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Abstract

Background: Transcription factors are known to play key roles in carcinogenesis and therefore, are gaining
popularity as potential therapeutic targets in drug development. A ‘master regulator’ transcription factor often
appears to control most of the regulatory activities of the other transcription factors and the associated genes.
This ‘master regulator’ transcription factor is at the top of the hierarchy of the transcriptomic regulation. Therefore,
it is important to identify and target the master regulator transcription factor for proper understanding of the
associated disease process and identifying the best therapeutic option.

Methods: We present a novel two-step computational approach for identification of master regulator transcription
factor in a genome. At the first step of our method we test whether there exists any master regulator transcription
factor in the system. We evaluate the concordance of two ranked lists of transcription factors using a statistical
measure. In case the concordance measure is statistically significant, we conclude that there is a master regulator.
At the second step, our method identifies the master regulator transcription factor, if there exists one.

Results: In the simulation scenario, our method performs reasonably well in validating the existence of a master
regulator when the number of subjects in each treatment group is reasonably large. In application to two real
datasets, our method ensures the existence of master regulators and identifies biologically meaningful master
regulators. An R code for implementing our method in a sample test data can be found in http://www.
somnathdatta.org/software.

Conclusion: We have developed a screening method of identifying the ‘master regulator’ transcription factor just
using only the gene expression data. Understanding the regulatory structure and finding the master regulator help
narrowing the search space for identifying biomarkers for complex diseases such as cancer. In addition to
identifying the master regulator our method provides an overview of the regulatory structure of the transcription
factors which control the global gene expression profiles and consequently the cell functioning.
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Background
Through several scientific findings, it has been suggested
that cancer is mainly caused by the mutations in certain
genes. So, for effective treatment of cancer, identification
of these mutated genes (oncogenes) is very essential.
Detailed studies of different cancer datasets often lead to
identification of several oncogenes which are directly or
indirectly responsible for development and progression
of cancer. It is a very challenging task to target and

individually study all of these oncogenes as they are large
in number. One way to overcome this approach is to
group the proteins and genes belonging to the same
pathway [1]. These genes and their corresponding path-
ways are known to form networks that control various
cellular functions, and there has been sufficient interest
in analyzing such pathway based networks. However re-
cent findings suggest that most oncogenes and tumor
suppressor genes encode “transcription factors”, deregu-
lations of which play key roles in carcinogenesis [2, 3].
Majority of the cancer signaling pathways seem to* Correspondence: susmita.datta@ufl.edu
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converge to these sets of transcription factors, and these
transcription factors lead to tumor development, pro-
gression and cancer metastasis through the controlling
of the gene expression patterns [2, 3]. As suggested by
[2, 4], three main groups of transcription factors, which
have been identified for cancer, are the steroid receptors
(e.g. estrogen receptors in breast cancer, androgen re-
ceptors in prostate cancer), resident nuclear proteins ac-
tivated by kinase cascades, and the latent cytoplasmic
factors (from the STAT protein family members). Apart
from these, the ETS protein family members have also
been identified as potential cancer transcription factors
for their emerging roles in human cancer [5]. It has been
shown that direct suppression of these transcription
factor expressions can lead to significant antitumor
responses with minimal side-effects, and targeting these
transcription factors in tumor-related immune cells can
help in recovering from tumor immunoresistance [6]. As
a result of these features of the transcription factors, in
addition to the facts that they are much smaller in num-
ber than the oncogenes and have well-regulated expres-
sion and activities, transcription factors are gaining
popularity as potential therapeutic targets in anti-cancer
drug development [3, 4, 7, 8].
In the recent past, many studies have identified a tran-

scription factor or a group of transcription factors as the
driving force behind the development of a biological or
disease process [9–12]. In order to facilitate such detec-
tion there have been attempts to develop statistical
methods for accurate identification of transcription fac-
tors that regulate large number of genes. To this end
most of these methods have been attempted for identifi-
cation of transcription factors and transcription factor
binding sites in cell cycle of yeast and similar organisms
using multiple data sources [13–18], while a few of these
methods have been applied for human cell as well [19].
In addition, there have been efforts in developing statis-
tical tools for identifying a cluster of transcription fac-
tors that cooperatively regulates a large number of genes
and the associated disease process [20, 21]. Methods
have also been developed for identifying differentially
regulated gene sets by integrating regulatory networks of
transcription factors and gene expression data [22]. Also,
transcription factor activities have been estimated
through their effect on target genes [23]. The import-
ance of transcription factor regulation is also evident
from the fact that methods have been developed for
identifying coordinately activated functional modules
from gene expression data. These methods assume that
the transcription factor regulated target genes are differ-
entially expressed from non-target genes in the same
functional module [24]. In fact there have been several
studies for identifying transcription factors under the as-
sumption that co-expression indicates co-regulation

