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Abstract

Background: There are many available software tools for visualization and analysis of biological networks. Among
them, Cytoscape (http://cytoscape.org/) is one of the most comprehensive packages, with many plugins and
applications which extends its functionality by providing analysis of protein-protein interaction, gene regulatory and
gene co-expression networks, metabolic, signaling, neural as well as ecological-type networks including food webs,
communities networks etc. Nevertheless, only three plugins tagged ‘network evolution’ found in Cytoscape official
app store and in literature. We have developed a new Cytoscape 3.0 application Orthoscape aimed to facilitate
evolutionary analysis of gene networks and visualize the results.

Results: Orthoscape aids in analysis of evolutionary information available for gene sets and networks by highlighting: (1)
the orthology relationships between genes; (2) the evolutionary origin of gene network components; (3) the evolutionary
pressure mode (diversifying or stabilizing, negative or positive selection) of orthologous groups in general and/or
branch-oriented mode. The distinctive feature of Orthoscape is the ability to control all data analysis steps via
user-friendly interface.

Conclusion: Orthoscape allows its users to analyze gene networks or separated gene sets in the context of
evolution. At each step of data analysis, Orthoscape also provides for convenient visualization and data
manipulation.

Keywords: Cytoscape plugin, Ortholog, Paralog, Metabolic pathway, Gene regulatory network, Evolution,
Phylostratigraphy, Evolution
Background
Biological networks arise in completely all fields of
modern biology gathering both ‘real’ (experimental
data etc.) and virtual (modeling and simulation data)
biological information [1–6]. There are software pack-
ages to work with biological networks with less or
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more biological specialization, availability and inter-
activity [7–11]. Among them, Cytoscape [7, 12] is one
of the most comprehensive tools for performing all-
round analysis of biological networks. There are many
plugins which extend the functionality of Cytoscape by
providing visualization and analysis of protein-protein
interaction networks [13, 14], including PINA4MS (http://
apps.cytoscape.org/apps/pina4ms), Strongest Path (http://
apps.cytoscape.org/apps/strongestpath), gene regulatory
[15, 16] and gene co-expression [17, 18], metabolic
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Fig. 1 Principle diagram of the Orthoscape workflow
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[18–20], signaling [21, 22] as well as ecological-type
networks including food webs, communities network
and others. In spite of such great diversity, evolution-
oriented plugins are in short supply: just three plugins
tagged ‘network evolution’ (even not ‘biological evolution’)
in Cytoscape official app store and in literature. These
include ANIMO [23], TieDIE, NetworkEvolution [24])
and a couple of plugins concerning orthology analysis
(HOMECAT [25] and OrthoNets [26]).
KEGG (Kyoto Encyclopedia of Genes and Genomes,

www.kegg.jp) is a set of databases containing biological
information of various types, such as genes, genomes,
protein interaction networks, pathway maps and many
others. KEGG Pathway is a collection of manually cu-
rated maps representing the molecular interaction and
reaction networks for various biological processes, such
as metabolism, genetic information processing, human
diseases, etc. Number of tools have been developed to
operate with KEGG pathway maps including CyKEGG-
Parser [27], ANIMO [28] and SIREN [16].
In this work, we have developed a Cytoscape applica-

tion (plugin) Orthoscape aimed to analyze evolutionary
information in the gene sets and networks: (1) the
orthology relationships between genes; (2) the evolution-
ary origin of gene network components; (3) the evolu-
tionary regime (diversifying or stabilizing, negative or
positive selection) of orthologous groups in general and/
or branch-oriented mode. See Additional file 1 for the
Orthoscape jar-file and Additional file 2 for manual.
Clear evolutionary ideas underlying the Orthoscape applica-

tion and its ability to control all data analysis steps via user-
friendly interface will aid biologists in better understanding
the factors of evolution and functioning of gene network.

Methods
Orthoscape implemented in Java 1.8 language to use
with Cytoscape 3.0 version or higher. Homology, tax-
onomy, protein domains data, as well as nucleotide and
amino acid sequences are extracted from KEGG data-
bases, hence, requiring Internet connection. All down-
loaded data could be stored in local Orthoscape
database, which may require up to several GB hard drive
space and later may both speed up the work and
decrease dependence on connection to the KEGG.

