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Abstract

Background: Maximum parsimony phylogenetic tree reconciliation is an important technique for reconstructing the
evolutionary histories of hosts and parasites, genes and species, and other interdependent pairs. Since the problem of
finding temporally feasible maximum parsimony reconciliations is NP-complete, current methods use either exact
algorithms with exponential worst-case running time or heuristics that do not guarantee optimal solutions.

Results: We offer an efficient new approach that begins with a potentially infeasible maximum parsimony
reconciliation and iteratively “repairs” it until it becomes temporally feasible.

Conclusions: In a non-trivial number of cases, this approach finds solutions that are better than those found by the

widely-used Jane heuristic.
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Background

Phylogenetic tree reconciliation is a fundamental tech-
nique for studying the evolution of pairs of entities such
as gene families and species, parasites and their hosts,
and species and their geographical habitats. The recon-
ciliation problem takes as input two trees and the associ-
ations between their leaves and seeks to find a mapping
between the trees that accounts for their incongruence.
In the Duplication-Transfer-Loss (DTL) model, four types
of events are considered: speciation, duplication, transfer,
and loss [1-7].

Reconciliation in the DTL model is typically performed
using a maximum parsimony formulation where each
event type has an assigned cost and the objective is to
find a reconciliation of minimum total cost. Figure la
shows a small example of a host and parasite tree and
their leaf associations. Figure 1b and c¢ show two dif-
ferent reconciliations of these trees with labels on the
events. Speciation is generally considered a “null event”
and given cost 0 while the other event types are given
positive costs. For example if duplication, transfer, and
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loss each have cost 1, then the reconciliation in Fig. 1b is
optimal and incurs one speciation and one transfer, with
total cost of 1. However, if duplication and loss have cost
1 and transfer has cost greater than 4, then the reconcil-
iation in Fig. 1c is optimal, incurring one speciation, one
duplication, and three losses, with total cost of 4. Hence-
forth, we use the terms optimal and maximum parsimony
interchangeably.

A host tree is said to be dated if the relative times of its
internal nodes are known. For dated host trees, maximum
parsimony reconciliations can be found in polynomial
time [6, 8, 9]. However, accurately dating host trees is
generally difficult [10], and estimated dates may be unre-
liable. Thus, much of the literature on DTL reconciliation
assumes that the host tree is undated. Our work addresses
the case of undated host trees.

In undated host trees, maximum parsimony reconcil-
iations can be found in polynomial time using dynamic
programming [1, 7, 9, 11], but these reconciliations may
be temporally infeasible in the sense that there exists
no ordering of the internal nodes that is consistent with
the reconciliation. An example of a temporally infeasible
reconciliation is illustrated in Fig. 2. Temporal infeasi-
bility can be detected in polynomial time [11] but the
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Fig. 1 a A host tree in black and a parasite tree in gray with the leaf mapping shown with dotted lines. Two different reconciliations that are optimal

problem of finding temporally feasible maximum parsi-
mony reconciliations is NP-complete [7, 12]. Nonethe-
less, the dynamic programming solution provides a lower
bound on the cost of a temporally feasible optimal
solution.

In many applications, it is important that reconciliations
be both temporally feasible and as close to optimal as pos-
sible [13]. Conclusions drawn from temporally infeasible
or suboptimal solutions are dramatically weakened [14].
For example, in cophylogenetic studies of hosts and para-
sites, congruence of the host and parasite trees is assessed
via randomization tests: The maximum parsimony cost of
the original pair of trees is compared to the maximum par-
simony costs for a sample of randomized versions of the
data (e.g., randomization of the leaf-mapping or the par-
asite tree). The fraction of random samples whose cost
is as good or better than the cost of the original pair of
trees provides an empirical p-value for the null hypothesis
that the trees are congruent by chance. Conclusions about
the evolutionary histories of hosts and parasites depend,
therefore, on accurate comparisons of the samples - mean-
ing that they should all be temporally feasible and their
costs should be as close to optimal as possible.

