents is calculated by the cosine of the angle between document vectors.
The vectors consist of weighted terms, which are a function of the frequency of the terms in and across all documents in the collection. A variant of
the vector space model, called Latent Semantic Indexing, improves retrieval by applying singular value decomposition (SVD) to create a subspace in
which text documents are represented as vectors. The components in the subspace may be regarded as a concept derived from the word usage
patterns in the document. Hence, the relevant documents are retrieved based on the degree of conceptual similarity between the documents
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both matricesU and V correspond to terms and miRNAs,
respectively.
The rows of A can be interpreted as term coordinates

in an m-dimensional space. The axes of this space can be
interpreted as rows of I (identity matrix). The SVD trans-
forms the term coordinates to rows of U and the axes to
the rows of SV ′. The matrix V ′ acts as the rotation matrix
for the original axes and the diagonal of matrix S contains
the scaling factor for each axis. The U matrix can now
be construed as a new transformed dataset whose rows
still correspond to the original n terms but the miRNAs
are transformed into r eigen miRNAs (factors) that are a
linear combination of the original miRNAs.
SVD is symmetric in the sense that a decomposition on

the rows (terms) can be transformed into a decomposition
on the columns (miRNAs):

A′ = VSU ′ (5)

A′ reverses the roles of terms and miRNAs. V plays the
role originally played by U and U plays the role originally
played by V. Since S is diagonal, S = S′. The SVD trans-
forms themiRNA coordinates to rows ofV and the axes to
the rows of SU ′. The matrix U ′ acts as the rotation matrix
for the original axes and the diagonal of matrix S contains
the scaling factor for each axis. The V matrix can now be
construed as a new transformed dataset whose rows still
correspond to the original m miRNAs but the terms are
transformed into r eigen terms (factors) that are a linear
combination of the original terms.
The new scaled and rotated axes and the coordinates

tend to better fit the data than the original axes and coor-
dinates. The singular values in S determine the relative
importance of each axis. The first few axes capture the
maximum variation in the data and the subsequent ones
less so. Only the first k (where k < r) factors correspond-
ing to k largest singular values may be used to represent
the data. There are two potential benefits of perform-
ing this truncation. Firstly, for large datasets (with many
attributes), this translates into savings in memory space
as well as analysis time, as vectors in k dimensions can
be compared in less time than vectors in m dimensions.
Secondly, SVD reveals the true dimensionality present in
the data, where the bulk of the information content in the
original m-dimensional data may be captured in a lower
dimensional manifold, after axis rotation and scaling.
An appropriate choice for k (number of most significant

factors) can be made by assessing the contribution of each
of the singular values as a measure of the amount of vari-
ation captured in each dimension, and then calculating
the entropy of the contributions that might be indicative
of what percentage of the total number of factors may

be needed [23]. The contribution Ci of each of r singular
values σ s can be calculated as:

Ci = σ 2
i∑r

i=1 σ 2
i

(6)

and the entropy of the r contributions calculated as:

E = −1
log r

r∑

k=1
Ck logCk (7)

Entropy measures the amount of disorder in the set
of variations captured in the r dimensions. The magni-
tude of the entropy may vary from 0 (all variation is
captured in the firrst dimension) to 1 (all dimensions
are equally important). k is calculated as E × r. For the
term-by-miRNA matrix, k was computed to be 560.
The association between any pair of entities (term-

term, term-miRNA, miRNA-miRNA) can be calculated
as the cosine of the angle between the respective k-
dimensional vectors. The association scores can theoreti-
cally fall between −1 and 1, but in practice were observed
to occur between −0.2472 and 1. A higher association
score between a pair of entities indicates a stronger rela-
tionship in literature.

Evaluation
Information Gain calculation
Information gain (in context of citations) for each miRNA
was calculated as
#of citations retrieved from PubMed− #of citations in miRBase and EntrezGene

#of citations in miRBase and Entrez Gene

(8)

Gold standards
miR2Disease was used for evaluating LSI performance.
It is a comprehensive database containing descriptions of
more than 100 diseases and their associated miRNAs.

