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Abstract

Background: The complexity and dynamics of microbial communities are major factors in the ecology of a system.
With the NGS technique, metagenomics data provides a new way to explore microbial interactions. Lotka-Volterra
models, which have been widely used to infer animal interactions in dynamic systems, have recently been applied
to the analysis of metagenomic data.

Results: In this paper, we present the Lotka-Volterra model based tool, the Metagenomic Microbial Interacticon
Simulator (MetaMIS), which is designed to analyze the time series data of microbial community profiles. MetaMIS first
infers underlying microbial interactions from abundance tables for operational taxonomic units (OTUs) and then
interprets interaction networks using the Lotka-Volterra model. We also embed a Bray-Curtis dissimilarity method in
MetaMIS in order to evaluate the similarity to biological reality. MetaMIS is designed to tolerate a high level of missing
data, and can estimate interaction information without the influence of rare microbes. For each interaction network,
MetaMIS systematically examines interaction patterns (such as mutualism or competition) and refines the biotic role
within microbes. As a case study, we collect a human male fecal microbiome and show that Micrococcaceae, a
relatively low abundance OTU, is highly connected with 13 dominant OTUs and seems to play a critical role. MetaMIS
is able to organize multiple interaction networks into a consensus network for comparative studies; thus we as a case
study have also identified a consensus interaction network between female and male fecal microbiomes.

Conclusions: MetaMIS provides an efficient and user-friendly platform that may reveal new insights into
metagenomics data. MetaMIS is freely available at: https://sourceforge.net/projects/metamis/.
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Background
Propelled by 16S ribosomal RNA (rRNA) sequencing tech-
nologies, there has recently been a growing interest in char-
acterizing the role of complex microbial communities in a
diverse ecosystem. As a result, an increasing number of
samples from marine, soil [1], animal feces, and mamma-
lian gut microflora [2] has been placed in the public do-
main. Studies have shown that health status, habitat types,
and external perturbations are some of the key factors that
can change a microbial community in specific ecosystem
niches. For instance, the human gut harbors a vast number
of microbial species, and imbalances in the intestinal
microbiome have been linked with such chronic diseases as

obesity [3], inflammatory bowel disease [4], and type 2 dia-
betes [5]. Marine microbes sensitive to changing climates
also play an important role in ocean feedback, being associ-
ated with such phenomena as surface warming, ice melting,
and acidification, as well as climate change [6]. From the
human gut to global oceans, metagenomic studies offer
new insights into compositional stability. However, a deeper
investigation into microbial interactions, including mutual-
ism (+/+), competition (−/−), parasitism or predation (+/−),
commensalism (+/0), and amensalism (−/0), as reviewed by
Faust and Raes [7], is required to fill gaps in understanding
of the relationships between microbial communities and
hosts or environments. Fortunately, with recent efforts on
bioinformatics, some computational approaches using
metagenomic data have suggested that association network-
ing and modeling show promise as tools for characterizing
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multilevel interactions and elucidating the temporal dy-
namics exhibited by microbial communities.
Discerning the full extent of the web of microbial inter-

actions is a difficult task. The conventional approach is to
observe the growth behavior in mixed cultures of only a
very few microorganisms [8]. Recently, high-throughput
interaction inference approaches, such as Sparse Correla-
tions for Compositional data (SparCC) [9], the Learning
Interactions from MIcrobial Time Series (LIMITS)
algorithm [10], co-occurrence networks [11], the SParse
InversE Covariance estimation for Ecological ASsociation
Inference (SPIEC-EASI) [12], and the Rule-based Micro-
bial Network (RMN) algorithm [13], have been proposed
for modeling microscale dynamics using 16S rRNA
marker gene sequences. These approaches may be roughly
divided into two categories. Correlation-based methods,
including SparCC [9] and co-occurrence networks [11],
aim to develop algorithms that combine correlation
methods in order to decipher highly dependent temporal
microbial communities that have usually proved refractory
to classical correlation analysis. Although correlation is
straightforward and easy to conduct, it nevertheless does
not seem to be a proper measure of species interactions,
and is limited to inferring non-directional interactions [11,
12]. Modeling-centered approaches, on the other hand, in-
cluding the LIMITS [10], SPIEC-EASI [12], and RMN
[13] algorithms, rest on special biological assumptions and
statistical techniques, and usually employ a combined
strategy in order to infer microbial interactions. LIMITS,
for instance, combines a spare linear regression with a
bootstrapping strategy in order to incorporate interactive
relations iteratively into an interaction network [10].
SPIEC-EASI assumes the underlying ecological associ-
ation network to be sparse and accordingly relies on
sparse inverse covariance selection and a neighborhood
selection strategy to reconstruct a non-directional inter-
action network [12]. The RMN algorithm bypasses the
NP-hard problem of finding a network with the optimum
number of interactions and proceeds directly to the con-
struction of a triplet subnetwork in which the triplet has a
convergent recipient that is repressed by one interaction
and simultaneously activated by another [13].
Although much work has been done to date, more study