A number of algorithms and software tools have been
developed to find temporally feasible maximum parsi-
mony reconciliations in the DTL model. For example,

TreeMap [15] uses an exact but exponential time algo-
rithm. ILPEACE [14] and CoRe-ILP [16] find optimal
solutions using integer linear programming, which also
has exponential worst-case running time. In contrast, the
widely-used Jane [17] tool uses a faster meta-heuristic that
searches a portion of the large space of possible datings
of the host tree and, for each one, finds the maximum
parsimony reconciliation for that dating, resulting in a
temporally feasible but not necessarily optimal solution.

The solutions found by Jane are often optimal, which
is verified when the cost of Jane’s solution is equal to
the lower bound found by the dynamic programming
solution. However, in a substantial number of cases, the
dynamic programming solution is not temporally feasi-
ble and there is a gap between its cost and the least cost
solution found by the Jane heuristic. In such cases, it is
desirable to find better temporally feasible solutions using
another approach.

In this paper, we propose a new approach for finding
temporally feasible reconciliations. This approach runs in
polynomial time and, in a non-trivial number of cases
(11% in our experiments using the Tree of Life dataset [5]),
gives more parsimonious solutions than those found by
Jane. Even relatively small improvements in the parsimony
cost for a fraction of cases can have profound impact on
analyses and conclusions based on tree reconciliation.
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Fig. 2 A fragment of a temporally infeasible reconciliation for a host
tree (black) and parasite tree (gray). Node x transfers one child to the
species edge from a to b, implying that x must occur before b and
thus that ¢ occurs before b. Node y transfers one child to the species
edge from a to ¢, meaning that y must occur before ¢ and thus that b
occurs before ¢, contradicting the constraint that ¢ occurs before b

Our approach uses a combination of both existing and
new algorithms. We use the efficient U-MPR dynamic
programming algorithm [1] to find a maximum parsimony
reconciliation. (Similar algorithms were proposed in [7, 9].
We note that our algorithm is self-contained and fully gen-
eral and can be applied to reconciliations found by any
algorithm). Next, we test that reconciliation for temporal
feasibility using an algorithm similar to one proposed by
[7]. If the reconciliation is temporally feasible then it is,
necessarily, an optimal solution. If, however, the reconcil-
iation is determined to be temporally infeasible, we apply
an iterative “repair” process that successively modifies
the reconciliation until it becomes feasible. This process
terminates, is efficient, and has an upper-bound on the
increase in the cost of the solution.

We note that seminal work by Tofigh et al. [7] explores
repairing temporally infeasible reconciliations in the
Duplication-Transfer model. They give an exact algorithm
that runs in time exponential in the cost of the recon-
ciliation. The differences between that work and ours is
that our algorithm addresses the Duplication-Transfer-
Loss model, our algorithm runs in polynomial time but is
not exact (i.e., does not guarantee optimal solutions), and
we compare our results to the prevailing heuristic tool and
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show that it performs better in a non-trivial fraction of
cases. Indeed, Tofigh et al. [7] note that the exponential
running time of their algorithm is not a concern because
in a large analysis of synthetically generated data sets, the
classical dynamic programming algorithm for maximum
parsimony never constructed a temporally infeasible solu-
tion [18]. Subsequent work [19] corroborated this pattern
in other synthetically generated data but found that in
a large real data set from the Tree of Life [5], over 17%
of maximum parsimony reconciliations were temporally
infeasible.

In summary, in some cases existing heuristics do not
find the least cost temporally feasible reconciliations and,
in those cases, it is highly desirable to find lower cost
reconciliations if possible. In this paper:

1. We show how a combination of existing and new
algorithms can be used to efficiently find temporally
feasible DTL reconciliations.

2. We provide experimental results that demonstrate
that this approach finds better solutions than Jane in
over 10% of cases in a large real dataset.

3. We provide a software package called Cheeta (www.
cs.hmc.edu/~hadas/cheeta) that implements this
algorithm and compares the results to those found by
Jane.

Preliminaries

We adopt definitions and notation from Bansal [1]. Let
T be a rooted tree and denote the sets of nodes, edges,
leaves, and internal nodes of T by V(T), E(T), Le(T), and
I(T) respectively. Let r£(T) denote the root node of 7,
par(v) the parent of node v, Chr(v) the set of children
of v, and T'(v) the maximal subtree of T rooted at v. Let
dr(x,y) be the number of edges on the path from x to y.
Let x <7 yif y is a node on the path between rt(T) and x
(inclusive) and x >7 y if x is a node on the path between
rt(T) and y (inclusive). Nodes x and y are said to be incom-
parable if neither x <1 y nor y <t x. Let lcar(x,y) be the
least common ancestor (LCA) of x and y in tree T’; that is,
lcar(x,y) is the node z furthest (with respect to d7) from
the root such that z > xand z >7 y.