AUC calculation
The term-to-miRNA and miRNA-to-term prioritizations
were evaluated against gold standards by generating
Receiver Operating Characteristics (ROC) curves which
display recall and false positive rates at each rank. The
area under the curve (AUC) can be used as a measure of
ranking quality [24, 25]. The AUC will have the value of 1
for perfect ranking (all relevant entities at the top), 0.5 for
randomly generated ranking, and 0 for the worst possible
ranking (all relevant entities at the bottom).

Cohesion calculation
The cohesion for a set of miRNAs was calculated as
described in [11, 26]. Given a set of n miRNAs for a dis-
ease, n AUCs were calculated. Each miRNA was treated
as a query and the rest of the n − 1 miRNAs were treated
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as gold standard. The set of all miRNAs (for all diseases)
in miR2Disease were prioritized against the query miRNA
using the cosine between the miRNA vectors as the sim-
ilarity measure, and an AUC was calculated. The median
AUC out of n AUCs was treated as the cohesion. If a set
of miRNAs for a disease are closely related, then the miR-
NAs in the set would ideally have high cosine association
with each other compared to remaining miRNAs that are
not in the set, signifying a highly cohesive set.

Results
miRNA Literature Landscape
The annual number of publications related to miRNAs is
growing exponentially. This trend is observed in curated
databases such as miRBase and Entrez Gene, as well as
in PubMed using “miRNA” keyword search (Additional
file 1: Figure S1). Overall, 2.37 times more citations were
retrieved from the PubMed search than the number des-
ignated in curated databases. To collect more abstracts for
the growing number of miRNAs, we designed an auto-
mated search strategy as described in “Methods”. Out of
1881 miRNAs found in miRBase, while all had at least
one manually designated citation in either miRBase or
Entrez Gene, only 974 had at least one citation retrieved
from PubMed. Our PubMed search did not identify
abstracts for nearly 50 % of the miRNAs in the curated
databases. For the aforementioned 974 miRNAs with at
least one retrieved citation, the recall values for more
than 50 % of miRNAs were between 0.1 and 0.9 when
using the curated citations as gold standard (Fig. 2a). It is
however important to note that our PubMed search strat-
egy retrieved 95.8 % of all abstracts in curated databases
(Additional file 1: Figure S2). This result suggests that
there may be discrepancies in the curated databases for
assignment of citations to miRNAs. On the other hand,
it is possible that our search strategy misses important
aliases for some miRNAs, thus affecting the recall per-
formance. Next, we calculated the information gain, as
described in Methods, for each of the 974 miRNAs. 589
miRNAs showed positive information gain and 304 miR-
NAs showed a negative information gain (Fig. 2b). Only
55 miRNAs showed an information gain greater than
10. Based on these results, we concluded that merging
citations from miRBase and Entrez Gene with PubMed
retrieved citations would allow for the best coverage and
information gain for building the LSI model.
Once the abstract collection was updated and filtered

for all miRNAs, an LSI model was built using a total of
17076 citations for the remaining 878 human miRNAs, as
described in the “Methods”. Figure 3 shows the first three
dimensions of the normalized scaled term vectors (A) and
miRNA vectors (B) in LSI space. Both term and miRNA
vectors are comparable with each other as they share the
same coordinate space. We found that while term vectors
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Fig. 2 Distribution of recall (a) and information gain (b) metrics for
curated and retrieved citations for miRNAs. Curated citations were
collected from miRBase and Entrez Gene. The retrieved citations were
obtained by querying PubMed using a compound search term, which
included the miRNA symbol and its aliases. Recall for a miRNA was
computed as the fraction of curated citations present amongst the
retrieved citations for that miRNA. Information gain for a miRNA was
calculated as the ratio between the number of additional citations
retrieved, and the number of curated citations for that miRNA

span a broad area, the miRNA vectors are more con-
centrated. The limited distribution of the miRNA vectors
suggests that the documents share many terms and that
miRNAs are functionally quite similar. Additional file 1:
Figure S3 shows the distribution of normalized singu-
lar values. The first factor captured a little more 3 % of
the variance (information content) of the term-by-miRNA
matrix. For this study, we used the top 560 (64 %) fac-
tors out of 878 factors, which comprised 93 % of the total
information content.