is necessary to ascertain the effects of inferring a direct
comprehensive interaction network on a variety of network
inference methods. Among the methods mentioned above,
the LIMITS and RMN algorithms offer a more sound theor-
etical basis for inferring a direct interaction network, but
cause complications for the comprehensive inference of an
interaction network. To that end, early attempts at exploit-
ing a direct comprehensive interaction network from micro-
organisms have been successfully conducted using the
Lotka-Volterra model, as first proposed by Jansen [14] and
commonly employed by ecologists, which can describe

systematically a dynamic trophic web of more than two
macro-organism populations. When applied to a metage-
nomic abundance generator, the Lotka-Volterra model can
successfully generate a simulated microbial community
given a set of known interspecies interactions [10, 11, 15].
When applied to simulating microbial interactions, recent
studies on lake ecosystem [16], mouse intestine [17] and
cheese-making environments [18] have shown that Lotka-
Volterra equations can quantify microbial interactions and
successfully predict microbiome temporal dynamics.
Moreover, a previous study has demonstrated that the distri-
bution of simulated interaction pairs in an ecological system
can be used to predict microbiome stability. For instance, a
cooperative network of microbes (i.e., one characterized by
mutualism) is often unstable, while a higher proportion of
competitive interaction pairs (−/−) helps the host to
maintain a stable microbial community [15]. Thus the
Lotka-Volterra model, which, as mentioned, is commonly
used to illustrate the dynamics of macro-ecologcal commu-
nities, may shed light on the complex world of microbial
communities.
Detecting and investigating the structure of interactions

in microbial ecosystems is, then, absolutely critical, but the
reconstruction of ecosystem-wide association networks
using the Lotka-Volterra model is far from straightforward.
Here we present a stand-alone tool called MetaMI that
aims to facilitate the systematic inference of microbial inter-
actions. The characteristics of MetaMIS are as follows. (i)
User-friendly interface: we have constructed an easy-to-use
graphic user interface (GUI) for scientists, even those who
lack programing skills, to infer microbial interactions. (ii)
Network topological visualization: MetaMIS offers two
ways to visualize the inferred microbial interactions. If there
are N microbes in an interaction network, a general view
includes the minimum number of interaction pairs to
describe N microbes. A specific view of a single microbe
takes into account the interactive behaviors of one microbe
in relation to all others. (iii) Maximal detection of rare
population: while rare species are usually regarded as noise
in most quantitative ecological analysis, MetaMIS provides
the opportunity to evaluate the fitness of each rare species
in a microbial system by means of an abundance-ranking
strategy. (iv) Consensus network: MetaMIS is able to unify
multiple interaction networks into a confident network.
To provide a user friendly interface, MetaMIS was de-

signed to accept microbial abundance profiles in regular
text format on both Mac and Windows (64-bit) platforms.
MetaMIS has been tested using a human male intestinal
microbiota dataset composed of 317 time points and 92
microbes at the family level and produced 27 prediction
models in around 5 min on a current desktop computer.
MetaMIS generates outputs in several formats that can be
used with other popular network visualization software,
such as Gephi [19] and Cytoscape [20]. The central purpose
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of MetaMIS is to provide clues about the interactions
among microbes and about specific microbes in a microbial
community. To our knowledge, no similar tool is available.
MetaMIS is free to the public and can be accessed at a pub-
lic IP address space without any login requirement: https://
sourceforge.net/projects/metamis/.

