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Abstract

Background: Genome median and genome halving are combinatorial optimization problems that aim at
reconstruction of ancestral genomes by minimizing the number of evolutionary events between them and genomes
of the extant species. While these problems have been widely studied in past decades, their solutions are often either
not efficient or not biologically adequate. These shortcomings have been recently addressed by restricting the
problems solution space.

Results: We show that the restricted variants of genome median and halving problems are, in fact, closely related.
We demonstrate that these problems have a neat topological interpretation in terms of embedded graphs and
polygon gluings. We illustrate how such interpretation can lead to solutions to these problems in particular cases.

Conclusions: This study provides an unexpected link between comparative genomics and topology, and
demonstrates advantages of solving genome median and halving problems within the topological framework.
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Introduction
One of the key computational problems in compara-
tive genomics is the reconstruction of ancestral genomes
based on gene1 orders in the extant species [1–4].
Since most dramatic changes in genomic architectures
are caused by genome rearrangements (such as rever-
sals, translocations, fusions, and fissions), this problem is
often posed as minimization of the total distance (i.e., the
number of genome rearrangements) between extant and
ancestral genomes along the branches of the evolution-
ary tree. The basic case of three given genomes represents
the genomemedian problem (GMP), which asks for recon-
struction of a single ancestral genome, called median
genome.
Since genome rearrangements preserve the gene con-

tent, it must be restricted to genes present in all input
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genomes with the same multiplicity. To account for genes
appearing different number of times in different genomes,
one need to consider other types of evolutionary events.
One of important sources of duplicated genes in genomes
are the whole genome duplication (WGD) events that
simultaneously duplicate each chromosome of a genome.
WGD events are known to happen in evolution of yeasts
[5], fishes [6], plants [7], and even mammalian species [8],
which inspires the problem of reconstruction of doubled
genomes, i.e., genomes immediately resulted from aWGD
in the course of evolution. This problem is often posed
for input genomes that have all genes present either in
a single copy (ordinary genomes) or in two copies (all-
duplicated genomes). In the simplest form, it is known
as the genome halving problem (GHP), which asks for an
ordinary genome for a given all-duplicated genome such
that the distance between them is minimized. In the case
of a given all-duplicated genome and an ordinary genome,
the problem, called the guided genome halving problem
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(GGHP), asks for an ordinary genome at the minimal total
distance from both given genomes.
While the GHP admits a polynomial solution [9–11],

its solution space is enormously large, which makes
it impractical to obtain biologically adequate doubled
genomes. The GGHP improves biological relevance by
using an additional ordinary genome. Similarly, solu-
tions for the GMP are not always biologically adequate
[12–14]. Furthermore, the GGHP and GMP are known
to be NP-complete in many models of genome rear-
rangements. This obstacles inspire researchers to study
restricted variants of the GGHP and GMP.
A recently introduced variant of the GMP, called the

intermediate genome median problem (IGMP), restricts
its solutions to the intermediate genomes, i.e., genomes
appearing in a shortest rearrangement scenario between
two of the three given genomes [13]. Similarly, for the
GGHP, there exists a variant (we called it the restricted
guided genome halving problem, RGGHP) that restricts
the constructed doubled genomes to the GHP solution
space [15]. It is worth to mention that the proposed
heuristic solutions [13, 15] to the IGMP and RGGHP are
based on similar ideas. We also remark that the com-
putational complexity of these problems remain an open
question.
In this study, we show that the IGMP and RGGHP are,

in fact, closely related, and put them into the framework
of embedded graphs and polygon gluings [16]. This frame-
work is traditionally studied in mathematical physics and
has applications in fields such as randommatrices [17] and
moduli space of curves [18]. It is also studied in compu-
tational geometry with applications in computer graphics
and related fields [19, 20]. More recently, it has been also
applied in computational biology for analysis of RNA sec-
ondary structure [21, 22]. We show that the topological
reformulation of the IGMP and RGGHP leads to solving
these problems in some particular cases. As a by-product,
we also determine the cardinality of the GHP solution
space.

Background
Genome rearrangements and breakpoint graphs
For the sake of simplicity, we restrict our analysis to
genomes with circular chromosomes. We represent a
circular chromosome consisting of n genes as a graph
cycle with n directed edges (encoding genes and their
strands) alternating with n undirected edges (connecting
the extremities of adjacent genes), called P-edges (Fig. 1a).
We label each directed edge with the corresponding gene
x, and further label its tail and head endpoints with xt and
xh, respectively. For a genome P withm chromosomes, the
genome graph G(P) is formed bym such cycles represent-
ing the chromosomes of P. We remark that P-edges form
a matching inG(P), called P-matching.