Evaluation of the LSI model
LSI is a robust approach to extract both explicit and
implicit relationships between terms andmiRNAs directly
from the biomedical literature. In this study, the perfor-
mance of the LSI model was evaluated based on three
different use-case scenarios as described below.

miRNA ranking by term query
A typical use-case involves ranking relevant miRNAs
based on their association with keyword queries. A query
may consist of a single word (term) such as “cancer” or a
combination of words such as “head and neck squamous
cell carcinoma”. A binary query vector q0 of a length equal
to the total number of terms is created, with 1’s corre-
sponding to the query terms and 0’s for the remaining
terms in the dictionary. A term query q is constructed by
projecting q0 onto the Uk matrix as q′

0Uk , which is the
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Fig. 3 Distribution of term vectors (a) and miRNA vectors (b) across the first three LSI dimensions. Each point on the plots represents a single term or
miRNA. For each vector, the magnitude of each axis component was scaled by the corresponding singular value and the scaled vector was then
normalized to unit length

weighted sum of k-dimensional term vectors correspond-
ing to the query terms in the Uk matrix. The miRNAs
are prioritized by calculating the cosines of the term
query with each of the scaled k-dimensional miRNA vec-
tors in the VSk matrix. To evaluate the LSI model, we
used the miR2Disease knowledge base as the gold stan-
dard. Since miR2Disease was last updated in 2009, an
LSI model specifically for this gold standard was gen-
erated using only publications dating to 2009 or earlier.
For each disease, the full name (or descriptor) served as
the query. Figure 4 shows the distribution of AUCs for
different query term lengths. A full list of diseases and
their respective AUCs are included in Additional file 2:
Table S1A. The AUCs for 66 (56 %) of all disease queries
were above 0.7. Generally, single word queries performed
somewhat better than multiword queries. This result is
expected as summing various term vectors could make
the query ambiguous, and the high ranked miRNA vec-
tors may actually be close to the composite query vector
but only remotely related to any of the constituent terms
of the composite query. In addition, disease categories
which included more than 50 miRNAs generally resulted
in lower AUCs. This may be due to the fact that some
miRNAs may have multiple roles and molecular func-
tions, thereby lowering their relative ranking against a
single disease query. Lastly, these results may be in part
due to discrepancies in the annotations by the curators of
miR2Disease database.
To address the latter issue, we also tested the perfor-

mance of the LSI model using a different gold standard
(Gold Standard II) list of miRNAs for nine different
diseases or physiologies. The gold standard II miRNAs
were determined by manual examination of recent review
papers on each topic (Table 1). The number of miRNAs in

each disease category ranged from 8 to 43. The LSI model
for evaluation was built using a collection of abstracts
up to 2015. Importantly, we found that the average AUC
for the nine disease queries was 0.89 (range = 0.80 to
0.94). These results were substantially higher than those
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Fig. 4 Distribution of area under the Receiver Operating Characteristic
Curve (AUC) for term-to-miRNA (a) and miRNA-to-term (b) rankings.
For term-to-miRNA rankings, the terms constituting a given disease
name (obtained from the miR2Disease knowledge base) were used as
the query, the query length refers to the number of terms, and the
miRNAs associated with the disease were utilized as the gold
standard. For miRNA-to-term rankings, the miRNAs associated with a
given disease were used as the query, the query length refers to the
number of miRNAs, and the terms constituting the disease name
were utilized as the gold standard. For both types of rankings, the
AUC values are shown stratified across various query lengths
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Table 1 Performance of the LSI model on disease or physiology
term queries against expert determined gold standards culled
from review papers

Name # Terms in # miRNAs in AUC
query Gold Std.

Cholesterol
Homeostasis [33]

2 19 0.94496

Endothelium
(endothelial) [34]

2 43 0.83294

Adipogenesis [35] 1 18 0.92189

Macrophage [36] 1 9 0.93975

HDL high density
lipoprotein [37]

4 13 0.83344

Asthma [38] 1 9 0.87289

COPD Chronic obstructive
pulmonary disease [38]

5 8 0.80491

Cystic Fibrosis [38] 2 10 0.93897

Idiopathic pulmonary
fibrosis [38]

3 8 0.90993

achieved by using miR2Disease categories as gold stan-
dards, suggesting that miR2Disease database may have
errors.