The orthoscape workflow
Figure 1 depicts a workflow of Orthoscape, with a gene
network (or just a set of genes) used as an input which
may be presented in several ways:

1) Using the CyKEGGParser plugin (http://apps.cytos
cape.org/apps/cykeggparser), a network may be
imported directly from the KEGG database. Once it
is imported, it is ready to work with the Orthoscape.
2) Using the GeneMANIA plugin (http://apps.cytoscape.org/
apps/genemania), a network may be reconstructed on the
set of necessary genes. The obtained network should be
converted using “Orthoscape - > convert GeneMANIA
Network” option.

3) Using the CyPath2 plugin (http://apps.cytoscape.org/
apps/cypath2) (CyPathwayCommons), the user may
choose a network from the list of filtered networks
(by presence of necessary genes) in BioPAX format.
The obtained network should be converted using
“Orthoscape - > convert BioPAX Network” option.

Then gene network is analyzed by the Orthoscape
core, which performs the following tasks: (1) reconfigur-
ation (layouting and grouping) of gene networks on the
base of sequences homology; (2) coloring and grouping
of genes on the base of evolutionary characteristics such
as Phylostratigraphic Age Index (PAI) and Divergence
Index (DI) (3) report generation. As a result, the infor-
mation on genes, their interactions and evolutionary
characteristics is represented in compact and convenient
manner. It provides users a better understanding of gene
networks structure and enables to perform analysis of
network evolution.

Implementation
Analysis of homologous sequences
For each gene from a gene network (or gene set), the
Orthoscape generates lists of potential homologs (para-
logs in case of gene network and/or orthologs in case of
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set of genes from various genomes) according to SW-
Score (Smith-Waterman score [29]) and identity values
set up by the user. These operations are performed using
requests to KEGG database via REST API protocol
(http://www.kegg.jp/kegg/docs/keggapi.html). After that,
Orthoscape joins genes into clusters using one of three
possible types of similarity measures for the sequence
comparison: (1) SW-Score; (2) identity value; (3) domain
composition from the proteins previously filtered by
SW-Score and/or identity.
The similarity according to domain composition could

be calculated in either simple or detailed way. Simple
one implies the analysis of domain frequencies among
all potential filtered homologs. The user may set the
‘threshold’ number T of domains to be the same in gene
and its potential homolog. At first, we construct the or-
dered list of most presented domains among all homo-
logs found. If a homolog contains first T domains from
this list, then it is accepted and the homologous genes
join. The detailed analysis additionally allows user to
choose the particular domains essential for him/her. If a
potential homolog does not contain any of those do-
mains, it is deleted from the list.
Once genes are joined into clusters according to their

similarity, the Orthoscape allows the following additional
analysis of the gene network: (1) group/ungroup each
cluster of homologous genes (Group/Ungroup the ho-
mologs options); (2) color network nodes using either
heatmap or blue-red gradient schemes according to evo-
lutionary characteristics of genes (cluster memberships
or evolutionary indices).
Fig. 2 PAI calculation. Part of the taxonomic tree illustrating the PAI calcula
2). It means the evolutionary age of gene1 and gene 2 is 13 (“Hominidae”
opossum (gene 4). It means that genes diverged on Mammalia stage, so th
Analysis of gene evolutionary indices
The Orthoscape calculates two evolutionary characteristics
of genes. The first characteristic is the phylostratigraphic
age index (PAI). The PAI indicates the “evolutionary age”
of a gene [30, 31]. To calculate the PAI, the Orthoscape
uses KEGG Organisms database for taxonomic trees. It
performs a search of orthologous genes (using sequence
similarity thresholds mentioned above), populates the tree
of species these genes belong to and then analyses the
resulting tree. Ranged between 0 and N (where N is a
number of phylums between root and a species in the
taxonomic tree; for instance, N = 14 for human), this index
shows the level of the last common ancestor node in the
whole taxonomic tree, containing at least one species from
the list of species possessing orthologs of a gene under
analysis (Fig. 2). Consequently, the “Cellular Organisms”
node (root) has PAI = 0, “Eukaryota” node has PAI = 1,
etc.; “Homo” node has PAI =14).
The second characteristic is the Divergence Index (Ka/

