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Abstract

Background: The amino acid sequence of a protein is the blueprint from which its structure and ultimately function
can be derived. Therefore, sequence comparisonmethods remain essential for the determination of similarity between
proteins. Traditional approaches for comparing two protein sequences begin with strings of letters (amino acids) that
represent the sequences, before generating textual alignments between these strings and providing scores for each
alignment. When the similitude between the two protein sequences to be compared is low however, the quality of
the corresponding sequence alignment is usually poor, leading to poor performance for the recognition of similarity.

Results: In this study, we develop an alignment free alternative to these methods that is based on the concept of
string kernels. Starting from recently proposed kernels on the discrete space of protein sequences (Shen et al, Found.
Comput. Math., 2013,14:951-984), we introduce our own version, SeqKernel. Its implementation depends on two
parameters, a coefficient that tunes the substitution matrix and the maximum length of k-mers that it includes. We
provide an exhaustive analysis of the impacts of these two parameters on the performance of SeqKernel for fold
recognition. We show that with the right choice of parameters, use of the SeqKernel similarity measure improves fold
recognition compared to the use of traditional alignment-based methods. We illustrate the application of SeqKernel
to inferring phylogeny on RNA polymerases and show that it performs as well as methods based on multiple
sequence alignments.

Conclusion: We have presented and characterized a new alignment free method based on a mathematical kernel
for scoring the similarity of protein sequences. We discuss possible improvements of this method, as well as an
extension of its applications to other modeling methods that rely on sequence comparison.

Keywords: Protein sequence, Kernel, Alignment free methods

Background
The overall principles behind the translation of a gene
sequence into an active protein structure are theoretically
well understood. The sequence of nucleotides that forms
a gene is first translated into a sequence of amino acids,
based on the genetic code. The corresponding linear chain
of amino acids becomes active only after it folds into a
three-dimensional shape, the so-called tertiary structure
of the protein (though there is mounting evidence that
there is a whole class of “unstructured” proteins that are
biologically relevant [1]). However, while we can easily
observe experimentally how the linear chain folds, we do
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not understand the principles underlying that transition.
For instance, the rules that reveals the three-dimensional
structure of a protein from its amino acid sequence have
not yet been unraveled. Finding these rules is in fact one
of the “holy grails” in molecular biology, namely the pro-
tein structure prediction problem [2, 3]. Efforts to solve
this problem currently emphasize protein sequence anal-
ysis, as a consequence of the wealth of sequence data that
is available. We know the primary sequences of many pro-
teins, with currently more that 65,000,000 sequences in
the TrEMBL database [4], we know in some cases the
corresponding three-dimensional structures of these pro-
teins, with more than 110,000 in the Protein Data Bank
[5], and we have information on their biological activi-
ties, with more 550,000 sequences that have been anno-
tated in SwissProt [6] (all numbers correspond to August
2016). However, we are still far from understanding all
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the information encoded in these databases. In this paper,
we address the problem of protein sequence compari-
son in the context of protein fold recognition, and show
that a new string kernel drastically improves the lat-
ter compared to traditional methods based on sequence
alignment.
Amino acids are usually described using a one-letter

code, and protein sequences are correspondingly rep-
resented as strings of letters. This representation has
proved very useful, especially in the context of sequence
alignment [7, 8] that is usually performed using string-
matching algorithms [9]. Those methods represent the
overwhelming majority of methods used for sequence
comparisons in bioinformatics. When comparing two
sequences, they proceed in two steps, first the genera-
tion of the alignment between the two sequences, then
the derivation of a statistical score for that alignment.
They rely on a weighting scheme to measure the cost
of matching pairs of amino acids. Many such weights
have been proposed, from substitution matrices derived
from evolution models such as the PAM matrices [10]
and the BLOSUM matrices [11], to matrices that capture
physico-chemical properties of amino acids [12]. Using
this score, an alignment is derived following a dynamic
programming algorithm, either the local method of Smith
and Waterman [13], or the global method of Needle-
man and Wunsch [14]. This alignment is then scored by
summing the individual weights of the matching pairs
of amino acids and adding penalties for the presence of
gaps. It should be noted that this score is not a metric in
sequence space. Statistical methods have been developed
to assess the significance of such scores, both for gapped
and non-gapped alignments (see for example [15]). Such
statistical scores are widely used for the identification of
homologous sequences or for fold recognition. It has been
shown however that those scores are efficient for both
tasks for sequences with high similarities, but often fail
for dissimilar sequences (see for example [16]). Extensions
to pair-wise alignment methods have been proposed to
alleviate this problem, such as those based on multiple
sequence alignments and profiles [17] , and those based on
Hidden Markov Models [8]. While those show improved
sensitivity, they remain prone to the problems related to
the construction and use of alignments.
To circumvent the shortcomings of the alignment-based

methods described above, many “alignment-free” meth-
ods have been proposed over the past three decades (for
review, see [18–20]). Most of these methods compute the
frequencies of words of a fixed length, k, also denoted as
k-mers or k-grams, depending on the authors. Once the
frequency distribution functions of such k-mers have been
computed for two sequences, the distance between those
two sequences is assimilated to the distance between
those distributions, using different definitions of distance