Term ranking bymiRNA query
Another use-case for researchers would be to functionally
annotate groups of miRNAs. This is relevant to genomic
experiments which generally yield many differentially
expressed miRNAs. Here, the miRNAs are treated as
the query and the relevant terms are rank ordered.
miR2Disease was used to select groups of miRNAs that
were assigned to specific diseases. To evaluate the per-
formance of the LSI model, the top 300 ranked terms
associated with the group of miRNAs were compared
to the disease descriptors in miR2Disease database. A
threshold of 300 terms was chosen because it would be
impractical for users to consider the entire prioritized
list of 68596 terms and also to reduce the computational
burden. The list of diseases and their respective term
AUCs are available in Additional file 2: Table S1B. The
AUCs for 59 diseases could not be obtained as none
of the constituent terms in the names of these diseases
were found amongst the top 300 ranked terms. Among
the queries which returned at least one disease term in
the top 300 ranked terms, 27 (46 %) queries produced
an AUC above 0.8. Surprisingly, the average AUC for
the gold standard II list was 0.54 and none of the dis-
ease queries produced and AUC above 0.8 (Additional
file 2: Table S2A). These results suggest that the top 300
terms extracted from the LSI model may be related to
other topics (such as molecular functions etc.) than only
diseases.

miRNA ranking bymiRNA query
A third use-case is prioritization of miRNAs in response
to a miRNA query. To evaluate the LSI model, we cal-
culated the cohesion, as described in Methods, amongst
the group of miRNAs assigned to specific diseases in
miR2Disease (gold standard I) or by subject matter
experts (gold standard II). The intent was to determine
how well the LSI cosine similarity measure captures the
real world clustering of related miRNAs. If a set of miR-
NAs are involved in a disease, then the miRNAs in the
set should ideally have high cosine association with each
other compared to remaining miRNAs that are not in the
set. Figure 5 shows the distribution of cohesions for 122
miRNA disease groups having at least two miRNAs. The
median cohesion for the LSI model was 0.83, compared to
the median cohesion of 0.36 for a co-occurrence method,
in which the similarity measure between miRNAs was
designated as the number of shared abstracts. For 88
(72 %) diseases, the cohesions derived via the LSI model
were significantly higher than chance when compared
with the cohesions derived via the co-occurrence model
(p ≤ 0.05, ranksum test) (Additional file 2: Table
S1C). In contrast, the median cohesion using LSI was
only marginally better than that produced via the co-
occurrence method using the gold standard II set, 0.577
and 0.576 respectively (Additional file 2: Table S2B). These
results suggest that as the body of literature grows, miR-
NAs may be associated with many different pathways and
functions beyond just specific diseases.
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Fig. 5 Distribution of cohesions for 122 diseases’ miRNA groups in
miR2Disease. The cohesions for the LSI model were compared with
those from the co-occurrence model. In the LSI model, the similarity
between any two miRNAs was calculated as the cosine of the angle
between their vectors in truncated LSI space. In the co-occurrence
model, the similarity between any two miRNAs was designated as the
number of shared citations
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Clustering and functional annotation of miRNAs
A major advantage of LSI is that the semantic relation-
ships amongst all miRNA documents may be measured in
lower dimensional (concept) space. Therefore, the cosine
values between miRNAs may be used as a similarity score
to cluster functionally related miRNAs. In addition, using
the LSI model, miRNA clusters may be annotated using
the top ranked terms as demonstrated above. Cosines
were calculated for all miRNA pairs and amiRNA-miRNA
cosine matrix was generated. The matrix was transformed
into an adjacency (binary) matrix using a cosine thresh-
old of 99 percentile of all pair-wise cosines (0.41715). The
adjacency matrix was truncated to include only 365 miR-
NAs that were part of the largest connected component.
The graph was clustered using UKmeans algorithm [27]
with k = 25 to generate 25 mutually connected clusters