Ks index, DI) of a gene [32, 33]. It indicates the influence
of natural selection on gene evolution. To calculate the
DI, Orthoscape extracts nucleotide sequences and amino
acid sequences of a gene/protein under analysis and its
nearest ortholog (from the closest species). Amino acid se-
quences are retrieved via KEGG REST API and then
aligned using the Needleman–Wunsch algorithm [34]
using NW-align code (http://zhanglab.ccmb.med.umi-
ch.edu/NW-align/). The codon alignment is obtained
using the protein alignment; Ka/Ks ratio is calculated
using Java code from the program Ka/Ks calculator [35]
(http://kakscalculator.fumba.me/index.jsp). In general, the
tion. For gene 1, the only ortholog gene was found in Bonobo (gene
– young genes). Contrariwise, for gene 3 we found ortholog even in
e PAI is equal to 7 (“Mammalia” – “moderate age” genes)
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DI may be calculated through the analysis of any ortho-
logs found, however it is recommended to use the closest
taxa for DI calculation [30]. In Orthoscape, the user may
specify the maximum distance between the reference
species and other nodes on the species tree. Besides, for
human gene networks we provide an additional option
that allows explicit specifying of the closest species – Pan
troglodytes (chimpanzee), Pongo abelii (sumatran orangu-
tan), Pan Paniscus (bonobo) and working with orthologs
belonging to these only organisms.
Additionally, Orthoscape reports phylogenetic profile

[36] for each gene in the network. This is a table with col-
umns corresponding to genes represented in the metabolic
network, and rows corresponding to organisms which ge-
nomes contain at least one ortholog of the network genes.
The cell in column i and row j contain ‘+’ if in the organ-
ism j exists at least one ortholog of gene i, or ‘-‘otherwise.

Report generator
Orthoscape generates reports with all calculated charac-
teristics, indices, statistics etc. obtained for one or several
gene networks. Report is generated in HTML format and
also includes directory with additional image files. Report
contains PAI histograms and tables of genes sorted by DI.
Analyzing PAI histograms, the Orthoscape reports “aver-
age evolutionary age” of a gene network and/or gene set.
First of all, it concerns to the mean and median PAI values
for all genes in network/set. Once the user tried different
SW-Score and identity parameters in his/her analysis, all
of these attempts are included into the report.
Orthoscape provides both Gene Set and Network PAI

statistics. The first one is calculated with the simple
formula:

Gene Set PAI ¼
X

genes
PAI

N

Where N is the number of genes. Thus, if all genes are an-
cient (PAI = “Cellular organisms”), then the statistics value
would be 0. If all genes are “young” (PAI = “Homo”), then
the statistics value would be 14. Therefore, the more is the
mean PAI value, the “younger” genes are in the gene set.
Network PAI statistics additionally takes into account

the network topology, more specifically connectivity of
nodes (i.e., their degrees). For example, if one node is
connected with two edges, its degree would be 2, if it
has no connections, the degree would be 0 etc. The
modified formula is used:

Network PAI ¼
X

nodes
PAI � dð Þ

2N

Where d is the node degree. It makes highly con-
nected nodes, which we believe are more important in
gene networks functioning than lowly connected ones to
have higher contribution to the “evolutionary age” of a
gene network.
There are also median, oldest and youngest statistics

for PAI values in a network. Finally, the total number of
orthologs analyzed is reported too. An example of statis-
tical analysis from report is shown below in Results
section.

Visualization of results
Analyzed network may be colored using two schemes:
(1) Heatmap scheme colors “young” genes in red and
“old” in blue. Intermediate colors are yellow, green, cyan;
(2) Blue-white-red gradient scheme. Each style may be
used for PAI, DI and homologous groups.