Implementation
MetaMIS: overview
The central organizing metaphor of MetaMIS is the con-
struction of microbial interaction networks, with micro-
bial members, i.e., operational taxonomic units (OTUs).
The network is presented with nodes and directed edges,
in which nodes are OTUs and directed edges are inferred
microbial interactions from source to target. The network
is constructed based on Lotka-Volterra dynamics (Eq. (1)),
which is a conventional way of investigating fluctuations
in the populations of wild animals. MetaMIS is the first
tool for inferring metagenomic microbial interactions in
manner that is automatic and allows for the direct
visualization of microbial interaction networks through a
user-friendly interface. Figure 1 outlines the rationale of
MetaMIS; Fig. 2 depicts the workflow and key features of
MetaMIS using screenshots; and Fig. 3 provides a sche-
matic representation of the interrelationships among these
features. The detail operation of MetaMIS is introduced in
the supplementary (Additional file 1).
The foundation of MetaMIS was the inference of micro-

bial interactions following an abundance-ranking strategy
(Fig. 1) that involves ranking OTUs according to their aver-
age abundance levels among samples, generating multiple
interaction networks and retaining the maximum number
of low abundance OTUs in an interaction network (Fig. 1b).
This strategy was derived in a straightforward fashion from
an empirical rule that dominant microbes are most likely to
be observed and analyzed in experimental microbial
abundance profiles, and this approach greatly simplifies the
complex problem of finding a conserved interaction sub-
network. For each interaction network, there were two pos-
sible outcomes (a successful or failed interaction network
(Fig. 1a) realized by a generalized form of Lotka-Volterra
equation (Eq. (2)). A set of predicted interactions that could
successfully regenerate abundance profiles within the pre-
scribed period of time constituted a successful network.
Otherwise, failure could be due to inaccurate inference of
microbial interactions. The regenerated abundance profiles
(successful cases) should be further compared with the ori-
ginal data based on the Bray-Curtis dissimilarity (Eq. (3)). A
smaller Bray-Curtis dissimilarity (BCD) would mean that
interactions could reproduce microbial abundance similar
to the original and were more likely to reveal the under-
lying interactive relations of a microbial community. These
processes are easy to carry out using the user-friendly inter-
face of MetaMIS (Fig. 2).

Results
Case study: human intestinal microbiome
In the case study, human fecal microbiomes were collected
daily from two healthy subjects, one female, for 6 months,
and one male, for 15 months [21], which are publicly avail-
able at MG-RAST:4457768.3-4459735.3. The male fecal
microbiomes containing more time points were used to
demonstrate the functionality of MetaMIS. We constructed
27 interaction networks in total over a span of 420 days,
the most compact of which was composed of 14 high
abundance families. Micrococcaceae, the least abundant
among the 14 families, influenced the other 13. According
our calculations, Micrococcaceae repressed Oxalobactera-
ceae, Bacteroidaceae, Porphyromonadaceae, Rikenellaceae,
Eubacteriaceae, Lachnospiraceae, Ruminococcaceae, and
Verrucomicrobiaceae, but activated Neisseniaceae and Pre-
votellaceae. Comparative analysis of the male and female
fecal microbiomes using MetaMIS revealed a consensus
interaction network.

Fig. 1 The rationale behind MetaMIS. a The input of MetaMIS consists of
microbial abundance profiles, and after its implementation there are two
possible outcomes, success or failure of the interaction network. b In a
microbial community, abundance-ranking OTUs appeared sequentially in
different network
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Functionality of MetaMIS
Using the greengenes taxonomy, the total number of taxa
assigned to the family level was 92 over 317 time points
for the male fecal microbiome [21]. Using the default
settings of MetaMIS, we detected 14 high abundance fam-
ilies, 22 that were low abundance and not rare, and 56
rare families (Fig. 1a), with a total of 27 interaction net-
works. Results from an interaction network with the 14
most abundant families are schematized in Fig. 3a–g. In
general, the original abundance profiles (Fig. 3a), mea-
sured by Eq. (1), seem to present more fluctuation than
the predicted ones (Fig. 3b), which were generated by Eq.
(2). For each interaction outcome, MetaMIS displayed an
interaction network containing the minimum number of
strongest interactions to cover all families in this network
(Fig. 3D-1): Global view). MetaMIS provides a scrolling
bar for users to modify more or less interactions accord-
ing to interactive strength. In brief, the global interaction
network showed Micrococcaceae was the least abundant
among the 14 families (Table 1), but played the most
influential role in the system. A specific view served to
display the overall interactive relations of Micrococcaceae
with the other 13 families (Fig. 3D-2: Specific view).
Micrococcaceae showed strong negative relations with
eight bacterial families, Oxalobacteraceae, Bacteroidaceae,