[25–27]. The main idea behind such transcription factor
regulation is that genes regulated by such transcription
factors should have, on an average, significantly different
expression levels during one or more cell cycle phases
[28]. Besides, there have been studies for identifying
groups of important transcription factors through inte-
gration of different genomic and epigenomic features
[29] and integration of transcriptional and protein inter-
action networks [30]. Most of these recent methods, in-
cluding that of [31] and [32], have been directed towards
identification of a group of candidate driver transcription
factors. Despite the fact that in most cases there are a
group of transcription factors that regulate the onco-
genes and hence the disease process, it has been seen
that there is a hierarchical structure in the regulatory ac-
tivities of these transcription factors where a ‘master
regulator’ transcription factor often appears to control
most of the regulatory activities of the other transcrip-
tion factors and the associated genes [33–35]. According
to the definition provided in [34] the “master regulator”
transcription factor is at the top of a regulatory hier-
archy and must not be under the regulatory influence of
any other gene or transcription factor. We use this def-
inition and attempt to finding the “master regulator”
transcription factor. This master regulator transcription
factor can be targeted for proper understanding of the
associated disease process and can be used as a
biomarker.
In current literature there is a lack of appropriate stat-

istical methods which use a single data source for accur-
ate identification of such a master regulator among a set
of identified transcription factors. In this article, we de-
velop a novel two-step statistical approach to test for the
existence of a master regulator transcription factor and
for subsequent identification of the master regulator, if it
exists, from gene expression data alone. The rest of the
article is organized as follows: In the Methods section,
we develop our test statistic and describe its underlying
motivations for identifying the master regulator tran-
scription factor. In the Results section, we describe a set
of simulation experiments to evaluate the performance
of our method and also apply our proposed method to
two real datasets. Finally, we conclude with a discussion
on the utility of our proposed method.

Methods
We first discuss the biological considerations that moti-
vated the development of our test statistic. We then pro-
vide the methodology to formulate the test statistic and
use it for the identification of the regulatory circuit of
the transcription factors and genes. Finally, we identify
the master transcription regulator at the top of the regu-
lation hierarchy.
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Biological considerations
Important biological processes can have multiple layers
of regulation and control. A transcription factor is
known to control not only genes but also other tran-
scription factors. As discussed before in the Background
section, usually there is a hierarchical structure in the
regulation of the transcription factors so that the master
regulator controls most of the regulatory activities of the
other transcription factors and the associated genes. In
this article, we aim to identify the master regulator tran-
scription factor which is at the top of the hierarchy for
better understanding of the associated disease process. A
toy example is shown in Fig. 1 which shows the possible
regulatory network across a set of genes and transcrip-
tion factors in a genome.
In Fig. 1, TF1, TF2, TF3and TF4 denote the transcrip-

tion factors and g1, g2,…, g12 denote the set of genes.
Suppose TF1 directly regulates five of the genes, which
are g1, g2, g3, g4 and g5, and also all the other three tran-
scription factors, TF2, TF3 and TF4. The transcription
factor TF2 regulates the genes g6, g7 and g8. Similarly, the
transcription factor TF3 regulates the genes g9 and g10
and finally, the transcription factor TF4 regulates the
genes g11 and g12. In this example, there exists a hier-
archical structure with three layers. We have TF1 at the
top of the hierarchical structure as it directly or indir-
ectly regulates the other transcription factors and the
genes. So, TF1 is considered to be the first layer of the
hierarchy. Now, TF1 directly regulates the other tran-
scription factors, TF2, TF3 and TF4 and the genes g1, g2,
…, g5. So, TF2, TF3 and TF4 and g1, g2,…, g5 are consid-
ered to be at the second layer of the hierarchy. TF1 regu-
lates the genes g6, g7,…, g12 indirectly through the
transcription factors TF2, TF3 and TF4. Thus, the genes
g6, g7,…, g12 form the third layer of the hierarchy. In
this example, TF1 directly or indirectly regulates all

the layers of the hierarchy and is not under the regu-
latory influence of any other gene or transcription
factor. Therefore, according to the definition, TF1 can
be considered as the master regulator transcription
factor.
Here, in this article, we attempt to develop a test that

can check if there exists any transcription factor that
acts as a master regulator in a genome, and identify such
a master regulator if present. The details of our pro-
posed method are given in the next section.