Results and discussion
As an example of the Orthoscape application, we have
analyzed two pathways from KEGG database related to
steroid metabolism: steroid biosynthesis pathway and
steroid hormone biosynthesis pathway.
Steroids, such as cholesterol, are synthesized in almost

all eukaryotic cells, which use these triterpenoid lipids to
control the fluidity and flexibility of their cell mem-
branes. Sterols also play a key role in such eukaryotic
features as phagocytosis. In KEGG, steroid biosynthesis
pathway (ko00100) follows the terpenoid backbone bio-
synthesis pathway and uses farnesyl diphosphate as input
metabolite. A number of sterols produced as a result of
this pathway: zymosterol, fecosterol, episterol, ergosterol
and others. Interestingly, few bacteria can synthesize
sterols [37], however, phylogenetic analysis demon-
strated that they likely acquired homologs of enzymes of
the sterol pathway via ancient horizontal gene transfer
from eukaryotes [38].
An important metabolite produced within the sterol

biosynthesis pathway is cholesterol, an essential struc-
tural component of all animal cell membranes and pre-
cursor for the biosynthesis of steroid hormones [39, 40].
Five major classes of steroid hormones include testoster-
one, progesterone and estradiol, which are known as
sex-steroids, and cortisol/corticosterone and aldosterone,
which are referred to as corticosteroids [39]. Steroid
hormones are synthesized from cholesterol through a
common precursor steroid, pregnenolone, which is
formed by the enzymatic cleavage of a 6-carbon side-
chain of the 27- carbon cholesterol molecule by the
cytochrome P450 side-chain cleavage enzyme [39]. Their
biosynthesis is described in KEGG by steroid hormone
biosynthesis pathway (ko00140).
Visualization of these two pathways is shown in Figs. 3

and 4. The visualization demonstrates the PAI for each
gene in the metabolic network graph, from blue (small
PAI, older genes) to green (large PAI, younger genes).
For example, for delta24-sterol reductase (gene ID



Fig. 3 KEGG steroid biosynthesis pathway. Visualization of the KEGG steroid biosynthesis pathway (ko00100) by the Orthoscape application using
PAI heatmap color scheme. Gene node colors correspond to PAI values from smaller (PAI = 0, older genes, dark blue color) to larger (PAI = 5,
young genes, green color)
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DHCR24, EC:1.3.1.72, 1.3.1.-), which participates in
sterol biosynthesis pathway (Fig. 3), the PAI is equal to 0
(‘Cellular Organisms’ taxonomic group, dark blue color).
For vitamin D 25-hydroxylase (gene ID CYP24A1,
EC:1.14.14.24) in the same pathway (Fig. 3), the PAI
value is 5 (‘Vertebrata’ taxonomic group, green color). It
could be seen from the comparison of these two path-
way diagrams (Figs. 3 and 4) that the steroid hormone
biosynthesis pathway contains larger fraction of younger
genes as compared to the steroid biosynthesis pathway.
It is demonstrated by comparison of the gene set PAI
values for these two pathways for different orthology
detection thresholds (Fig. 5). The PAI values for steroid
hormone biosynthesis pathway are higher at all thresh-
olds except in the case of identity is equal to 1. These
results demonstrate that most genes for this pathway
diverged from their ancestors and acquired their new
function later as compared to genes from steroid biosyn-
thesis pathway.
The obtained results of comparison of the gene ‘ages’ for

the above pathways are consistent with the current know-
ledge of the eukaryotic evolution. Steroids participate in
the formation of membranes, which are basal cellular
structures in eukaryotes. Thus, sterol biosynthesis is a fun-
damental feature of eukaryotic cells and it is generally ac-
cepted that the pathway of sterol biosynthesis appeared
after the emergence of oxygenic photosynthesis and the
oxygenation of the atmosphere and oceans (between 2.7
and 2.4 Ga) [41].
Steroid hormones regulate diverse physiological func-

tions such as reproduction, blood salt balance, mainten-
ance of secondary sexual characteristics, response to stress,
neuronal function, various metabolic processes [40] and re-
sponse to environmental factors [42]. In mammals, they
are synthesized in a specific set of organs: ovary (granulosa
cells, luteal cells), testis (Leydig cells), adrenal gland (zona
glomerulosa and zona reticularis cells), placenta and brain
(neurons, glial and Purkinje cells) [40]. The analysis of the
evolution of the steroid hormone receptors demonstrates,
that they are common to vertebrates [43], but might have
originated before the divergence of vertebrates, suggesting
the ancient origin of some steroid hormone systems (as
was shown for the estrogen signaling [44]). It should be
noted, however, that hormones are the important source of



Fig. 4 KEGG steroid hormone biosynthesis pathway. Visualization of the KEGG steroid hormone biosynthesis pathway (ko00140) by the
Orthoscape application using PAI heatmap color scheme. Gene node colors correspond to PAI values from smaller (PAI = 1, older genes, blue
color) to larger (PAI = 7, young genes, green color)