Porphyromonadaceae, Rikenellaceae, Eubacteriaceae, La
chnospiraceae, Ruminococcaceae, and Verrucomicrobia-
ceae, and was positively associated with Neisseriaceae and
Prevotellaceae (Fig. 3D-2). In the specific view, weaker
interactions with Micrococcaceae could be observed with
clarity. Micrococcaceae acted as a regulator that strongly
influenced the other families but was only slightly influ-
enced by them (Fig. 3D-2). It is worth noting that Micro-
coccaceae tended to repress core microbes but to activate
none-core taxa (Table 1).
Furthermore, three approaches were used to visualize the

interactive relations between one microbe and the others
(Fig. 3e–g). The most frequent interactive relation forMicro-
coccaceae, i.e., ID14, was parasitism or predation (+/−), as
shown in Fig. 3e. The interactive strength of each interaction
pattern is shown in Fig. 3f. According to the PCA decom-
position of the frequency of interaction patterns, ID14 is
located in the direction of parasitism or predation (+/−) and
amensalism (−/0) (Fig. 3g).
Among 27 successful interaction networks, 18 demon-

strated similar predictive power, with BCD (Eq. (3)) ranging
from 0.18 to 0.22 (Fig. 3h): 14-OTU, 21-OTU, 37-OTU, …,
and 52-OTU. Other than the 14-OTU and 21-OTU inter-
action networks, 16 rare families participated sequentially
in the remaining successful networks, from 37-OTU to 52-

Fig. 2 The interface of MetaMIS. A typical analytic workflow proceeds through four steps: (a) uploading formulated data file(s), (b) specifying the
parameters, (c) performing the calculations for the network, and (d) visualizing the outputs, which comprise five panels, (I) to (V). See Fig. 3 for a
detailed description of these panels
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OTU. Among these 16 rare families, Coriobacteriaceae
(core = 85.8%), Acidaminococcaceae (core = 76.3%), and
Clostridiaceae (core = 98.7%) were frequently present at the
317 time points (Table 1) and showed different abundance
profiles with others (measured by Pearson correlation
among microbial members (0.06, p = 0.52)).

Examining the dependency of interacting pairs
As noted, Lotka-Volterra models have been commonly used
to infer animal interactions in ecological studies. For this tool,
we applied the Lotka-Volterra model to the investigation of
microbial interactions, and further provided a validation cal-
culation by measuring the metabolic complementarity index

Fig. 3 The analytic schema of MetaMIS. Panel I contains the original (a) and predicted (b) abundance profiles. Inferred microbial interactions are
displayed in tabular form (c) and topologically (d), as shown by the global (D-1) and specific views (D-2) in Panel II. Panel III summarizes the
distribution of interaction patterns (e) and their interactive strength (f) for each microbe. The PCA plot is intended to help users to identify key
microbes (g). Panel IV provides a systematic diagram (h) to monitor and compare the performance from diverse interaction networks. Panel V
displays a consensus network (i) in which interactions have more consensus directions among interaction networks
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Table 1 The male intestinal microbiome was ranked according to the average abundance among 317 time points