Identification of the Master Regulator through a
Hypothesis Testing Framework
Let M denote the total number of transcription factors
present in a genome. Let the transcription factors be de-
noted by TF1, TF2,…,TFM. Let the genes, which are not
transcription factors, be denoted by g1, g2,…, gN, where
N denotes the total number of such genes. So, in total,
we have expression data on M +N genes. Let us assume
that there are two groups of subjects, for example, the
case group (the disease group) and the control group
(non-disease group). Let there be r1 subjects in the case
group and r2 subjects in the control group. So, in other
words, we have two groups of subjects with expression
levels for M +N features in each group. It is well known
that the genes including the transcription factors are
expressed differently in the two groups. Additionally,
they are connected with one another differently in the
networks of the two groups. There are methods to re-
verse engineer the networks of genes with association
measures such as correlations, partial correlations and
partial least squares regression scores [36, 37]. These in-
ter genomic connectivity are different in two groups and
can be detected by statistical methods such as Differen-
tial Network Analysis (DNA) [38].
Since, it is believed that the master regulator max-

imally controls the other transcription factors as well as
the associated genes; it is important to find the regula-
tory network among the transcription factors and also
the degree of regulation of all the transcription factors
on the genes. We first measure the degree of regulation
of the transcription factors on the genes. The degree of
regulation of a transcription factor on the genes is mea-
sured by the change in connectivity of the genes it regu-
lates in the two networks. In other words, we find how
the connectivity of a transcription factor with the genes
differs between the subjects in case and control groups.
For this, we estimate the change in connectivity of a
transcription factor with the genes in the two groups of
samples using connectivity scores of the given transcrip-
tion factor with all the genes in the case group with that
in the control group. The difference in connectivity is
measured using the following statistic [38]:

Fig. 1 A toy example showing possible regulatory network across a
set of genes and transcription factors
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xi ¼ 1
N

X
g∈G

scaseTFi;g−s
ctl
TFi;g

��� ��� ; i ¼ 1; 2;…;M ; ð1Þ

where G denotes the set of all the genes, i.e., the cardin-
ality of G is N. Here, scaseTFi;gand sctlTFi;g are the connectivity
scores between the transcription factor TFi, i = 1, 2, …,
M, and the gene g in the case and control groups,
respectively. There are several choices for connectiv-
ity scores such as Pearson’s correlation scores, partial
correlation scores, partial least square based associ-
ation scores. In this article, we use the Pearson’s cor-
relation scores as connectivity scores. So, here, the
xi′s give us an idea about the magnitude of the dif-
ferential regulation of the transcription factors on
the genes between the case and control groups.
Next, we find the regulatory structure among the tran-

scription factors. For this, we measure the association
between each pair of transcription factors using the
Pearson’s correlation coefficient scores between them.
For each pair (j, k), let yjk denote the absolute value of
the Pearson’s correlation coefficient score between the
transcription factors TFj and TFk; j, k = 1, 2,…,M, where
yjj = 1. Note that this calculation is done by pooling the
data from both the groups.
At this stage, for a transcription factor TFj , j =

1, 2, …, M, we have two measures: a measure of the dif-
ferential regulation of TFj on the genes (given by xj); and
a measure of the association of TFj with all the tran-
scription factors (yjk, k = 1, 2,…, M).
We argue that the degree of change in connectivity

of the genes in the two networks is controlled by the
transcription factors which are correlated amongst
themselves in a hierarchical manner. That is, the hier-
archical regulation pattern (as measured by the rank
order) among the M transcription factors is the same
with the differential connectivity of genes in the two
groups that they control. In other words, the rank
order of the amount of differential connectivity of a
transcription factor with other genes it controls is in
line (e.g., concordant) with its ordered connectivity
with the master regulator. Therefore, we consider two
ranked lists. One that ranks the transcription factors
by the amount of differential connectivity of the
genes it controls and another that puts the master
regulator in the first position and ranks the remaining
transcription factors by their correlation with the
master regulator. We evaluate the concordance of
these two sets of ranks using a statistical measure
which is described in next paragraph. Since we do
not know a priori the identity of the master regula-
tor/s, we maximize this measure of concordance over
the set of all transcription factors in candidacy for
playing the role of the master regulator. In case the
maximal concordance is statistically significant, we

conclude that there is a master regulator. In addition,
we declare the transcription factor for which this con-
cordance measure is maximal amongst all transcrip-
tion factors to be the master regulator.
We construct a concordance statistic Kj for each tran-

scription factor TFj that is in candidacy for the master
regulator ; 1 ≤ j ≤M, in the following way:

1) We calculate the Kendall’s rank correlation
coefficient test statistic given by (2) below based
on the pairs of data ( x1, yj1), ( x2, yj2), …, ( xj, yjj),
…, ( xM, yjM). Note that xi denotes the average
difference in connectivity of transcription factor
TFi between the two groups, and yji is the absolute
correlation of transcription factor TFi with
transcription factor TFj. This test statistic Kj

below conveys whether the differential connectivity
of the genes with the transcription factor TFj in
the two experimental groups is concordant with
the correlations of the transcription factor TFj
with all other transcription factors. In other words,
Kj measures whether the differential connectivity
is concordant with the hierarchical regulation of
the transcription factors amongst themselves.
The Kendall’s rank correlation coefficient test
statistic for the transcription factor TFj is given as:

Kj ¼ nc;j−nd;j
n0

; ð2Þ

where, nc,j = number of concordant pairs in the above
paired list,

nd,j = number of discordant pairs in the above paired
list,
n0 ¼ M M−1ð Þ

2 = Total number of such paired
observations for TFj.