A Double-Cut-and-Join (DCJ) (also called a 2-break)
operation breaks a genome at two positions and glue the
resulting fragments in a new order, which model com-
mon types of genome rearrangements [23, 24]. A DCJ in
genome P corresponds in G(P) to the replacement of a
pair of P-edges with a different pair of P-edges2 on the
same set of four vertices.
For genomes P andQ composed of the same set of genes,

the breakpoint graph G(P,Q) is defined as the superposi-
tion of genome graphs G(P) and G(Q) (Fig. 2a). In other
words, G(P,Q) can be constructed by gluing the identi-
cally labeled directed edges in G(P) and G(Q). From now
on, we will ignore directed edges and assume that the
breakpoint graph G(P,Q) consists only of (undirected) P-
edges and Q-edges, forming P-matching andQ-matching.
Then G(P,Q) represents a collection of cycles consisting
of edges alternating between P-edges and Q-edges, called
PQ-cycles (or QP-cycles). Similarly, the breakpoint graph
can be defined for three or more genomes [4].
A DCJ scenario between genomes P and Q is a sequence

of DCJs transforming P into Q. A shortest such scenario
has the following property:

Lemma 1 ([23, 24]) In a shortest DCJ scenario between
genomes P and Q, each DCJ splits some PQ-cycle in their
breakpoint graph into two and thus increases the number
of PQ-cycles by one.

From Lemma 1, one can immediately get a formula
for the DCJ distance (i.e., the length of a shortest DCJ
scenario) between two genomes:

Theorem 2 ([23, 24]) The DCJ distance between
genomes P and Q on n genes is given by the formula

dDCJ (P,Q) = n − c(P,Q),

where c(P,Q) is the number of PQ-cycles in the breakpoint
graphG(P,Q).

Whole genome duplications and contracted breakpoint
graphs
The definition of breakpoint graph based on edge glu-
ing can be easily extended to genomes with duplicated
genes as follows. Let A be an all-duplicated genome and
G(A) be the corresponding genome graph. By the defi-
nition of an all-duplicated genome, the directed edges in
the genome graph G(A) come in pairs that are identi-
cally labeled (Fig. 1a). By gluing edges in these pairs, we
obtain the contracted genome graph Ĝ(A), where A-edges
form cycles (since each vertex is incident to two A-edges),
called A-cycles. For a doubled genome 2R resulted from a
WGD3 of an ordinary genome R, the contracted genome
graph Ĝ(2R) contains pairs of parallel R-edges, called 2R-
edges. It is clear that 2R-edges form a matching in Ĝ(2R).
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Fig. 1 For an all-duplicated genome A = (−a − b + g + d + f + g + e)(−a + c − f − c − b − d − e) and an ordinary genome
R = (−a− b− d− g+ f − c− e), a) the genome graphG(A); b) the contracted breakpoint graph Ĝ(A, R); c) a maximal AR-cycle decomposition of
Ĝ(A, 2R), which represents the ht-decomposition with respect to the clockwise orientation of A-cycles

Replacing 2R-edges with R-edges in Ĝ(2R) transforms it
into the (contracted) breakpoint graph Ĝ(R) = G(R).
For an all-duplicated genomeA and an ordinary genome

R composed of the same genes, the contracted breakpoint
graph Ĝ(A,R) (resp. Ĝ(A, 2R)) is defined as the superpo-
sition of Ĝ(A) and Ĝ(R) (resp. Ĝ(2R)), and can be con-
structed in the sameway as breakpoint graphs [9] (Fig. 1b).
The A-edges and R-edges in Ĝ(A,R) form A-cycles and
R-matching, respectively.
The graph Ĝ(A, 2R) can be decomposed into a collec-

tion of AR-cycles, called an AR-cycle decomposition. We
remark that there exists an exponential number of AR-
cycle decompositions of Ĝ(A, 2R). Below, we describe two
special types of AR-cycle decompositions. One is maxi-
mal AR-cycle decompositions, which have the maximum
possible number of AR-cycles, denoted cmax(Ĝ(A, 2R))

(Fig. 1c). Another type ofAR-cycle decompositions is con-
structed as follows. For each A-cycle in Ĝ(A, 2R), we fix
some orientation. Then each A-edge becomes a directed
edge. We decompose Ĝ(A, 2R) into a collection of AR-
cycles such that each R-edge in an AR-cycle connects the
head of one A-edge and the tail of another. We call such
AR-cycle decomposition an ht-decomposition of Ĝ(A, 2R).

GHP and RGGHP
Let us recall the formulation of the GHP and discuss the
structure of its solutions.

Problem (GenomeHalving Problem, GHP [10, 11, 24, 26])
For a given all-duplicated genome A, find an ordinary
genome R minimizing dDCJ (A, 2R).

In other words, the GHP asks for an ordinary genome R
maximizing cmax(Ĝ(A, 2R)). Existence of such genome is
guaranteed by the following theorem:

Theorem 3 ([25, 26]) For any all-duplicated genome A

max
R

cmax(Ĝ(A, 2R)) = n + k,

where maximum is taken over all ordinary genomes R, n
is half the number of A-edges in Ĝ(A) (i.e., the number of
distinct genes in A), and k is the number of even A-cycles in
Ĝ(A).