Fig. 5 Overall PAI comparison for steroid pathways. Comparison of the dependence of the PAI indices (Y axis) for steroid biosynthesis pathway
(red line) and steroid hormone biosynthesis pathway (blue line) with respect to identity threshold for gene orthology detection (X axis)
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the organism’s phenotypic plasticity [45]. For example, pla-
centa, the evolutionary innovation of mammals, demon-
strates amazing diversity [46]. These phenotypic
innovations should require evolutionary changes in the
hormone biosynthesis pathway, for example, increasing its
complexity to produce different types of hormones. This is
the likely reason for the relatively modest age of the genes
involved in the steroid hormone biosynthesis.
Figure 6 shows the histograms for the distribution of

PAI values for genes from both networks (SW-Score =
500, identity = 0.5, 0 domains). On histograms, one could
see that steroid hormone biosynthesis pathway (Fig. 6a)
includes larger fraction of genes with PAI from 5 (‘Verteb-
rata’) to 7 (‘Mammalia’) as compared to steroid biosyn-
thesis pathway (Fig. 6b). Orthoscape reports the following
statistics for steroid biosynthesis pathway: Gene set PAI =
4.548; Network PAI = 4.828; Median taxon = Vertebrata;
Oldest taxon = Eukaryota; Youngest taxon =Mammalia.
Values for steroid biosynthesis pathway were as follows:
Gene set PAI = 1.941; Network PAI = 1.4; Median taxon =
Metazoa; Oldest taxon = Cellular Organisms; Youngest
taxon = Vertebrata.
Fig. 6 PAI comparison for steroid pathways with identity 0.5. Distribution o
steroid biosynthesis (b) networks
Note, that data from Figs. 5 and 6 and PAI statistics
could be found in HTML reports output by Orthoscape.
Global report (PAI values dependence on the sequence
similarity thresholds for a set of networks, see Fig. 5) and
networks specific reports (PAI distribution histograms, see
Fig. 6) could be navigated using hyperlinks. The original
data for the plots in text format and links to networks in-
formation at the KEGG web-site are provided.
Figure 7 demonstrates the additional layout scheme

for the networks based on PAI identity. This type of net-
work layout shown for the steroid hormone biosynthesis
pathway: genes are located on the circles corresponding
to different PAI values (genes with identical PAI are lo-
cated on the same circle); non-gene nodes are located
on the separate circles. It helps to identify genes with
the same “age” easily.
The gene network layout based on the grouping of

genes with respect to their membership in different
homology clusters is demonstrated in (Fig. 8) for the
steroid biosynthesis network. There were 14 homolo-
gous clusters found for this network. By expanding
the node on this type layout user can obtain the list
a

b

f PAI among genes in networks steroid hormone biosynthesis (a) and



Fig. 7 Attribute layouting (by PAI) example. Visualization of the KEGG steroid hormone biosynthesis pathway using layout based on the PAI
similarity. In this layout scheme, genes with identical PAI values are located on the same circle
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of genes in the cluster. Detailed report generated by
the Orthoscape on this comparison is presented in
the Additional file 3.
Conclusion
In summary, Orthoscape application is a tool for analysis
of gene networks/sets. It allows to search for homologs
(orthologs and/or paralogs), to perform phylostrati-
graphic analysis of genes and to investigate the diver-
gence. User is aided in better understand of evolution of
genes and their (sub)networks under selective pressure.
Fig. 8 Grouping to homology clusters example. Visualization of the
KEGG steroid biosynthesis pathway using layout based on the
homology cluster membership (all homologous genes are joined in
the same nodes)
At each step of data analysis, Orthoscape also provides
for convenient visualization and data manipulation.

Additional files

Additional file 1: Orthoscape-1.0. The plugin itself. (JAR 105 kb)

Additional file 2: Orthoscape manual. The manual with basics of
Orthoscape. (DOCX 133 kb)

Additional file 3: Reports. 7z archive containing the Orthoscape reports
example. (7Z 381 kb)
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API: Application program interface; DI: Divergence index;
PAI: Phylostratigraphic age index; REST: Representational state transfer
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