DTL-scenarios and reconciliations
Next we give definitions from [1] leading to the definition
of the maximum parsimony reconciliation problem.

Definition 1 (DTL-scenario [1]) A DTL-scenario for
trees G and S is a seven-tuple (L, M, X, A, ©, E, T), where
L: Le(G) — Le(S) represents a leaf-mapping from G to
S M: V(G) — V(S) maps each node of G to a node
of S, the sets X, A, and © partition 1(G) into speciation,
duplication, and transfer nodes respectively, E is a subset of
edges of G that represent transfer edges, and t: ® — V(S)
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specifies the recipient (or “landing site”) for each transfer
event, subject to the following constraints:

Constraint 1: Ifg € Le(G), then M(g) = L(g).
Constraint 2: If g € 1(G) and g, and g, denote the
children of g, then,

1. M(g) #£s M(ge) and M(g) #£s M(gy),
2. At least one of M(gy) and M(g,) is a
descendant of M(g).

Constraint 3: Given any edge (g,¢') € E(G), (g,¢) € E if
and only if M(g) and M(g') are incomparable.
Constraint 4: If g € I(G) and gy and g, denote the

children of g then,

1. g € T only if M(g) = lcas(M(ge), M(gy)) and
M(ge) and M(g,) are incomparable,

2. g € Aonlyif M(g) >s lcas(M(ge), M(g)),

3. g € ® ifand only if either (g,g¢) € E or
(¢.g) € E.

4. Ifg € ® and (g,¢') € E, then M(g) and t(g)
must be incomparable, and M (g’) must be a
descendant of T (g), i.e, M(g') <s 1(g).

These four constraints ensure that (1) M extends £, (2)
M satisfies the temporal constraints from S and that each
internal node in G is associated with at most one trans-
fer event, (3) a transfer can only be to a non-ancestrally
related node and (4) an internal node of G is designated
with one of the four event types.

Note that while DTL-scenarios represent reconcili-
ations, these reconciliation are not guaranteed to be
temporally feasible. Next, losses are inferred from DTL
scenarios according to the following definition from [1].

Definition 2 (Losses [1]) Given a DTL-scenario o =
(LM, E,A,0,8,7) for G and S, let g € V(G) and
{ge, g} = Chg(g). The number of losses Lossy (g) at node g
is defined to be:

* (ds(M(g), M(g) — 1) + (ds(M(g), M(gn)) — 1), if
geyx,

® ds(M(g), M(ge)) +ds(M(g), M(gy)), ifg € A, and

* ds(M(g), M(gr) +ds(z(g), M(gr)) if (g &) € E.

The total number of losses in the reconciliation corre-
sponding to the DTL-scenario o is defined to be Lossy, =

deI(G) Lossy (9).

Speciations are assumed to have zero cost. Duplications,
transfers, and losses have positive costs denoted Ca, Ceg,
and Cy, respectively.

Definition 3 (Reconciliation cost of a DTL-scenario
[1]) Given a DTL-scenariox = (L, M, %, A, 0, E, 1) for G
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and S, the reconciliation cost associated with « is given by
Ca - |A|+ Co - |®]| 4+ Cp - Lossg.

An instance of the maximum parsimony reconciliation
problem comprises a gene tree G, a species tree S, a leaf
mapping L : Le(G) — Le(S), and positive costs Ca, Cop,
and Cp for duplication, transfer, and loss events, respec-
tively. A maximum parsimony reconciliation, henceforth
denoted MPR, is a DTL-reconciliation of minimum total
cost with respect to the given set of event costs.

A number of closely-related dynamic programming
algorithms have been given for finding MPRs in undated
trees [1, 7, 9]. Here, we use the U-MPR Algorithm from
Bansal et al. [1] which has running time of O(|G||S]).