It was shown in [9] that the maximum of cmax(Ĝ(A, 2R))

is achieved on genomes R such that Ĝ(A,R) is R-
noncrossing as defined below.
For the graph Ĝ(A,R), an R-edge connecting vertices

of distinct A-cycles is called R-interedge. An R-edge con-
necting vertices of sameA-cycles is called R-intraedge. We
represent vertices and edges of each A-cycle in Ĝ(A,R) as
points and arcs on a circle, and draw all R-intraedges as
straight chords inside these circles.

Fig. 2 A shortest DCJ scenario transforming a genome P = (+a + d − c − b) (red color) into a genome Q = (+a − b + d + c) (black color). The
intermediate genomes are shown in blue color
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Definition 4 For a given all-doubled genome A and
an ordinary genome R, the contracted breakpoint graph
Ĝ(A,R) is R-noncrossing (Fig. 1b) if its every connected
component is formed by

• a single even A-cycle (i.e., A-cycle of even size) and
noncrossing R-intraedges (as chords within the
corresponding circle); or

• a pair of odd A-cycles (i.e., A-cycles of odd size) with
single R-interedge and noncrossing R-intraedges.

While the condition of the graph Ĝ(A,R) being R-
noncrossing guarantees that the genome R yields a solu-
tion to the GHP for an all-doubled genome A, this
condition is not necessary, and there exist other genomes
R solving the GHP (i.e., maximizing cmax(Ĝ(A, 2R)) as in
Theorem 3). Namely, while in an R-noncrossing Ĝ(A,R)

connected components with two odd A-cycles contain a
single R-interedge, other solutions may have more than
one R-interedge connecting such A-cycles. The following
lemma establishes a correspondence between the GHP
solutions and ht-decompositions of Ĝ(A, 2R).

Lemma 5 Let an ordinary genome R be a solution to the
GHP for an all-duplicated genome A. Then there exists an
orientation of A-cycles such that the ht-decomposition of
Ĝ(A, 2R) is maximal.

The proof of Lemma 5 that requires the notions of
non-orientable surfaces and gluings will be published else-
where.
We remark that the maximal decomposition of an R-

noncrossing graph Ĝ(A,R) proposed in [9] represents
the ht-decomposition for the clockwise orientation of A-
cycles (Fig. 1c). More generally, Lemma 5 provides an
important step towards a complete characterization and
enumeration of the solutions to the GHP.
Since the solution space of the GHP is enormously large,

one may restrict it by taking into account an additional
genome and posing the following restricted problem:

Problem (Restricted Guided Genome Halving Prob-
lem, RGGHP [15]) Given an all-duplicated genome A and
an ordinary genome B, find an ordinary genome R that is a
solution to the GHP for A and minimizes dDCJ (B,R).

Connection between IGMP and RGGHP
We recall the definition of an intermediate genome from
[13] (Fig. 2):

Definition 6 An intermediate genome between two
genomes is any genome appearing in a shortest DCJ
scenario between them. In other words, a genome I is
intermediate between genomes P and Q iff dDCJ (P, I) +
dDCJ (I,Q) = dDCJ (P,Q).

Similarly to R-noncrossing contracted breakpoint
graphs, for ordinary genomes P, Q, I, the breakpoint
graph G(P,Q, I) is called I-noncrossing if every its con-
nected component is formed by a single PQ-cycle and
noncrossing I-intraedges (as chords inside each PQ-cycle)
(Fig. 2). The following theorem describes an important
properties of intermediate genomes:

Theorem 7 ([13]) For ordinary genomes P and Q on n
genes, the following statements are equivalent:

(1) a genome I is intermediate between genomes P and
Q,

(2) G(P,Q, I) is I-noncrossing,
(3) the total number of PI- and QI-cycles in G(P,Q, I)

equals n + c(P,Q).

Similarly to the GHP, one can restrict the solution space
of the GMP to intermediate genomes and pose the follow-
ing problem:

Problem (Intermediate Genome Median Problem,
IGMP [13]) Given genomes P, Q, and an outgroup genome
R, find an intermediate genome I between genomes P and
Q that minimizes dDCJ (R, I).

From Theorem 7, one can observe that the interme-
diate genome I plays in the IGMP a similar role to
those of the ordinary genome R in the GHP. Indeed, let
PQ be an artificial all-duplicated genome formed by the
union of genomes P and Q. Then the breakpoint graph
G(P,Q, I) can be viewed as the contracted breakpoint
graph Ĝ(PQ, I), which has no odd PQ-cycles. If G(P,Q, I)
is I-noncrossing, then Ĝ(PQ, I) is also I-noncrossing, and
cmax(G(PQ, I)) = n + k, where k = c(P,Q) is the number
of cycles in Ĝ(PQ, I). More generally, the IGMP asks for a
shortest DCJ scenario transforming the breakpoint graph
G(P,Q,R) into the breakpoint graph G(P,Q, I) for some
genome I such that G(P,Q, I) is I-noncrossing. Thus, the
IGMP can be viewed as a particular case of the RGGHP,
where all cycles are even. We remark that Lemma 5 for
the IGMP can be refined as follows: the ht-decomposition
with respect to any orientation of PQ-cycles inG(PQ, I) is
maximal (since all PQ-cycles are even), and each cycle in
this decomposition is either a PI-cycle or a QI-cycle.
Below we will show that both RGGHP and IGMP can

be formulated within the framework of embedded graphs
and polygon gluings.