(Fig. 6, Additional file 2: Table S3). For each cluster, the
LSI model was queried using all of its miRNAs and then
the top 300 terms were extracted for each cluster.
The terms were manually examined and used to label

each cluster in Fig. 6. For instance, the largest cluster con-
taining 73 miRNAs is associated with Alzheimer disease.
This number is slightly different from the number (64
miRNAs) of Alzheimer related miRNAs in miR2Disease
database. Interestingly, the largest miR2Disease group
of miRNAs (152) was associated with hepatocellular
carcinoma. It is important to note that the top nine
miR2Disease categories, containing between 114 to 152
miRNAs, were all associated with some form of cancer.
This suggests that there is a large bias in the miRNA
databases as of 2009. By comparison, we found that the
LSI-based clusters contained smaller number of miRNAs

Fig. 6 Clustering and functional annotation of miRNAs based on LSI derived associations. UKmeans clustering of the maximally connected
component (∼350 miRNAs) of the miRNA graph, in which an edge is assigned if the cosine value is above 99th percentile of all pair-wise cosine
values. The functional annotations for each miRNA cluster were selected from amongst the top 300 ranked terms obtained via querying the
truncated LSI space with the miRNA cluster
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that were associated with more specific terms, which were
functionally aligned. These results indicate that LSI based
clustering allows for more robust functional clustering
and more specific functional annotation beyond simply
assigning miRNAs to diseases.

miRLiN web tool
We developed a publicly available web-tool (http://
bioinfo.memphis.edu/mirlin) to provide access to the LSI
model, which contains the most recent and comprehen-
sive collection of miRNA abstracts in MEDLINE (Fig. 7).
The user can query the model with any combination of
terms or miRNAs. When querying with terms, the tool
ranks all miRNAs in the collection with respect to seman-
tic associations to the query. Alternatively, a miRNA query
may be used to compute associations with both miRNAs
and terms. The output of the tool is a ranked list of miR-
NAs and terms based on the degree of association (cosine
value) to the query. Selected miRNAs and terms can be
visualized as a network graph, where the nodes represent
the selected miRNAs and terms and the edges represent
cosine values above 0.4. Multiple nodes can be selected
from the graph display to retrieve their shared abstracts,
if applicable. The abstracts are displayed with the selected
terms and miRNAs highlighted for convenience.
For benchmarking, we compared the performance of

our web tool with two existing web tools, miRCancer [12]
and miRiaD [28]. While both tools are disease focused,
miRLiN is more flexible and can accept any type of query.
Also, both tools rely on databases with binary associations
between miRNAs and diseases. In contrast, miRLiN ranks
miRNAs based on the functional relevancy to the query
and also enables a genome-wide network view of miR-
NAs with multiple associations to one another. Additional
file 2: Tables S4A and S4B compare the results from the 3
web tools for ‘choriocarcinoma’ and ‘meningioma’ queries.
For the ‘choriocarcinoma’ query, miRCancer listed 3
miRNAs (hsa-mir-199b, hsa-mir-218, hsa-mir-34a) while
miRiaD listed 2 additional miRNAs (hsa-mir-141, hsa-
mir-126). Importantly, miRLiN retrieved all 5 miRNAs
within the top 15 ranked miRNAs (Additional file 2: Table
S4A). We manually evaluated the 10 additional miRNAs
retrieved by miRLiN. We found that miRNAs hsa-mir-
378a, hsa-mir-371b, hsa-mir-371a, hsa-let-7g, hsa-mir-
373, hsa-mir-141 and hsa-mir-15a were co-mentioned
with the query term in the same abstracts, but not in the
same sentences. It appears that these miRNAs were found
to be differentially expressed in choriocarcinoma cell
lines. One miRNA hsa-mir-145 was co-mentioned with
the query term in the same sentence that suggests a direct
link. Interestingly, hsa-mir-585 association with chorio-
carcinoma appeared to be indirect via its association with
hsa-mir-218. In addition, the abstract for hsa-mir-141
in miRLiN was different from the other two web tools,

suggesting that our abstract retrieval approach is slightly
different than the other two methods. Lastly, hsa-mir-624
did not appear to be related to choriocarcinoma or any
other type of cancer, thus appears to be a false discovery.
For the ‘meningioma’ query, miRCancer retrieved 4