The reconciliation repair algorithm
In this section, we describe a process for computing
temporally feasible MPRs. The process begins by using
the U-MPR algorithm [1] to find a most parsimonious
DTL-scenario. Next, this scenario is tested for tempo-
ral feasibility using an algorithm similar to one described
by Tofigh [11]. If the scenario is not temporally feasible,
a particular gene node is selected and re-mapped to a
species node higher up in the species tree, resulting in a
new DTL-scenario. The process of choosing a gene node,
remapping it, and testing the resulting scenario for fea-
sibility is repeated until the scenario becomes temporally
feasible. In this section, we describe the repair process,
analyze it, and prove its correctness.

We determine if a DTL-scenario is temporally feasible
using a temporal feasibility graph F = (V, E) constructed
as follows:

1. V=I(S) UI(G) U {¢£} where I(S) and I(G) represent
the internal nodes of S and G, respectively, and £ is a
single node representing all of the leaves of S and G.

2. For each pair of nodes u, v € V such that u is the
parent of v in either S or G, there is a directed edge
(u,v) € E.

3. For each v € V such that its corresponding node in S
or G is the parent of a leaf, there is an edge (v, £) € E.

4. For each gene node g associated with species node s
in the DTL-scenario:

(a) If the association is via a speciation event, g
and s are identified (i.e., g is removed from the
graph and all edges entering g are redirected
to enter s and all nodes leaving g now leave s).

(b) If the association is via a duplication event, we
add the directed edges (pas(s),g) (unless
s = rt(S)) and (g, s).

(c) If the association is via a transfer event with
landing site s’, we add the directed edges

(pas(s), ), (g s), (pas(s),2), (g ).
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A directed edge (u,v) represents the constraint that
node # must have a date that comes before the date of v.
Thus, the edges in 2 and 3 above enforce that ancestor
nodes must have dates that come before their descen-
dants. The edges in 4 enforce the relative dates of genes
and the species with which they are associated. In par-
ticular, 4(c) ensures that the dates of takeoff and landing
sites for transfers are contemporaneous. It is easily veri-
fied that there exists a dating of the tree in which all events
are temporally consistent if and only if the temporal fea-
sibility graph is acyclic. Moreover, if the graph is acyclic,
a topological ordering of that graph gives a feasible dating
for the species tree in the given DTL-scenario. (One dif-
ference between this test and the one in [11] is that we test
that the reconciliation is temporally consistent given the
takeoff and landing sites for each transfer event. The test
in [11] does not specify the landing sites of transfer events
and thus may determine that the scenario is feasible by
moving landing sites to locations that are not consistent
with any DTL-scenario).

If the DTL-scenario is found to be temporally infeasi-
ble due to a cycle in the temporal feasibility graph F, then
the “repair” process identifies a gene node g, currently
mapped to a species node M(g), such that g is on a cycle
in F and such that no other gene node on a cycle in F is
mapped to a descendant of M(g). In general, node g is not
unique and the algorithm breaks ties arbitrarily.

Next, the mapping M is altered so that g is re-mapped
(or “pulled up”) in the species tree by either moving to
the parent of its current species node (if g is a duplica-
tion or transfer node) or to the edge above it (if g is a
speciation node). The temporal feasibility graph is recom-
puted and this process is repeated until the temporal
feasibility graph has no cycles, resulting in a temporally
feasible DTL-scenario. Figure 3 illustrates a small exam-
ple, and the process is described formally in Algorithms 1,
2, and 3 where Algorithm 1 is the main algorithm which
invokes Algorithm 2 to select a gene node on a cycle and
Algorithm 3 to move that gene node upward in the species
tree.

Algorithm 1: DTL Repair Algorithm
Input: A gene tree G, a species tree S, and event costs
for duplication, transfer and loss
Output: A temporally consistent DTL-scenario

1 « = result of U-MPR algorithm [1] on the given input
2 g =FindFirstCycle (G,S, @)

3 while g # null do

4 o = PullUpGeneNode (G, S, o, g)

5 L g =FindFirstCycle (G,S, a)

6 return o
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Algorithm 2: FindFirstCycle

Input: A gene tree G, a species tree S, and a
DTL-scenario o = (L, M, X, A,0, E, 1) for G
and S
Output: A node g € I(G) contained in some cycle in
the temporal feasibility graph corresponding
to o such that M(g) comes before M(g’) in
post-order for all such ¢/, or null if « is
temporally consistent