Methods
Embedded graphs and glued surfaces
We recall the following definition from the topological
graph theory:
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Definition 8 A (2-cell) embedded connected graph G�

is a graph whose vertices and edges are points and arcs on
a surface4 � such that

• the edges do not intersect (except at the vertices);
• the complement of G� in � represents a collection of

regions (called faces), and each face is a polygon.5

An embedded graph with m connected components is
defined as the union {G(1)

�1
,G(2)

�2
, . . . ,G(m)

�m
} of m connected

embedded graphs G(i)
�i

(each on its own surface).

We remark that the complement of the connected
embedded graph G� in � can be viewed as the result of
cutting � along the edges of G� . Conversely, G� can be
obtained by gluing the sides of its faces, which are poly-
gons. Let us denote this collection of polygons byP . Since
each edge of G� has two sides on �, the total number of
sides in P is twice the number of edges in G� , and the
edges of G� define a (perfect) matching on the sides in
P . Since the surface � is orientable, we can orient sides
of each face clockwise. Then the matched sides of P are
glued in G� head-to-tail.
For any collection of oriented polygons and a (perfect)

matching on their sides (Fig. 3a), we define the orientable
gluing as the head-to-tail gluing of sides in each matched
pair (Fig. 3b). It is easy to see that the orientable glu-
ing results in an embedded graph (possibly with several
connected components). Unless stated otherwise, under
polygon gluing we will understand the orientable gluing.
A polygon gluing according to a non-perfect matching

is called partial. It results in an embedded graph G� on a
surface � with boundary. Connected components of the
boundary are called holes. In this case, some edges of G�

represent glued pairs of sides, while the others represent
non-glued sides and form holes.
For a connected embedded graph G� with v vertices, e

edges, and f faces, the Euler formula states that

v − e + f + h(�) = 2 − 2g(�), (1)

where h(�) is the number of holes in � and g(�) is the
topological genus (number of handles) of �. Unless G� is
the result of a partial gluing, we have h(�) = 0.

RGGHP and embedded graphs
We start with establishing a correspondence between con-
tracted breakpoint graphs and embedded graphs.
Recall that for an all-duplicated genome A, the A-edges

in Ĝ(A) form a collection of A-cycles. Let us fix some
orientation o of these A-cycles. For each A-cycle with
k edges, we assign a k-gon whose sides correspond to
the cycle vertices (such that adjacent sides correspond to
adjacent vertices). Then the sides of each polygon inherit
labels from the corresponding cycle vertices, and the poly-
gon itself inherits the orientation from the cycle. We
denote the collection of these labeled oriented polygons
by Po(A).
For an ordinary genome R, the R-edges in Ĝ(A,R) form

an R-matching on the vertices of A-cycles and thus on
the sides of Po(A) (Fig. 4a, b). It further defines a poly-
gon gluing of Po(A) resulting in an embedded graph G =
Go(A,R) (Fig. 4d).

Lemma 9 Let A be an all-duplicated genome, R be an
ordinary genome, and o be some orientation of the A-
cycles. Then the vertices of Go(A,R) are in one-to-one
correspondence with the AR-cycles in the ht-decomposition
of Ĝ(A, 2R) with respect to the orientation o.

Fig. 3 a) A collectionP of three polygons (two 4-gons and one 8-gon) oriented clockwise, where blue dashed edges represent a matching on the
sides inP . b) The embedded graph G� with v = 5 vertices, e = 8 edges, f = 3 faces, and g(�) = 1 (i.e., � is a torus) resulted from the oriented
gluing ofP
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Fig. 4 For an all-duplicated genome A = (+a + c − b − d)(+a − b)(+c + d) (black edges) and an ordinary genome R = (+a − c − b + d) (blue
edges), a) the contracted breakpoint graph Ĝ(A, R), where the A-cycle is oriented clockwise; b) the polygonPo(A) obtained from Ĝ(A, R), where the
blue dashed lines represent a matching on the sides; c) the ht-decomposition of Ĝ(A, 2R) consisting of a single AR-cycle; d) the gluing ofPo(A)
resulting in an embedded graph Go(A, R) on a 2-torus (with v = 1, e = 4, f = 1)