MetaMIS ID Microbial name Average abundance Core ratio

ID 1 Lachnospiraceae 24.89% 100.00%

ID 2 Bacteroidaceae 24.61% 100.00%

ID 3 Ruminococcaceae 9.97% 100.00%

ID 4 Neisseriaceae 6.00% 2.20%

ID 5 Unclassified 4.34% 100.00%

ID 6 Rikenellaceae 3.98% 100.00%

ID 7 Porphyromonadaceae 3.60% 99.40%

ID 8 Staphylococcaceae 3.07% 1.30%

ID 9 Prevotellaceae 2.53% 63.40%

ID 10 Clostridiales Family XI. Incertae Sedis 2.23% 54.30%

ID 11 Oxalobacteraceae 1.40% 95.60%

ID 12 Eubacteriaceae 1.30% 99.70%

ID 13 Verrucomicrobiaceae 1.21% 76.00%

ID 14 Micrococcaceae 1.04% 0.90%

ID 15 Actinomycetaceae 0.77% 23.70%

ID 16 Leptotrichiaceae 0.67% 0.90%

ID 17 Enterobacteriaceae 0.56% 82.00%

ID 18 Veillonellaceae 0.54% 55.50%

ID 19 Fusobacteriaceae 0.51% 16.40%

ID 20 Nitrosomonadaceae 0.50% 59.90%

ID 21 Dietziaceae 0.45% 22.40%

ID 22 Campylobacteraceae 0.43% 42.90%

ID 23 Pasteurellaceae 0.39% 18.30%

ID 24 Sporolactobacillaceae 0.36% 0.60%

ID 25 Chromatiaceae 0.33% 94.00%

ID 26 Sphingobacteriaceae 0.28% 98.70%

ID 27 Corynebacteriaceae 0.27% 21.50%

ID 28 Flavobacteriaceae 0.26% 1.30%

ID 29 Streptococcaceae 0.25% 65.90%

ID 30 Desulfovibrionaceae 0.24% 65.00%

ID 31 Erysipelotrichaceae 0.23% 98.70%

ID 32 Dermacoccaceae 0.19% 3.50%

ID 33 Blattabacteriaceae 0.16% 4.70%

ID 34 Ectothiorhodospiraceae 0.13% 0.60%

ID 35 Nocardioidaceae 0.12% 9.50%

ID 36 Aerococcaceae 0.11% 9.10%

ID 37 Coriobacteriaceae 0.10% 85.80%

ID 38 Spirochaetaceae 0.10% 0.90%

ID 39 Acidaminococcaceae 0.09% 76.30%

ID 40 Intrasporangiaceae 0.09% 0.60%

ID 41 Clostridiaceae 0.09% 98.70%

ID 42 Acholeplasmataceae 0.08% 0.30%

ID 43 Rhodocyclaceae 0.07% 0.60%

ID 44 Nocardiaceae 0.07% 1.90%
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of the datasets. Metabolic complementarity is an index that
measures the trophic relations between two microbes based
on a metabolic network [22]. The index may reflect the inter-
dependence of each microbe pair, in which the metabolic
waste of one microbe is necessary for the other. We observed
that positive interactions within the male intestinal micro-
biome tended to be associated with a larger metabolic com-
plementary index while negative interactions tended to reach
a lower level (Fig. 4a). Alternatively, if the interaction of two
microbes is set up randomly, the trophic relations will show
no significant difference between two groups (Fig. 4b). Thus,
the results using male intestinal microbiomes suggested that
the inferred interaction was reasonable.

Comparative study
MetaMIS is able to organize multiple interaction networks
into a consensus interaction network. In this section, we
identify consistent microbial interactions among male and
female fecal microbiomes via consensus interaction net-
works. In the analysis of female fecal microbiome, we fo-
cused on the influence of rare or low abundance families
on the inference of microbial interactions. The female fecal
microbiome contained 9 high, 11 non-rare, and 49 rare
families. The latter 60 rare or low abundance families were
tested to determine their influence on the high abundance
9-OTU interactive network independently. Our results
showed that the female intestinal interactive network (BCD
= 0.175) was greatly influenced by rare or low abundance
families, 7 out of 60 relatively low abundance OTUs
showed significant improved effects in generating the inter-
action profiles (the median of BCD was 0.167, p < 0.05, Stu-
dent’s t test).
For each microbiome (male and female), a consensus inter-

action network was organized from the comparison of all
interaction networks using one sample z-test for proportions,
instead of measuring the change of interaction strengths. The
female microbiome, containing 69 families over 124 time-
series points, in which 63 were overlapped with the male
microbiome, generated 1,128 confident positive interactions
and 937 negative interactions. The male microbiome pro-
duced more interactions in its consensus network, for a total

of 1,618 positive and 2,643 negative interactions. With regard
to the absolute interactive strength, 26 stronger interactions
among 26 families were coherent between the male and
female microbiomes (Fig. 5). The relative abundance or core
ratio of 26 families is shown in Table 2. Acting as transmit-
ters, the rare families Celerinatantimonadaceae, Micrococca-
ceae, Brevibacteriaceae, Gordoniaceae, and Mycobacteriaceae
played key roles to influence others. Celerinatantimonada-
ceae repressed four rare or low abundance non-core families,
Bacillaceae, Actinomycetaceae, Aerococcaceae, and Coryne-
bacteriaceae, and one rare core families, Clostridiaceae.
However, Micrococcaceae and Brevibacteriaceae tended to

Table 1 The male intestinal microbiome was ranked according to the average abundance among 317 time points (Continued)

ID 45 Comamonadaceae 0.06% 5.40%

ID 46 Bradyrhizobiaceae 0.06% 4.40%

ID 47 Enterococcaceae 0.05% 2.80%

ID 48 Caulobacteraceae 0.05% 1.30%

ID 49 Pasteuriaceae 0.05% 0.30%

ID 50 Gemmatimonadaceae 0.05% 0.90%

ID 51 Burkholderiaceae 0.05% 2.50%

ID 52 Spiroplasmataceae 0.05% 0.30%

The core ratio represents the percentage frequency of one OTU appeared across time-series samples
Only 52 of 92 OTUs are listed hereThe large core ratio represents that this OTU is present in more time-series samples