1 Compute the temporal feasibility graph F = (V, E)
for G, S, and o

2 for g € I(G) sorted by M(g) in post-order do

3 if there exists some cycle in F containing g then

4 L L return g

5 return null

Algorithm 3: PullUpGeneNode
Input: A gene tree G, a species tree S, a
DTL-scenarioa = (L, M, X, A, 0, E, 1) for G
and S and a node g € I(G) such that
M(g) # rts(S) to be pulled up
Output: A modified DTL-scenario o’

1 ifg € ¥ then

2 Y=XY-g
3 A=A+g

4 elseif g € A then
5 L M(g) = pas(M(g))
6 elseif g € ® then

7 | M(g) = pas(M(g))

3 if M(g) >s t(g) then
9 O=0-g¢g

10 A=A+g

1 {ge, 8} = Chg(9)
12 if (g,g¢) € E then
v | | [ E-2-@w
14 else

15 | E=E-(g)
16 | T(Q) = null

17 return o

Lemma 1 Algorithm 1 terminates.

Proof We first prove that Algorithm 2 never returns a
node g € I(G) such that M(g) = rt(S). By way of con-
tradiction, assume that Algorithm 2 returns such a node g.
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(d)

(e)

Fig. 3 a The reconciliation from Fig. 2 with unimportant edges removed and edges directed from parent to children nodes. b The temporal
feasibility graph for this reconciliation. € A cycle in the temporal feasibility graph with a minimal vertex g in the gene tree. d The modified
reconciliation after vertex g is pulled up one level in the species tree. e The resulting temporal feasibility graph is acyclic and thus the resulting

reconciliation is temporally feasible

Then g is contained in some cycle C in the temporal fea-
sibility graph F = (V, E). Because the for loop on line 2 of
Algorithm 2 iterates over the internal nodes of G sorted by
M(g) in post-order, any other node g’ € I(G) (or the node
that ¢’ is identified with) contained in cycle C, if it exists,
also has M(g") = rt(S). By construction of F, (s,g’) ¢ E
for any pair of nodes s € I(S) U {¢} and g’ € I(G) such that
M(g") = rt(S). Therefore cycle C does not contain any
node s € I(S) U {£} and consists only of nodes in the set
{g’ € I(G) : M(g") = rt(S)}. However, by construction of
F, the subgraph induced by {g’ € I(G) : M(g") = rt(S)} is
acyclic. Thus, we have a contradiction.

Let &g denote the height of tree S. We now prove that
throughout Algorithm 1, Algorithm 2 will return any
given node g € I(G) at most kg times. If initially g ¢
¥, then each time after g is returned by Algorithm 2,
M(g) gets remapped to pas(M(g)). If initially g € X,
the first time after g is returned by Algorithm 2, M(g) is
not altered, but after every subsequent iteration the above
claim applies. Since we have proven that Algorithm 2 will
never return a node g € I(G) such that M(g) = rt(S),
Algorithm 2 returns any g € I(G) at most /g times.

It follows directly that the while loop in Algorithm 1
goes through at most |I[(G)|hs iterations. Therefore,
Algorithm 1 terminates. O

Lemma 2 Algorithm 3 returns a valid DTL-scenario.

Proof Let M'(-) and 7/(-) denote the updated mappings
M(-) and t(-), respectively, when Algorithm 3 returns «
atline 17. Let {gy, g/} = Chg(g).

We consider each constraint in Definition 1. Clearly,
Constraint 1 holds throughout, since we never change
M(g) for aleaf node g € Le(g).

If g is initially a speciation node (g € X), then by
Constraint 4.1, M(g) = Ilcas(MI(gy), M(g;)). When
Algorithm 3 terminates, we have M'(g) = M(g) and
g is now a duplication node. We need only confirm
that Constraints 2 and 4.2 hold. Indeed, M'(g) =
M(g) = leas(M(ge), M(gr) = leas(M'(ge), M'(g)),
since M(gy) = M'(ge) and M(g,) = M'(gy). It follows
trivially that Constraint 2 holds as well.