Proof Recall that the vertices ofPo(A) correspond to the
A-edges in Ĝ(A). Any vertex of G is an image of some
vertices of Po(A) under gluing. Let us prove that two ver-
tices of Po(A) are glued iff the corresponding A-edges
belong to the same AR-cycle in the ht-decomposition
of Ĝ(A, 2R) (Fig. 4c, d). Consider an arbitrary directed
A-edge (U1,U2) in Ĝ(A). Let this edge belong to some
subpath (W1,V1), {V1,U1}, (U1,U2), {U2,V2}, (V2,W2) in
AR-cycle in the ht-decomposition of Ĝ(A, 2R). Note that
(W1,V1), (U1,U2), (V2,W2) are A-edges and {V1,U1},
{U2,V2} are (undirected) R-edges in Ĝ(A, 2R). Then in
Go(A,R) the side V1 is glued with U1 and the side V2 is
glued with U2 (in head-to-tail fashion), and so the vertex
corresponding to (U1,U2), which is the head of the sideU1
and the tail of the side U2, is glued with the vertices cor-
responding to (W1,V1) (the tail of V1), and (V2,W2) (the
head of V2). Conversely, since every gluing of matched
sides implies gluing of vertices that correspond to A-
edges from the same AR-cycle, vertices that correspond
to A-edges from distinct AR-cycles can not be glued. By
transitivity we obtain the statement of the lemma.

Lemma 10 Let P be a set of k polygons with an even
number of sides (even-gons) and 2l polygons with an odd
number of sides (odd-gons). Then the graph obtained by
gluing the sides of P contains at most n + k vertices, and
this upper bound is achieved by the embedded graphs on
k + l spheres.

Proof Let G = {G(1)
�1

,G(2)
�2

, . . . ,G(m)
�m

} be a result of some
gluing of P . By summing the Euler formula (1) over the
connected components of G, we get that the total number
of vertices in G is

v = n − (k + 2l) + 2m − 2
m∑

i=1
g(�i),

where n is half the number of sides in P and m is a num-
ber of connected components in G. We remark that in
order tomaximize vwe need tomaximizem andminimize∑m

i=1 g(�i). The maximum value of m is k + l, and it is
achieved iff each connected component of G is a result of
gluing of either one even-gon or two odd-gons. The min-
imum value of g(�i) is achieved iff �i is a sphere (so that
g(�i) = 0).
So, G has a maximal number of vertices (equal n+ k) iff

it has k+ l connected components (each on a sphere).

We remark that Lemmas 9 and 10 provide a topological
interpretation of the GHP and essentially give a new proof
of Theorem 3, which is much simpler than previous ones
[25, 26].

Lemma 11 Let A be an all-duplicated genome, R be an
ordinary genome, and o be some orientation of the A-cycles.
Then a DCJ on the genome R corresponds in the embedded
graph Go(A,R) to cutting two edges and gluing the resulting
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four sides in a new order (we call such operation a DCJ-
surgery).

Proof Let R′ be the result of a DCJ on R. Then the R-
matching and R′-matching on the sides of Po(A) differ
only in two pairs of matched sides. The correspond-
ing DCJ-surgery on Go(A,R) cuts the two pairs of sides
matched in R and glues the resulted four sides according
to R′.

Lemmas 9, 10, and 11 inspire us to pose the following
problem:

Problem (Graph Surgery Problem, GSP) Given an
embedded graph G, find a shortest sequence of DCJ-
surgeries that results in an embedded graph G′ on a
maximum number of spheres.

Theorem 12

(1) The RGGHP for an all-duplicated genome A and an
ordinary genome B is equivalent to the GSP for
Go(A,B), where o is some orientation of A-cycles.

(2) The IGMP for ordinary genomes P, Q, and an
outgroup genome T is equivalent to the GSP for
Go(PQ,T), where o is any orientation of PQ-cycles.

Proof (1) Let R be a solution to the RGGHP for an
all-duplicated genome A and an ordinary genome B. Let
S be a shortest DCJ scenario S between B and R. By
Lemma 5, there exists an orientation o of A-cycles such
that the ht-decomposition of Ĝ(A, 2R) is maximal. By
Lemmas 9 and 10, Go(A,R) is an embedded graph on
a maximum number of spheres. By Lemma 11, the DCJ
scenario S corresponds to a shortest sequence of DCJ-
surgeries transforming Go(A,B) into Go(A,R). Thus, the
RGGHP for the genomes A and B is equivalent to the GSP
for the embedded graph Go(A,B).
(2) Since all PQ-cycles in G(PQ,R) are even, the ht-

decomposition of G(PQ,R) has a maximum number of
PR- and QR-cycles for any orientation o of PQ-cycles.
Thus, the IGMP for genomes P, Q, T is equivalent to
the GSP for Go(PQ,T) with any orientation o of PQ-
cycles.

Results
Cardinality of the GHP solution space
Let us enumerate all the solutions to the GHP for a given
all-duplicated genome A. For each solution R, there exists
some orientation o such that Go(A,R) is an embedded
graph on the maximum number of spheres. This inspires
us to define a maximal gluing as a polygon gluing that
results in an embedded graph on themaximum number of
spheres. By Lemma 10, each connected component of this
graph has either one even-gon face or two odd-gon faces.

We remark that there exists a method [27] that for any
collection of polygons enumerate their gluings into an
embedded graph on a surface of a given genus. Since the
case of spheres is much easier than the general case, we
can derive explicit formulas here.

Lemma 13 ([16]) The number of ways to obtain a sphere
by gluing the sides of a 2k-gon equals the k-th Catalan
number Ck = 1

k+1
(2k
k
)
.