Fig. 4 Predicted microbial interactions show biological connections.
a Positive interactions (black circles) were rich in metabolic
complementarity. Negative interactions (white circles) generally
showed lower levels of metabolic complementarity. b There were
no differences of metabolic complementarity between the two
groups in which positive or negative interactions were randomly
selected. The error bar represented the standard error of metabolic
complementarities for each group
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activate low level non-core families. Gordoniaceae had strong
positive association with high abundant core families,
Verrucomicrobiaceae, Bacteroidaceae, Enterobacteriaceae,
and Rikenellaceae. Mycobacteriaceae colonized in male intes-
tinal tracts activated two highly abundant non-core families,
Prevotellaceae and Clostridiales Family XI. Incertae Sedis.
The community of these highly abundant families, acting as
receptors, seemed to be greatly influenced by rare or low
abundance microbes. Furthermore, Micrococcaceae was also
identified as an influential bacterial family, not only in the
male 14-OTU interaction network, but also in this consensus
interaction network, reflecting its common role in the male
and female biomes.

Discussions and conclusions
The Lotka-Volterra equations, which are canonical in
mathematical ecology, provide variable ways to illustrate the
importance of nonlinear dynamics [23]. Recently Lotka-
Volterra models have been applied in the field of metage-
nomics to investigate microbial interactions because of their
usefulness in reverse-engineering multispecies ecosystems

[17, 18]. In this context, these models serve to simulate
multi-species microbial communities with known inter-
action relations [10, 11, 15] that can be adjusted for system-
atic stability analysis [15]. Recent work, including studies of
yeast-bacterium interactions on the surface of cheese [18]
and microbial interactions in murine intestinal communities
[17], have demonstrated that Lotka-Volterra models can be
used to reverse-engineer the interactive behaviors of an eco-
system, even in response to such external perturbations as
antibiotic intervention. These studies are important for un-
derstanding the application of Lotka-Volterra models to the
comprehensive inference of dynamic biological systems in
the effort to decipher the interrelationships between species.
In this paper, we have presented a user-friendly, stand-

alone GUI tool, MetaMIS, that is designed to provide
rapid and accurate predictions of microbial interactions
that can help to reveal temporal changes in microbial
communities. The integrated diagrammatic presentation
can aid in revealing mechanically interactive links
between microbes. We offered as examples three inter-
action networks inferred from a human male, female,

Fig. 5 A consensus interaction network of male and female intestinal community. The red (or blue) arrow represents the activation (or repression)
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and a mixed-gender fecal microbiome. Those inferred
relationships receive some support in the literature. For
example, some strains ofMicrococcaceae have been shown to
possess considerable antibacterial activity [24] and antibiotic-
resistance ability that counters the inhibitory effect of Lacto-
bacillus, Lact. sake CL35 [25]. Furthermore, we found that
Micrococcaceae consistently activated two microbes, Neisser-
iaceae and Prevotellaceae, which is consistent with the stud-
ies showing that the use of antibiotic agents significantly
increases the incidence of members of the Prevotellaceae
family in the mucosal-associated microbiome [26]. The anti-
microbial effect of Micrococcaceae [24] and Neisseriaceae
[27] might therefore balance those dominant microorganisms
and thereby help to maintain innate homeostasis and to
achieve a more diverse intestinal ecosystem. Overall, these re-
ported microbial functions and characteristics were consist-
ent with the microbial interactions that we inferred.

In the case of consensus network, Mycobacteriaceae,
which is defined as a rare family in the male microbiome
and a non-core family in the female microbiome, and is as-
sociated with tuberculosis [28, 29], also exhibited a similar
interaction pattern in both genders. On the other hand,
several studies have noted that sex hormones and microbes
together trigger a gender bias in such autoimmune diseases
as type 1 diabetes (T1D) [30] and systematic lupus erythe-
matosus (SLE) [31]. As suggested, the distribution of
Enterobacteriaceae and Peptostreptococcaceae correlated
strongly with the concentration of androgen as conditions
in which male nonobese diabetic (NOD) mice experienced
a lower risk of T1D [30]. However, our data suggest that
the role of Enterobacteriaceae and Peptostreptococcaceae in
the male and female samples could be the same considering
the interaction patterns with the other microbes. Further-
more, we suggest that, when analyzing metagenomic abun-
dance profiles, considerable care is required in determining
the cutoff for low abundance or rare OTUs, informative in-
teractions from low level members may be lost.