This statistic can be used to test the null hypothesis
that the two sets of ranks produced by differential con-
nectivity x and the correlations with TFj are non con-
cordant versus the alternative hypothesis that they are
concordant.

2) We repeat step 1) for all such transcription factors,
so that we have a concordance test statistic for each
of the transcription factors which is a potential
master regulator.

We believe that the master regulator has the max-
imum measure of concordance, among all the transcrip-
tion factors. Since we do not know the identity of the
master regulator, we maximize the measure of concord-
ance, given by Kj, over the set of all transcription factors.
So, we define K as the maximum of the statistics given
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in (2) over all the transcription factors TFjs that are in
candidacy for the role of the master regulator, i.e.

K ¼ max
j

K j ð3Þ

Thus, statistically significant large values of K would
indicate the existence of a master regulator.
Significance of K can be assessed by a bootstrap (re-

sampling) based procedure as the sampling distribution
of K is not tractable. This will calculate the p-value
or the observed level of significance of the value of
test statistic K calculated in (3). We draw B bootstrap
samples from the original sample each of size r1 + r2
and consider the first r1 samples as the case group
and the remaining r2 samples as the control group.
We compute the test statistic value for each bootstrap
sample. Let Kb denotes the value of our test statistic
for the bth bootstrap sample, where 1 ≤ b ≤ B. In order
to estimate the p-value, we calculate the proportion
of times the test statistic values based on the boot-
strap samples exceed the test statistic value obtained
from the original sample, i.e.,

p−value ¼
XB

b¼1
I Kb > Kð Þ
B

; ð4Þ

If the p-value obtained from (4) is low then the test is
significant and we conclude that there exists a master
regulator in the system.
In case we conclude that there exists a master regula-

tor the transcription factor T is claimed to be the master
regulator if it has the maximum value of the statistic
given in (2), i.e.

T ¼ arg max
j

K j ð5Þ

We evaluate the performance of our master regulator
identification procedure using a simulation experiment in
the next section. A sample test data where our method
can be implemented is available in the Additional file 1,
while an associated R code for its implementation can be
found in http://www.somnathdatta.org/software.

Results
Simulation
In order to evaluate the performance of our proposed
method, we generate synthetic datasets of gene ex-
pressions of the case and control groups with the
different regulation schemes of the transcription fac-
tors. The simulation scheme consists of the following
steps:

Data Generation
We consider M transcription factors TF1, TF2,…,TFM
and N genes g1, g2,…, gN, as described before in the

Methods section. Also, let there be r1 subjects in the
case group and r2 subjects in the control group. The
gene expression data for the two groups of subjects are
generated as given below. Note that, the choices of all
the design parameters considered below are given in
later sections depending on whether we are simulating
under the null or under the alternative.

1. We assume that (log-transformed) expression
values for TF1 follows a normal distribution with
mean μ and variance 1 i.e. N(μ, 1) in the case group,
and N(ϑ, 1) in the control group.
We also generate M independent random variables
Vi from N(0, 1); i = 1, 2,…,M, that are also
independent of TF1.

2. We want to generate all the transcription factors
in such a way that there exists a hierarchical
regulatory pattern among them. In other words,
we want to generate the remaining M − 1
transcription factors in such a way that
Corr( TFj , TFk) > Corr( TFj , TFl )
(j = 1, 2,…,M; k, l = j + 1,…,M; k < l),
where Corr(TFj , TFk) denotes the correlation
between the transcription factors TFj and TFk.
One way of achieving this is to simulate the
remaining M − 1 transcription factors TFi ; i ≠ 1
as follows:

TFi ¼ ρiTF1 þ V iffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2i

p ; i≠1

where, ρi′s are decreasing in i, i ≠ 1.
In this case, the correlation structures among all the
transcription factors are given by:

Corr TF1 ; TFið Þ ¼ ρiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2i

p ; i≠1

and Corr TFj ; TFk

� � ¼ ρjρkffiffiffiffiffiffiffiffi
1þρ2j

p ffiffiffiffiffiffiffiffi
1þρ2k

p ; j; k≠1 ; j≠k:

3. The next step is to generate the genes.We assume that
each of the transcription factors TFi ; i = 1, 2, …, M,
regulates mi genes. Here, N =m1 +m2 +… +mM. The
genes, g1; g2;…; gm1

, which are directly regulated by
TF1 alone, are generated as given below:

gj ¼
TF1γ1 þ �j for case group
TF1γ2 þ �j

′ for control group j ¼ 1; 2;…; m1

�

where, ϵj and ϵj′ are independent and identically dis-
tributed (i.i.d) as N(0, 1), and γ1 and γ2 are real
numbers.