Lemma 14 The number of ways to obtain a single sphere
by gluing the sides of a (2n + 1)-gon and a (2m + 1)-gon
equals

Tm,n = 2mn + m + n + 1
m + n + 1

(
2m + 1

m

)(
2n + 1

n

)
.

Proof Let G� be the result of some maximal gluing of a
(2n+1)-gon and a (2m+1)-gon. By Euler formula (1), we
have

v − e + 2 = 2,

where v and e are the number of vertices and edges in G� ,
respectively. Since v = e andG� is connected, there exists
exactly one simple cycle in G� . Cutting G� along edges of
this cycle splits it into two connected components G1 and
G2, each of which is an embedded graph on a sphere with
one hole. So, the cycle is formed by all the edges whose
sides belong to different faces. Since G1 and G2 contain
non-glued sides, they represent the result of partial glu-
ings of the (2n+1)-gon and the (2m+1)-gon, respectively.
So, any maximal gluing can be obtained in the following
way: for some l, n − l pairs of the (2n + 1)-gon sides are
glued andm − l pairs of the (2m + 1)-gon sides are glued
(transforming each of these polygons into a sphere with
one hole), and the remaining 2l+1 sides from one polygon
are glued with the remaining 2l + 1 sides from the other
(resulting in a sphere).
Let us enumerate all the maximal gluings of a (2n + 1)-

gon and a (2m+1)-gon. This is equivalent to enumeration
of the pairs (G1,G2) and the ways to glue them into a
sphere. Let 2l+1 be the length of the holes inG1 andG2. It
is known [28] that there are

(2k+1
n−l

)
ways to obtain a sphere

with one hole from a (2k + 1)-gon by gluing k − l pairs of
its sides. Hence, for each l, there exist

(2m+1
m−l

)(2n+1
n−l

)
pairs

(G1,G2). If l = 0, then there is exactly one way to glue G1
and G2 together. If l > 0, then there are 2(2l + 1) ways
to glue them into a single sphere (the factors 2l + 1 and
2 account respectively for rotations and reflections of the
holes inG1 andG2 with respect to each other). Combining
these results together, we get that the number of maximal
gluings of a (2n + 1)-gon and a (2m + 1)-gon equals
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(
2m + 1

m

)(
2n + 1

n

)
+

n∑

l=1
2(2l +1)

(
2n + 1
n − l

)(
2m + 1
m − l

)

=
(
2m + 1

m

)(
2n + 1

n

) (
1 + 2mn

m + n + 1

)
.

Lemmas 13 and 14 lead to the following formula for the
number of solutions to the GHP.

Theorem 15 For a given all-duplicated genome A, let
2n1, . . . , 2nk be the lengths of the even A-cycles and 2m1 +
1, . . . , 2m2l + 1 be the lengths of the odd A-cycles in Ĝ(A).
Then the total number of ordinary genomes solving the
GHP for A equals

⎛

⎝
k∏

i=1
Cni

⎞

⎠ ·
∑

M

∏

(i,j)∈M
Tmi,mj ,

where the sum is taken over all matchings M on
{1, 2, . . . , 2l}.

Since the IGMP represents a particular case of the
RGGHP, where all cycles are even and themaximal gluings
correspond to the intermediate genomes, Theorem 15
implies the following corollary (first observed in [13]):

Corollary 16 ([13]) For given ordinary genomes P and
Q, the number of intermediate genomes equals

∏k
i=1 Cni ,

where 2n1, . . . , 2nk are the lengths of the PQ-cycles in
G(P,Q).

Solving the RGGHP in a particular case
Theorem 12 shows that the RGGHP for given all-
duplicated genomeA and ordinary genome B is equivalent
to the GSP for G = Go(A,B), where o is some orientation
of A-cycles. In this section, we show how one can solve
the GSP in the case of G being an embedded graph with a
single face on a torus (Fig. 5a).

Lemma 17 Let G be an embedded graph on a torus with
one face. If G contains a simple cycle of length 2l, then G
can be transformed into an embedded graph on a sphere
with l DCJ-surgeries.

Proof Consider a simple cycle of length 2l in G. If l > 1,
we apply a DCJ-surgery to two adjacent edges of this cycle
such that the graph remains on a torus, thus decreasing
the cycle length by 2 (Fig. 5a, b). After l − 1 such DCJ-
surgeries, we obtain a graph on a torus with a cycle of
length 2 (i.e., with l = 1).
If l = 1, we apply a DCJ-surgery that cuts the edges of

this cycle, resulting in a sphere with two holes of length 2,
and then glues each of these holes, resulting in a sphere.
So, we have transformed G into an embedded graph on a
sphere with l DCJ-surgeries.

Lemma 18 Let G be an embedded graph on a torus with
one face. If G contains two simple odd cycles that have the
total length 2l and share exactly one vertex, then G can be
transformed into an embedded graph on a sphere with l
DCJ-surgeries.