Conclusion
In sum, here we have presented an easy-to-follow workflow
designed to infer microbial interactions using Lotka-
Volterra models for 16S-rRNA microbial abundance pro-
files. MetaMIS allows researchers to analyze interactive
relations conveniently and to visualize network topology dir-
ectly through an intuitive graphic user interface. The
abundance-ranking strategy of MetaMIS produces a variety
of interaction networks and allows maximum information
to be gathered regarding low-abundance members of the
microbial community. Among different interaction net-
works, users can trace changes in interactive relations or
utilize a consensus network that contains a set of OTUs
with qualified interactions in order to identify key microbes.
The publicly available MetaMIS is expected to undergo
continuous development; future plans include: organizing
interaction networks across different dataset, establishing
topological analyses to extract key OTUs based on their
topological nature, plugging in a functional annotated pack-
age for microorganisms, and, in the longer term, developing
a pathway dependent interaction cascade. We view the
current version of MetaMIS as a first step toward facilitating
the interpretation of metagenomic studies in the context of
the rapidly expanding knowledge of microbial genomes and
the growing databases that store that knowledge.

Methods
Implementation
MetaMIS was performed as an off-line GUI coded by a
commercial software package (MATLAB R2015b, The
MathWorks, Inc., Natick, Massachusetts, United States).
It runs properly on Mac andWindows (64-bit) platforms.

Table 2 OTUs showing consistent microbial interactions
between male and female intestines and their taxonomic
abundance and core levels

Female Male

ABUN CORE ABUN CORE

Lachnospiraceae 34.61% 100.00% 24.89% 100.00%

Bacteroidaceae 31.04% 100.00% 24.61% 100.00%

Verrucomicrobiaceae 8.90% 96.77% 1.21% 76.03%

Enterobacteriaceae 1.44% 78.23% 0.56% 82.02%

Nitrosomonadaceae 1.04% 72.58% 0.50% 59.94%

Corynebacteriaceae 0.49% 21.77% 0.27% 21.45%

Erysipelotrichaceae 0.40% 100.00% 0.23% 98.74%

Prevotellaceae 0.37% 83.87% 2.53% 63.41%

Desulfovibrionaceae 0.27% 91.94% 0.24% 64.98%

Chromatiaceae 0.26% 54.03% 0.33% 94.01%

Fusobacteriaceae 0.10% 34.68% 0.50% 16.40%

Clostridiales Family XI. Incertae Sedis 0.09% 59.68% 2.23% 54.26%

Rikenellaceae 0.06% 87.90% 3.98% 100.00%

Pasteurellaceae 0.05% 38.71% 0.39% 18.30%

Peptostreptococcaceae 0.04% 80.65% 0.03% 65.30%

Micrococcaceae 0.04% 3.23% 1.04% 0.95%

Mycobacteriaceae 0.04% 4.03% 0.02% 1.89%

Clostridiaceae 0.03% 90.32% 0.09% 98.74%

Campylobacteraceae 0.03% 30.65% 0.43% 42.90%

Aerococcaceae 0.02% 21.77% 0.11% 9.15%

Bacillaceae 0.02% 49.19% 0.02% 28.08%

Actinomycetaceae 0.02% 29.03% 0.77% 23.66%

Brevibacteriaceae 0.01% 4.84% 0.03% 0.32%

Intrasporangiaceae 0.01% 1.61% 0.09% 0.63%

Gordoniaceae 0.01% 1.61% 0.03% 0.63%

Celerinatantimonadaceae 0.01% 0.81% 0.03% 0.63%
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Before the execution of MetaMIS, the Matlab runtime
should be installed, which is a simple one-click process.

Data preprocessing
Before they use MetaMIS, we recommended that users per-
form two kinds of data preprocessing for a metagenomic
microbial abundance profile. First, 16S rRNA amplicon mi-
crobial profiles should be corrected based on 16S rRNA
gene copy number (GCN) information, since GCN bias
may compromise the accuracy of microbial abundance
profiles and significantly influence biological interpretations
[32]. Second, microbial abundance profiles should be nor-
malized by transformation to relative abundance, which is
done by dividing the minimum number of total reads for
all samples, and finally deleting OTUs without abundance
values for all samples. The aim of this process is to ascer-
tain which low abundance OTUs are present.

The classification of OTUs according to population size
According to the average abundance across samples in
which the zero count was not included in the average
calculation, microbial OTUs may be categorized into
three groups as follows. The high abundance group is
characterized by OTUs with average abundance greater
than 1%. Rare species are characterized by an average
abundance lower than 0.1%. The remaining organisms
are assigned to the low abundance, non-rare group.