Sikdar and Datta BMC Bioinformatics  (2017) 18:79 Page 5 of 11

http://www.somnathdatta.org/software


Here, the correlation between the transcription
factor TF1 and the genes gk , k = 1, 2,…, m1 is
given by

Corr TF1 ; gk
� � ¼

γ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ21

p for case group

γ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ22

p for control group

8>><
>>:

k ¼ 1; 2;…; m1

The genes, regulated by the remaining M − 1
transcription factors TFi; i ≠ 1, are generated as
follows:

gj ¼
V ir1i þ �j for case group
V ir2i þ �j

′ for control group j ¼ mi−1 þ 1;…; mi

�

where, ϵj and ϵj′ are i.i.d N(0, 1) and r1i and r2i are
real numbers, i ≠ 1.
In this case, the correlation between a transcription
factor TFi; i ≠ 1 and the genes regulated by that
transcription factor is given by

Corr TFi; gk
� � ¼

r1iffiffiffiffiffiffiffiffi
1þρ2i

p ffiffiffiffiffiffiffiffi
1þr1i

p 2 for casegroup

r2iffiffiffiffiffiffiffiffi
1þρ2i

p ffiffiffiffiffiffiffiffi
1þr2i

p 2 for control group
k ¼ mi−1 þ 1;…; mi

8<
:

Also, the correlations between a transcription
factor TFi; i ≠ 1 and the genes which are not
regulated by that transcription factors are zero
i.e. Corr( TFi , gk) = 0 for k ≠mi − 1 + 1,…, mi.
Furthermore, Corr( TF1 , gk) = 0 ; k ≠ 1, 2, …, m1.
We calculate the size and power of our test in the
following sections.

Size of the Test
Recall that, the null hypothesis of interest is that the
rank order of the transcription factors based on their dif-
ferential connectivity with the genes is not statistically
concordant with their rank order based on their correla-
tions with the master regulator. So, the null situation
can be created by assuming that there exists a hierarch-
ical regulatory pattern among the transcription factors
but there is no differential regulation of the genes in the
two experimental groups due to the transcription fac-
tors. Hence, there is no such master regulator.
In order to follow the null hypothesis in the simulation

setup, we assume ρis to be decreasing in i , i =
2, 3, …, M and choose γ1 = γ2 and r1i = r2i, i = 2, 3, …, M.
The decreasing nature of ρis ensures that there exists a
hierarchical regulatory pattern among the transcription
factors. γ1 = γ2 and r1i = r2i, i = 2, 3, …, M ensure that the
associations of the transcription factors with the genes
remain the same in the two groups i.e. there is no differ-
ential connectivities of the transcription factors with the
genes between the two groups. We generate r1 samples
for the case group and r2 samples for the control group
using the above described scheme. We calculate the

value of our test statistic, denoted by K, using Eq. (3)
and find its p-value as described in the Methods section.
In order to find the size of the test, we use Monte-

Carlo method. We repeat the whole process 1000
times and therefore, get 1000 p-values using Eq. (4).
Let the p-value for the ith Monte-Carlo iteration be
denoted as pi , i = 1, 2, …, 1000. The size for the test
is given by:

Size ¼
X1000

i¼1
I pi < 0:05ð Þ
1000

ð6Þ

In particular, we consider the following choices of the
parameters for calculating the size of the test:

� M = 10 , N = 105, r1 = r2 = 500, B = 500
� μ = 50 , ϑ = 5
� m1 = 30, m2 =m3 =… =m7 = 10 , m8 =m9 =m10 = 5
� ρ = (ρ2,…, ρ10) = (0.95, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,

0.2, 0.1)
� γ1 = γ2 = 0.5
� r12 = r22 = 0.45 and r1i = r2i = r1(i − 1) − 0.05

for i = 3, …, 10 .

For the above choices of the parameters, the empirical
size of the test came out to be 0.032 which is close to
the nominal size of 0.05.