Proof Similarly to Lemma 17, we can apply l − 1 DCJ-
surgeries on G and obtain two loops (cycles of length 1)
that share the vertex. We then apply a DCJ-surgery that
cuts these loops, resulting in a sphere with a hole of length
4, and then glues this hole, resulting in a sphere. So, we
have transformed G into an embedded graph on a sphere
with l DCJ-surgeries.

Lemma 19 Let G be an embedded graph on a surface
with holes.

1. Let g be the genus of the surface of G and G′ be
obtained from G by gluing a pair of sides from
different holes. Then the surface of G′ has genus
g′ = g + 1.

2. If G has one face and can be glued into an
embedded graph on a sphere, then G is an

Fig. 5 A shortest sequence of DCJ-surgeries (of length 2) transforming an embedded graph G on a torus (with v = 9, e = 10, f = 1) into an
embedded graph H on a sphere (with v = 11, e = 10, f = 1). a) The embedded graph G; b) An (intermediate) embedded graph G′ on a torus with
v = 9, e = 10, f = 1; c) The embedded graph H. Blue crosses mark edges on which the DCJ-surgeries operate
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embedded graph on a sphere with holes of even
length. Furthermore, all simple cycles in G are holes.

Proof (1) Let G have v vertices, e edges, f faces and h
holes. Let C1 and C2 be the holes that contain the pair of
sides we are gluing. If at least one of the holes C1, C2 has
length greater than 1, then G′ has v′ = v − 2 vertices,
e′ = e−1 edges, f ′ = f faces, and h′ = h−1 holes. If both
C1 and C2 have length 1, then G′ has v′ = v − 1 vertices,
e′ = e− 1 edges, f ′ = f faces, and h′ = h− 2 holes. By the
Euler formula (1), we have g′ = g + 1 in both cases.
(2) Since G has one face, it results from a partial glu-

ing of a polygon. Obviously, any partial gluing resulting in
a sphere with holes of even length can be extended to a
gluing resulting in a sphere. Let us prove that any other
gluing can not be extended in such a way. Let g the genus
of the surface of G. Consider a gluing of G into an embed-
ded graph on a sphere. If g > 0, such gluing does not
exist, since the genus cannot be decreased by such gluing.
Hence, g = 0 and thusG is on a sphere with holes. If there
are holes of odd lengths, then some side from one of these
holes has to be glued with a side from some other hole,
which would increase the genus. So, all holes must be of
even length.
It remains to show that all the simple cycles in G are

holes. Let L be the total length of the holes, and v and e be
the number of vertices and edges of G, respectively. Con-
sider the embedded graph G′ resulting from contraction
of the edges belonging to holes inG. ThenG′ is an embed-
ded graph on a sphere, which has v+ h− L vertices, e− L
edges, and one face. From the Euler formula (1), we con-
clude that G′ is a tree, thus all its edges are bridges. So,
all edges of G except the edges belonging to the holes are
bridges.

Theorem 20 Let S be a shortest sequence of DCJ-
surgeries transforming an embedded graph G with a single
face on a torus into some embedded graph G̃ on a sphere.
Then there exists a cycle of length 2|S| in G.

Proof Denote the face of G (and G̃) by F ; clearly, F
represents an even-gon. Let M and M̃ be the (perfect)
matchings on the sides of F that define gluings resulting
in G and G̃, respectively. Let G′ be the result of a partial
gluing of F defined by the (non-perfect) matchingM ∩ M̃.
Then G′ can be glued into each of G and G̃. Since G̃ is
on a sphere, by Lemma 19 G′ is an embedded graph on
a sphere with holes of even length. Let 2m be the total
length of these holes. Note that every non-glued edge in
G′ represents a side of an edge in G that should be cut by
some DCJ-surgery from S . Since each DCJ-surgery in S
can create at most 4 non-glued sides, we have 4|S| ≥ 2m.
Let b be a bridge (i.e., an edge whose removal discon-

nects the graph) inG such that its sides s1, s2 are not glued

in G′. We will show that gluing of these sides into b in G′
transforms this graph into another embedded graph G′

b
still on a sphere with holes of even lengths. Since b is a
bridge, s1 and s2 cannot belong to distinct holes in G′. Let
C be a hole in G′ that contains both sides s1 and s2. In
G′
b, C is transformed into two holes C1 and C2 (possibly

empty) connected by the edge b. It is clear that the lengths
of C1 and C2 have the same parity. It remains to show that
both lengths are even. Assume that they are odd. Since b
is a bridge, no side of C1 is glued with a side of C2 in G.
Hence, at least one side from C1 is glued with a side from
a hole different from C1 and C2. Similarly, at least one side
from C2 is glued with a side from a hole different from C1
and C2. By Lemma 19, gluing of two sides from different
holes creates a handle, implying that G should contain at
least two handles, a contradiction to G being an embed-
ded graph on a torus (i.e.,G has exactly one handle). Thus,
both holes C1 and C2 in G′

b have even length, while the
other holes in G′

b are inherited from G′. This proves that
G′
b is an embedded graph on a sphere with holes of even