miRNAs (hsa-mir-128, hsa-mir-200a, hsa-mir-224, hsa-
mir-335) and miRiaD retrieved 4 additional miRNAs
(hsa-mir-145, hsa-mir-190, hsa-mir-219, and hsa-mir-
29). Only two meningioma related miRNAs overlapped
between miRiaD and miRCancer. In comparison, miRLiN
retrieved all but one (hsa-mir-145, ranked 25th) amongst
the top 12 ranked miRNAs (Additional file 2: Table S4B).
Moreover, miRLiN identified two additional miRNAs
(hsa-mir-4417 and hsa-mir-185). Manual examination
found that hsa-mir-185 is in fact negatively associated
with meningioma, where the citation explicitly negates its
involvement in meningioma. This result reveals a short-
coming of our method, which does not take into account
negations and other parts of speech that are considered
in NLP based approaches. Lastly, manual examination
did not find an association between hsa-mir-4417 and
meningioma, albeit it is associated with other types of
cancer.

Discussion
We have developed an LSI based approach to prioritize,
cluster and functionally annotate miRNAs. LSI enables
representation of miRNAs and terms as vectors in low
dimensional space that can be compared against each
other. LSI provides an advantage over co-occurrence
based methods as semantic associations between enti-
ties take into account not only the entities being com-
pared but also indirect associations amongst all other
related entities in the collection. Several choices were
made in the construction of the model that affects its
performance. The rationale behind the choices and the
potential ramifications of the alternatives are discussed
below.
While building the miRNA document collection, cita-

tions that referenced more than 7 miRNAs were filtered
out. Manual examination of citations revealed that cer-
tain high throughput screening papers were associated
with many miRNAs but these papers did not describe
any functional information about the specific miRNAs.
For instance, many citations described sequencing exper-
iments that identified several miRNAs. Inclusion of such
citations in the model would create strong semantic
associations between pairs of miRNAs that are otherwise
remotely related. Better automatedmethods are needed to
identify and filter such abstracts that do not describe any
functional relationships.
Our results suggest that parsing of terms from miRNA

documents still needs improvement. We found that many
of the top 300 terms associated with groups of miRNAs

http://bioinfo.memphis.edu/mirlin
http://bioinfo.memphis.edu/mirlin
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Fig. 7 Screenshot of miRNA Literature Network (miRLiN) web tool. miRLiN enables users to prioritize miRNAs and terms according to queries.
Specific miRNAs or terms can be selected (upper left panel) and displayed as a graph (upper right panel). Single or multiple nodes on the graph may
be selected to view the abstracts associated with them in the lower panel
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were indeed too specific, relating to gene symbols or non-
standard abbreviations used in the papers. For the cur-
rent LSI model, only designated stopwords were removed
prior to factorization. Automated methods may need to
be investigated that can filter out additional non-useful
terms. Stemming of the terms to their roots may also be
useful in terms of reducing the dictionary size, although
strategies for expanding the roots to the most relevant
expansion will need to be devised once the terms are to be
used for functional annotation. Currently, the selection of
interesting functional annotation terms is still manual but
could be automated by restricting to MeSH [29], GO [30]
and KEGG [31]. However, this filtering strategy may result
in loss of interesting terms such as gene or transcription
factor names or phrases like ‘acaa-deletion’ that may indi-
rectly link the miRNAs to a physiology or a biological
function or a disease.
Several other methods may need to be investigated

in the future to improve the performance of the LSI
approach. For instance, different types of normalization
methods for the term-by-miRNA matrix, in addition to
the log-entropy method, may need to be investigated
[22]. In the current study, an entropy based method was
used to select k highest magnitude singular values. Other
strategies have been discussed in the literature that may
improve performance [32]. The web tool currently dis-
plays top 50miRNAs and 300 terms in response to a query.
Automated methods, such as one used for determining
the singular value threshold, may also be useful in devising
a prioritization threshold for cosines. Finally, adding col-
lections for other model organisms such as mouse, rat etc.
will make a more comprehensive text mining database for
miRNAs.

Conclusions
All together, we have demonstrated that an LSI based
approach provides a robust and automated method to
interrogate the large amount of literature that is accu-
mulating with respect to miRNAs. The approach enables
rapid prioritization of miRNAs in relation to keyword
or miRNA queries. Furthermore, the LSI based approach
allows for global clustering of all miRNAs based on func-
tional information in the literature and provides a method
for annotating groups of miRNAs with highly specific
terms and concepts.
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