Power of the Test
To calculate the power of our test, we generate a data
under the alternative hypothesis H1. Here the alternative
hypothesis is that the rank order of the transcription fac-
tors based on their differential connectivity with the
genes is concordant with their rank order based on their
correlations with the master regulator. So, we generate
the data in such a way that TF1 acts as the master regu-
lator, that is, the connectivity of TF1 with other tran-
scription factors are most concordant with the
differential connectivity of the genes with the transcrip-
tion factors. We set γ1 > γ2 and r1i > r2i ; i = 2, 3, …, 10.
Here γ1 > γ2 ensures that the connectivity (associations)
of TF1 with the genes, regulated by it, are greater in case
group than that in the control group. Similarly, r1i > r2i
ensures that the connectivity of TFi with the genes, regu-
lated by it, are greater in case group than that in the
control group, i = 2, 3,…, 10. Also, we assume ρis to be de-
creasing in i , i = 2, 3, …, M, so that there is a hierarch-
ical regulatory structure among the transcription factors,
TF1 being at the top of the hierarchy. We follow the
same steps in calculating the p-value as we did for size
calculation in the previous section. We consider the
same choices for M, N, r1, r2, B, μ, ϑ, ρ and mi ; i =
1, 2, …, 10 as we consider for size calculation. In
particular, we choose γ2 = 0.5; r12 = 0.45 and r1i = r1(i − 1)

Sikdar and Datta BMC Bioinformatics  (2017) 18:79 Page 6 of 11



− 0.05 for i = 3, …, 10. We choose r2i = (1 − δ)r1i , i =
2, 3, …, 10 where 0 ≤ δ ≤ 1. These choices of r2i , i =
2, 3, …, 10; ensure that increase in the value of δ also
increase the difference between r1i and r2i , i =
2, 3, …, 10. In other words, the differential regulations of
the transcription factors on the genes between the two
groups increase as δ increases.
For the choice of γ1, we consider the following rela-

tion: γ1 = γ2 + δ(r12 − r22), which implies
γ1 = γ2 + δ2r12, 0 ≤ δ ≤ 1. This choice of γ1 ensures that

increase in the value of δ also increase the difference
between γ1 and γ2. We draw the power curve for differ-
ent choices of δ, as shown in Fig. 2.
From Fig. 2, we see that the power steadily in-

creases as the differential connectivity (regulated by
δ) of the genes with the transcription factors between
the two groups increase. The power curve starts from
3.2% at δ = 0 (no difference in the connectivity of the
genes with the transcription factors in the two
groups) and reaches its maximum of 100% at δ = 1
(maximum difference in the connectivity of the genes with
the transcription factors in the two groups). The power
reaches over 80% with a moderate choice of δ = 0.6.
Therefore, we can say that our proposed method is a valid
test (e.g., size ≤ 0.05) that performs reasonably well (power
reaching 100%) in identifying a significant concordance in
the differential connectivity of the genes with the tran-
scription factors and the connectivity of a transcription
factor with master regulator, if one exists.
We also consider several other choices of the sample

sizes in each of the two groups (case and control), and
calculate the size and draw the power curves for each
of the following choices of the sample sizes: r1 = 100,

r2 = 70; r1 = 50, r2 = 40; and r1 = r2 = 50, representing
reduced sample sizes and unequal sample sizes in
each treatment group. Overall, from our analyses with
different choices of sample size, we find that the
power of our test is increasing with increase in the
sample size as well as an increase in the differential
connectivity of the genes with the transcription fac-
tors in the two groups. Details of the variation of the
power with sample size can be found in Additional
file 2 which shows the power curves for each of the
above choices of the sample sizes with different
choices of δ, 0 ≤ δ ≤ 1.
In order to check the performance of our test in case

there are more than one master regulator transcription
factors, we have also studied a simulated scenario where
there are two independent master regulator transcription
factors regulating two independent sets of genes through
transcriptional regulatory networks. Additional file 3
shows the power performance of our test in the presence
of two independent master regulators in the system. In
this case, too, our test has substantial power perform-
ance, similar to the simulated settings of a single master
regulator transcription factor. Note that, here we have
considered one of the many possible simulation settings.
However, our method can also be generalized for several
other complicated scenarios.

Application to Real Datasets
Prostate Cancer Data
We apply our test statistic, proposed in Methods section,
to a human Illumina expression array dataset GSE18684
of androgen regulated gene expression in the LNCaP
prostate cancer cell line [39]. It is believed that andro-
gens and the androgen receptor (AR) play significant
roles in prostate cancer cell proliferation and invasion.
So, this study was conducted by [39] with an aim to
identify the androgen receptor (AR) regulated genes.
The LNCaP cells were treated with androgen (R1881) or
with vehicle (ethanol) control. There are 10 control and
35 androgen treated samples with expression levels for
17182 probes in the dataset. We identify the set of
probes which are differentially expressed in the two
groups (androgen treated and vehicle control) using the
“limma” package in Bioconductor [40]. After adjusting
for false discovery rate (FDR) at 5% significance level,
6054 probes are differentially expressed in the two
groups, out of which 542 are transcription factors.
Now, we test whether there exists any master regulator

in the above mentioned dataset. For this, we compute
the value of our test statistic for this dataset using
Eq. (3), which turns out to be 0.49 with a bootstrap
based p-value of 0.006. Since the p-value is highly signifi-
cant we conclude that there exists a master regulator tran-
scription factor in the system which is controlling all the