lengths.
Let H ′ be an embedded graph obtained from G′ by glu-

ing all non-glued sides of bridges in G. Then H ′ is on a
sphere with holes of even lengths. Note that any edge inG,
whose sides are non-glued in H ′, is not a bridge and thus
belongs to some simple cycle in G.
Consider a gluing ofH ′ intoG. A handle inG can be cre-

ated by gluing either two sides from distinct holes, say C1
and C2, or from one hole, say C, in H ′. In the former case,
sides from C1 and C2 cannot be glued with sides from any
other holes (otherwise, there would be at least two handles
in G by Lemma 19). The sides from Ci (i = 1, 2) cannot be
glued with any other side from Ci, since this would result
in a bridge missing in H ′. Thus, the sides from C1 and C2
are glued into edges that form a simple cycle inG of length
2l (equal the length of each Ci). Since |C1| + |C2| ≤ 2m,
we have 4l ≤ 2m. In the latter case, we claim that the
edges resulted from gluing of the sides of C form two sim-
ple cycles in G, which share a vertex. Indeed, let 2p be the
length of C, and H ′ have V + 2p vertices, E + 2p edges,
and h holes. After gluing the sides of C (as inG), we obtain
a graph on a torus with V + v vertices, E + p edges, and
h−1 holes, where v vertices and p edges are obtained from
vertices and edges in C and form a (possibly non-simple)
cycle C̃ in G. By the Euler formula (1), we have v = p − 1,
and so C̃ is formed by two simple cycles sharing a ver-
tex. Clearly, either one of these simple cycles has an even
length, or C̃ itself has an even length. Let the even cycle
have the length 2l, then 4l ≤ 2p ≤ 2m.
Since S transforms G into G̃, the above analysis implies

that some cycle of length 2l should be cut by DCJ-
surgeries from S . Hence, 4l ≤ 2m ≤ 4|S|. By Lemmas 17
and 18, we have |S| ≤ l. Thus, |S| = l, and there exists a
cycle of length 2|S| = 2l in G.
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Theorem 20 inspires us to design the following algo-
rithm for solving the RGGHP for given all-duplicated
genome A and ordinary genome B such that the con-
tracted breakpoint graph Ĝ(A,B) corresponds to an
embedded graph on a torus with a single face (hence,
Ĝ(A,B) has a single A-cycle of even length).

1. Construct Ĝ(A,B) and fix an arbitrary6 orientation o
on its A-cycle.

2. From Ĝ(A,B) and o, construct the embedded graph
Go(A,B).

3. Using the breadth-first search (BFS) starting at each
vertex in Go(A,B), find a shortest even cycle C in
Go(A,B).

4. Construct a sequence of |C|/2 DCJ-surgeries that cut
the edges of C and transform Go(A,B) into an
embedded graph on a sphere.

5. Apply the corresponding DCJs to the genome B and
return the resulting genome as a solution to the
RGGHP.

We remark that our algorithm runs in polynomial time.
Indeed, the most time-consuming step is the BFS starting
at each vertex of Go(A,B). Since in Go(A,B) the number
of edges equals n = |B| = |A|/2 and the number of vertices
equals n − 1, this step runs in O(n2) time.

Discussion
In the present study we establish a somewhat unexpected
link between the restricted variants of genome median
and halving problems and embedded graphs. We provide
a new simple proof for existence of the GHP solutions
as well as completely describe the structure of the GHP
solution space and determine its cardinality. We also show
how the topological framework can be applied for solv-
ing the restricted guided genome halving problem (and
the intermediate genome median problem) in a particu-
lar case. In further development we plan to address the
topological problem of an embedded graph surgery (GSP)
on an arbitrary orientable surface (i.e., a sphere with han-
dles), which may provide better heuristic solutions for the
RGGHP and IGMP.
We remark that similar topological interpretations exist

for other comparative genomics problems and can pro-
vide intuition for their solution. For example, analysis of
non-orientable surfaces (such as Klein bottle) seems to be
relevant to the double distance problem asking for a max-
imal cycle decomposition of the contracted breakpoint
graph of a given all-duplicated genome and an ordinary
genome. Also, embedded graphs on surfaces with bound-
aries (holes) can be related to models including genome
rearrangements along with gene insertions and deletions
[29, 30].

Endnotes
1 Some studies base their analysis on synteny blocks

rather than genes. We will use the term “gene” to refer to
an actual gene or a synteny block.

2Here we view genome P as being transformed and P-
edges as changing.

3A WGD event can simultaneously duplicate each cir-
cular chromosome in genome Q either into a single
circular chromosome or into two identical circular chro-
mosomes, which have the same contracted genome graph
[25]. We assume that a doubled genome 2R may contain
duplicated chromosomes of both types.

4Under a surface we understand a 2-dimensional com-
pact orientable manifold without boundary (e.g., a sphere
or a torus). We distinguish surfaces up to homeomor-
phisms.

5Under a polygon (n-gon) we understand a topological
disc, whose boundary is formed by a collection of n sides.

6 There exist two orientations of the A-cycle in Ĝ(A,B),
both corresponding to the same ht-decomposition.
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