If g is initially a transfer node (g € ®), then since Con-
straints 2 and 4.3 hold at the beginning of the algorithm,
exactly one of (g,g¢) and (g, g-) is in E. Without loss of
generality, suppose (g,g¢) € E. Then M(g) >s M (gy).

o If M'(g) >s 7(g), then when Algorithm 3 terminates,
g is a duplication node and neither (g, g¢) nor (g, gr)
is in E. We need only confirm that Constraints 2, 3,
4.2 and 4.3 hold. Constraints 2 and 4.2 hold since
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M'(g) >5 1(9) =5 M(ge) = M'(gy) and M'(g) =
pas(M(@) >s M(g) =s M(g) = M'(gy). 1t
follows that Constraints 3 and 4.3 hold as well.

e Otherwise, since M'(g) = pas(M(g)) >s M(g) and
M(g) and t(g) are incomparable, it must be the case
that M’(g) and t(g) are incomparable. When
Algorithm 3 terminates, g remains a transfer node.
We need only confirm that Constraints 2, 3, 4.3 and
4.4 still hold. Indeed, Constraint 4.3 holds since &
remains unchanged during Algorithm 3. Constraint
4.4 holds since M’ (g) and 7/(g) = 7(g) are
incomparable and M’ (g¢) = M(gy) <s t(g) = 7/(2).
It follows that M’(g) and M’ (gg) are also
incomparable, so Constraint 3 also holds. Moreover,
M'(gr) = M(gr) <s M(g) <s pas(M(Q)) =
M'(g), so Constraint 2 holds.

If g is initially a duplication node (g € A), then by
Constraint 4.2, M(g) >s lcas(M(ge), M(g-)). When
Algorithm 3 terminates, g remains a duplication node.
We need only confirm that Constraints 2 and 4.2 still
hold. Indeed, M'(g) = pas(M(g)) >s M(g) =>s
leas(M(ge), M(g) = lcas(M’(ge), M'(gy)). It follows
trivially that Constraint 2 holds as well. Therefore,
Algorithm 3 returns a valid DTL-scenario. O

Lemma 3 Algorithm 1 returns a valid DTL-scenario.

Proof The algorithm takes as input a valid DTL-
scenario, and by Lemma 2, at every iteration of the while
loop, a valid DTL-scenario is returned. Therefore, by
induction, Algorithm 1 returns a valid DTL-scenario. [

Theorem 1 Algorithm 1 returns a temporally consistent
DTL-scenario for G and S.

Proof By Lemma 1 and Lemma 2, we know that at some
point Algorithm 2 returns null with input G, S and a
valid DTL-scenario «, which means that there does not
exist any cycle containing any ¢ € /(G) in the temporal
feasibility graph F corresponding to «. Moreover, by con-
struction of F, the subgraph induced by I(S)U{¢} is acyclic.
Therefore F is acyclic. It follows that o is temporally
consistent. O

Let hs and hg denote the heights of trees S and
G, respectively. We now bound the running time of
Algorithm 1 and the increase in the number of events
introduced.

Lemma 4 The worst-case time complexity of
Algorithm 3 and Algorithm 2 is O(1) and O(|G|*> + |G||S|),
respectively.
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Proof The time complexity of Algorithm 3 is trivially
O(1). For Algorithm 2, note that the size of the temporal
feasibility graph F corresponding to any « is in O(|G| +
|S]). Therefore it takes O(|F|) = O(|G| + |S|) time to
construct F and to check if there exists a cycle in F con-
taining any given node g using depth-first search. Also,
since the for loop goes through O(|G|) iterations, the total
time complexity of Algorithm 2 is O(IG|> + |G||S)). O

Theorem 2 The worst-case time
Algorithm 1 is O(|G|>hs + |G|*|S|hs).

complexity of

Proof There is a single invocation of the U-MPR
algorithm whose worst-case running time is O(|G||S]).
Since Algorithm 1 goes through at most [[(G)|hs €
O(|Glhs) iterations and it calls Algorithm 3 and
Algorithm 2 once respectively at each iteration, from
Lemma 4 it follows that the total time complexity of
Algorithm 1 is O(|G|?hs + |G|?|S|hs). O

Lemma 5 Let o denote the initial DTL-scenario and let
O represent the transfer nodes in o. If Algorithm 1 invokes
Algorithm 2, which in turn returns g € V(G), then there
must exist some g’ € © such thatg >g ¢'.