The inference of microbial interactions
In a metagenomic microbial abundance profile, there are i
=1,…,L microbes or taxonomic labels, i.e. OTUs, and k
=1,…,T time points. Time-series samples with total reads
smaller than 5,000 are automatically deleted in MetaMIS.
Next, a discrete-time Lotka-Volterra model (Eq. (1)) [33]
coupled with a partial least square regression (PLSR) is used
to infer microbial interactions, from which the number of
PLS components containing the minimum estimated mean-
squared error is determined. PLSR is a powerful method for
handling a highly correlated time series data structure [34].

ln xi tkþ1ð Þð Þ− ln xi tkð Þð Þ
tkþ1−tk

¼ ri þ
XL

j¼1
Mijxj tkð Þ ð1Þ

where xi(tk) represents microbial abundances for any
OTU i at the time tk, ri is the growth rate of OTU i, and
Mij characterizes the interactive effect of OTU j on i. In
general, Mij > 0 means that OTU j has an activated ability
to OTU i, while Mij < 0 means that the repressive effect of
OTU j on i, and Mij = 0 shows no interaction between
OTU i and j. Notice that MetaMIS chooses the compo-
nents as predictors using above method, the result may ef-
fect the estimated interaction strengths and signs.

The criteria for a successful interaction network
After microbial interactions have been estimated, they
can be placed into a generalized Lotka-Volterra model
(Eq. (2)) [33] in order to evaluate the possibility of re-
generating microbial profiles over time T. The initial
condition can be any time-series sample. The default set-
ting is the first one.

d
dt

xi tkð Þ ¼ rixi tkð Þ þ xi tkð Þ
XL

j¼1
Mijxj tkð Þ ð2Þ

A set of microbial interactions is considered to consti-
tute a successful interaction network when microbial
abundance profiles can be successfully regenerated using
estimated microbial interactions over time T. If regener-
ated abundances meet the divergence before the end of
the threshold time T, the corresponding microbial interac-
tions represent the failure to form an interaction network.
For each successful interaction network, the concord-

ance between the predicted abundance profiles and the
original ones was measured by Bray-Curtis dissimilarity
(Eq. (3)) [35].

BCD xitk ; x
�
itk

� �
¼

XL

i¼1
xitk−x

�
itk

���
���

XL

i¼1
xitk þ x�itk

� �

ð3Þ
where x�itk is the estimated microbial abundance of OTU i
at the tk. This index ranges from 0 and 1. The larger the
value, the more dissimilar are the two abundance profiles,
and vice versa.

The filtering thresholds for interaction networks
A microbial community with N OTUs can generate N-
NHA + 1 interaction networks by the default settings of
MetaMIS, where NHA ≥3 represents the number of high
abundance OTUs. The initial N-dimensional network con-
tained N(N-1) interactions from weakest to strongest in the
entire community. Then, an OTU with lowest abundance
value was discarded and the remaining N-1 OTUs pro-
duced (N-1) (N-2) interactions. The strategy of leaving the
lowest one out was performed until there were only NHA

high abundance OTUs in an interaction network.
For these N- NHA + 1 interaction outcomes, one sample

z-test for proportions was used to measure the concord-
ance of predicted interactive relations among networks.
For an interaction pair, Mij, there were nij

+ and nij
− inter-

action networks producing positive and negative out-
comes when the interactive direction was fixed. When the
ratio of nij

+ to the summation of nij
+ and nij

− was statistically
significantly greater than the user-defined threshold for
this study, i.e., 90%, we were able to conclude that this
interaction relation was concordant among networks and
directed positively, and vice versa.
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The evaluation of inferred microbial interactions
Microbial interactions predicted by MetaMIS were evalu-
ated using a metabolic complementarity index [22]. The
metabolic complementarity ranges from 0 to 1 as a meas-
ure of the trophic dependence between two microbes;
thus an index of 1 means that all of the nutrients required
by one microbe can be synthesized by another microbe
from metabolic precursors. In a recent study [22], 23,562
trophic interactions between pairs of microbial species
based on genome-scale metabolic network models were
transformed to 19,182 microbial interactions on the family
level. For each transformation, indices from the common
family were averaged.
Mapping the trophic information into predicted inter-

actions from MetaMIS was done in order to explore the
underlying biological connections. For each interaction
network, network size was a key component of the map-
ping rate, 9.7 to 62.9% for the male gut and 15.9 to
62.2% for the female gut. A larger network size usually
correlated with a lower mapping rate.

Additional file

Additional file 1: User guide of MetsMIS. (PDF 4192 kb)
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