Fig. 2 The power curve with 500 subjects in each group for several
choices of δ
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other transcription factors and the genes. In order to find
the master regulator, we use Eq. (5) as given in the
Methods section. For this study, the two transcription fac-
tors “PEG3” and “ARNT2” have the same value of the test
statistic given in Eq. (3). So, we conclude that these two
transcription factors maximally control all the other tran-
scription factors and consequently control the connectiv-
ity of the genes differently in the two groups. Additionally,
the Pearson’s correlation coefficient value between the two
transcription factors “PEG3” and “ARNT2” is 0.8. This
high value of the correlation suggests that these two tran-
scription factors are approximately at the same level of
transcriptional regulatory hierarchy. Therefore, it can be
concluded that both of them are the master regulators.
Among these two master regulators, “PEG3” has often
been linked to the development of prostate cancer. It is
believed that deregulation of WNT/ β catenin pathway
contributes to prostate cancer progression [41–46], and
according to [47], inhibition of the transcription factor
“PEG3” can lead to enhanced β catenin expression and
proliferation in human glioma stem cells. This function of
the transcription factor “PEG3” is relevant to prostate can-
cer [48]. Further, the expression of the transcription factor
“PEG3” is known to be associated with the processes of
cancer aggressiveness and angiogenesis [49]. The results
from our analysis show consistency with these known
roles of “PEG3” in prostate cancer and demonstrate the
utility of our proposed method to identify the master
regulator transcription factor. Besides, the transcription
factor “ARNT2” is known to have a critical role in human
renal tract development, thereby showing congenital ab-
normalities of the kidneys and urinary tract [50].
“ARNT2” is also known to have significant roles in many
cancers like NSCLC [51], breast cancer [52], etc.
Table 1 shows the list of top 10 transcription factors

which are highly correlated with the two potential mas-
ter regulators “PEG3” and “ARNT2”.
From Table 1, it can be seen that the transcription

factors “WWC1”, “NCOA7”, “TSHZ3” and “TCFL5” are
highly correlated with both the master regulators. Among
these, “WWC1” is known to be associated with prostate
cancer. The expression of “WWC1” is influenced by
AR signaling and is increased in prostate cancer [53].
The transcription factor “NCOA7” is known to affect

AR-mediated transcription [54]. The expression of
“TSHZ3” is known to be downregulated in prostate cancer
[55]. FOXD4L1 is also implicated in many cancers [56].

Colorectal Cancer Data
We apply our method to another human microarray
dataset GSE4107. This study was conducted by [57] with
an aim to identify differentially expressed genes in early
onset colorectal cancer (CRC). RNA samples are ex-
tracted from colonic mucosa of patients as well as
healthy controls and analyzed using GeneChip U133-
Plus 2.0 Array. There are 22 subjects involved in the
study which included 12 patients and 10 controls. All the
patients and the controls in the data are young Chinese
who are aged 50 years or less. There are expression levels
for 54,675 genes for all the patients in the dataset. We
first filter the data in order to find the set of differentially
expressed genes between the case and the control groups.
For this purpose we use the “limma” package in Biocon-
ductor [40]. After adjusting for FDR at 10% significance
level, the number of differentially expressed genes turns
out to be 5192, among which 266 are transcription
factors.
Next, we apply our method to the filtered dataset.

We first test whether there exists a master regulator
in the data. The value of our test statistic, given in
Eq. (3), is 0.38 for this dataset with a p-value of 0.04
for the bootstrap based test. Since, the p-value is
small enough to make the test significant, we con-
clude that there exists a master regulator in the data.
We identify the master regulator using Eq. (5), given
in the Methods section. The master regulator in this
data is the transcription factor “NFKB2”. Hence, we
conclude that the transcription factor “NFKB2” max-
imally controls all the transcription factors and the
genes in the data.
The transcription factor “NFKB2” is a subunit of the

transcription factor nuclear factor-kappa-B (NFKB).
“NFKB” transcription factors are known to be the key
regulators of innate immune responses, inflammation,
and cell survival [58, 59]. Also, “NFKB” activation has
been frequently associated with tumor growth in leuke-
mias and lymphomas, as well as prostate, pancreatic and
colorectal cancers [60–62]. It has been widely suggested
that “NFKB” activation plays a leading role in regulation
of target genes that promote cell proliferation, anti-
apoptosis, regulate immune and inflammatory response,
and results in pathogenesis of various cancers [59, 63–67].
Further, it has been shown that constitutive activation
of “NFKB” instigates strong resistance to chemotherapy
and radiotherapy [67], while molecular targeted therapy
against “NFKB” activation is believed to be effective in
colorectal carcinomas with constitutive “NFKB” activation
[59]. According to [66], “NFKB” may contribute to the

Table 1 Top 10 transcription factors having high correlations
with the master-regulators in the prostate cancer data