Proof By the definition of Algorithm 2, g is on a cycle
in the graph F. Denote the arcs of F, except for those
defined by step 4(c) in the construction, as white arcs and
let the arcs defined by step 4(c) be black arcs. Note that,
by construction, there can be no cycles that involve exclu-
sively white arcs and thus the cycle C detected in line 3
of Algorithm 4 necessarily involves at least one black arc.
Consider the subpath of C from g to the first black arc e on
C. By construction of F, arc e was introduced by a transfer
event g’ € O and that transfer event is reachable by white
arcs from g and thus g >¢ ¢’ O

Theorem 3 Algorithm 1 introduces at most khg dupli-
cation events and khghg loss events, where k is the number
of transfer events in the initial MPR o.

Proof We first prove that Algorithm 1 introduces at
most ki duplication events. A new duplication event can
be introduced at most once for each node g € I(G). By
Lemma 5, we know that only a transfer node and its ances-
tors may be modified by our algorithm. Assume that, in
the worst case, every transfer node and every ancestor of
a transfer node is modified and that the sets of ancestors
are disjoint for each transfer node. The number of ances-
tors for a transfer node is strictly less than the height of the
tree hg, and we have a total of k transfer nodes. Therefore,
no more than kkg duplication events are introduced.

We now prove that Algorithm 1 introduces at most
khghs loss events. We may introduce a series of loss events
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each time we make g a new duplication node. Based on the
definition of the number of losses, Lossy(g) < hs. There-
fore, no more than khghg loss events are introduced. [

Results

To demonstrate the utility of our approach, we ran our
algorithm on a dataset comprising 4848 parasite trees for
a host tree comprising 100 (predominantly prokaryotic)
species from the Tree of Life [5]. We used DTL values of 2,
3,and 1, respectively. In this dataset 17.4% of MPRs found
by the U-MPR algorithm were temporally infeasible. In
order to compare the solutions found by our algorithm
to those found by Jane tool, we selected the first 100 of
the 4848 parasite trees for comparison. (We do not com-
pare performance to TreeMap or the ILP approaches since
their exponential worst-case running times make them
viable only for very small datasets).

In general, there may be multiple MPRs for a given
DTL instance. Our implementation of the U-MPR algo-
rithm can find all MPRs and we chose the first 10 and
repaired all of them, if necessary, and reported the best
score. Jane uses a genetic algorithm that maintains a pop-
ulation of T' candidate datings for the host tree and runs
for P iterations. We used 7 = 30 and P = 30 in these
experiments.

In 27% of the cases, our algorithm found reconciliations
with lower costs than those found by Jane: 16% that were
temporally feasible and required no repair and 11% that
were not temporally feasible and required repair. On aver-
age, in these cases, the repaired reconciliations had costs
that were 5.5% lower than Jane’s costs. In the remaining
73% of cases, Jane performed at least as well as our algo-
rithm. However, given that Jane is a de facto standard in
many cophylogenetic studies, it is notable that better solu-
tions can be obtained by our relatively simple and fast
algorithm for a non-trivial fraction of cases.

Our code is available in the Cheeta package (www.cs.
hmc.edu/~hadas/cheeta) which runs both Jane and our
repair algorithm and reports the best solution found (from
Jane, from U-MPR with no repair necessary, or from
U-MPR with our repair algorithm).

Conclusions

In this work we have described a new approach for find-
ing temporally feasible reconciliations in the DTL model.
This algorithm is efficient and, in a significant number of
cases, finds solutions that are better than those found by
the widely used Jane heuristic. In those cases, the results
from our heuristic should be used instead of the results
from Jane in order to draw more robust conclusions.

The “repair approach” described here has the desirable
property that it begins with a reconciliation whose cost
is a lower bound on that of a temporally feasible opti-
mal solution. While we derive a bound on the increase
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in cost due to successive repair steps, this bound is quite
large. Future work is needed to determine if this bound is
tight or can be improved. Additionally, there may be other
ways to repair temporally infeasible reconciliations that
perform even better than the one described here. Finally,
it is possible that this approach may lead to approximation
algorithms or schemes for the DTL MPR problem.
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