Master Regulators Top 10 transcription factors correlated
with the master regulator

PEG3 WWC1, FOXD4L1, NCOA7, TSHZ3, CTBP1,
TCFL5, LHX2, ARID5B, CDCA7L, MAK,

ARNT2 MSRB2, TULP4, TSHZ3, TCFL5, SNAPC5,
TFDP1, WWC1, CITED4, NCOA7, GRAMD4
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promotion of the ongoing inflammatory process in
the gut mucosa resulting in the progression of colitis
associated colorectal cancer. Besides, it is believed that
“NFKB” activation is involved in development of not only
colitis-associated cancer, but also sporadic colorectal
cancer [68].
From our data, we find that the master regulator

“NFKB2” is maximally (negatively) correlated with the
transcription factor “PPARGC1A (PGC-1alpha)” with an
overall correlation value of -0.76. The correlation of
“NFKB2” and “PPARGC1A” is -0.72 in the patients
group whereas it is -0.39 in the control group. It is
known that “NFKB” directly repress the activity of
“PPARGC1A” in cardiac cells. This leads to the increase
in glucose oxidation which is observed during pro-
inflammatory state [69].

Discussion
In this article, we present a novel approach to identify a
master regulator transcription factor in a system using
only the gene expression profiles of the patients. We
consider a simulation setting which validates our ap-
proach with a reasonable power in detecting the exist-
ence of a master regulator. We have also checked the
power of our test in the presence of two independent
master regulator transcription factors in the simulation
setup. We apply our approach to two human microarray
datasets and detect the existence of master regulators in
those. In order to check the robustness of our method in
experiments not typically falling under the ‘case-control’
category, we have applied our method to an additional
dataset, namely, Glioblastoma (GBM) TCGA RNA-seq
data [70]. Here we compare the two types of GBM
tumors: Mesenchymal and Classical. Our method con-
cludes the existence of a master regulator transcription
factor (PPRC1) between the two types of GBM tumors
(Mesenchymal and Classical) with a p-value of 0.08
(marginally significant).
Our method is aimed to identify a single master regu-

lator, as opposed to identifying a group of transcription
factors associated with the disease process as in the case
of other existing methods. The method can identify
multiple master regulator transcription factors if they
are individually at the top of hierarchy of the transcrip-
tion regulation. This is advantageous in anti-cancer drug
development processes which initially target the most
potential transcription factor associated with the disease
and can be used as a potential biomarker. However,
there is a scope of further improvement of our proposed
method by incorporating important platforms like ChIP-
Seq data. From simulation settings, we see that the per-
formance of our method gets better with the increase in
the number of patients in each group. So, our method is
expected to be more efficient when there is sufficiently

large number (around 100) of patients in each group
while it may not be very efficient in case the sample size
is very small. Although both the data analyzed in this
article have much lower number of subjects in each
group, our test was still successful in identifying master-
regulator transcription factors from the data. One im-
portant assumption of our method is that the ranking of
the transcription factors on the basis of their differential
connectivity of the genes between two experimental con-
ditions is concordant with the hierarchical order of their
own regulation. The fulfilment of the above mentioned
condition is a key indicator to the existence of a master
regulator transcription factor and its subsequent detec-
tion through our method. However, it may be possible
that in certain situations, although there exists a master
regulator transcription factor, there is no such clear cut
concordance between it’s regulation on other transcrip-
tion factors and differential connectivity with the other
genes. In such a case, our method may not perform well.

Conclusion
We have developed a method of identifying the ‘master
regulator’ transcription factor using only the gene ex-
pression data. This is advantageous in terms of narrow-
ing down the search space for potential candidate
transcription factor biomarkers that can be targeted for
drug development of complex diseases. Also, the fact
that our method uses only a single data source, e.g. gene
expression data, for accurately identifying the master
regulator transcription factor makes it very useful in case
there is limitation in data sources and data from mul-
tiple platforms are not available. In addition to identify-
ing the master regulator our method provides an
overview of how the transcription factors regulate the
global gene expression profiles and consequently the cell
functioning. Additionally, with our method, one can
identify many other transcription factors involved in the
regulatory roles by reporting the hierarchy amongst
them using the rankings of the test statistics values.
Overall, we believe that our method will give new insight
for efficient identification of potential disease biomarker
and therapeutic target in drug development processes.

Additional files

Additional file 1: Test Dataset. This file contains an example test dataset
where our method can be implemented. This simulated data contains 10
transcription factors, namely TF1, TF2,…, TF10 along with 105 genes that
were regulated by these transcription factors. Among the transcription
factors, TF1 was generated to play the role of the master regulator.
(CSV 1382 kb)

Additional file 2: Figure. Plot of the power curves for different choices
of the sample sizes with several choices of δ, using simulated datasets.
(DOCX 19 kb)
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