[19, 21]. Other methods identify word matches of dif-
ferent lengths [22, 23]. One such method, the average
common substring approach, identifies for each position i
in one sequence the longest substring starting at i that is
also present in the other sequence. The average lengths
of those substrings over all positions i is a measure of
similarity of the two sequences that can be converted
into a distance [22]. All those methods are based on
exact word matches. Exact matches however are bound
to have limitations, due to strong correlations between
amino acids at neighboring positions. A solution to the
limitations of exact matches is the spaced seeds method
that defines patterns with “match” and possible “don’t
care” positions, using the vocabulary introduced by the
authors [24–27].
Another class of alignment-free methods for comparing

protein sequences that are directly relevant to this work
includes string kernel basedmethods, originally defined in
the context of support vector machines (SVM) [28]. SVM
aremachine learning algorithms that are designed to learn
a rule for discrimination from a set of samples with two (or
more) labels. This rule can then be applied to predict the
label of any new sample. A key element of any SVM imple-
mentation is the kernel function that is used to quantify
the similarity between any pair of samples. The simplest
kernel function is the dot product between vectors of fea-
tures that represent the samples. The first applications of
SVM with a kernel function that is used to compute the
similarity between two protein sequences were based on
an extension of the dot product concept. Jakkola et al [29]
used a generative Hidden Markov Model (HMM) on a
set of proteins to generate a vector representation of each
protein sequence (the so-called Fisher score vector). The
kernel is then defined as a dot product between the corre-
sponding Fisher vectors. Lodhi and colleagues introduced
a string kernel that counts the number of occurrences of
subsequences of a fixed length in the two strings that are
compared [28]. The SVM-pairwise method [30] consists
of describing each sequence with a vector of pairwise sim-
ilarity scores for all domains in the training set (where
the similarity score is the E-value of the Smith-Waterman
pairwise sequence alignment), and defines the kernel to
be the dot product between these vector representa-
tions. The spectrum kernel [31] and the mismatch kernel
[32] measure the similarity between protein sequences by
quantifying the number of similar short substrings (i.e.
k-mers of fixed lengths, typically between 4 and 6 amino
acids) they share. These two kernels bear similarity with
the word-based alignment-free methods described above.
The weighted degree kernels extend those kernels by con-
sidering weighted sums of the individual kernels obtained
with fixed length k-mers [33, 34]. The local alignment ker-
nel of Saigo et al [35] was designed to mimic the score
generated by a Smith and Waterman pairwise alignment
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method, with the proper mathematical foundations to
guarantee that it is a true kernel. More recently, Smale and
co-workers expanded the local alignment kernel by con-
sidering all possible alignments of k-mers between the two
sequences of interest, for all possible k values, ignoring
gaps when aligning the k-mers [36]. All the kernels listed
here (as well as others that we have most likely missed),
have been tested in classification problems as part of a
machine learning algorithm (usually SVM), with various
levels of success.
This paper draws from the concept of string kernels

listed above. It describes an alignment-free method for
protein sequence comparison that is based on the string
kernel introduced by Smale and collaborators [36] . In
contrast with the previous studies on string kernels, we do
not include at this stage our string kernel into any learn-
ing algorithms. Instead, we assess directly its ability to
classify proteins into structural folds based on sequence
information only. We note that the string kernel we con-
sider (which we refer to as SeqKernel) depends on two
parameters, in addition to the substitution matrix it uses
to score matches of pairs of amino acids (see below).
We provide an exhaustive analysis of the effects of these
two parameters on the performance of the kernel for
fold recognition. Such an analysis, which is necessary
as a first step to improving string kernel methods, was
only partially included in the presentations of the equiv-
alent kernels defined by Saigo et al [35], and by Smale
and co-workers [36]. In the latter study for example, one
parameter, β (see below for details), was fixed to 0.11,
without further explanation, while the second parameter,
kmax, the maximum length of the k-mers considered, is
set to a small number for computational considerations.
Finding how those parameters influence the performance
of the kernel is the main focus of this paper. To perform
this analysis, we consider different datasets of proteins
that belong to different structural folds, as defined by
CATH [37]. These proteins were selected such that their
sequences share little sequence similarities. We classified
these proteins using the similarity measure provided by
the string kernels. The classification is then compared
with the corresponding results obtained using the scores
of pairwise sequence alignments and the scores of struc-
tural alignments of those proteins. Ultimately, we have
observed that sequence alone provides poor separation
of the different folds. We show in contrast that with the
right choice of parameters, use of the string kernel similar-
ity measure significantly improves classification accuracy.
In addition, we illustrate the use of SeqKernel to recon-
struct a phylogenic tree of RNA polymerases, in line
with the current development of alignment-free methods
for phylogenomics that are designed to remove prob-
lems inherent to (multiple) sequence alignments (see for
example [38–40]).

The paper is organized as follows. In “Methods” section,
we describe the string kernel, while in “Results and Dis-
cussion” section we describe the databases we have gen-
erated to assess the performance of our string kernel
for fold recognition. In the Results section, we provide
a comprehensive analysis of the parameters that defined
the kernel and finally we conclude the paper with a
discussion on future developments of the string kernel
approach.

Methods
A string kernel for alignment-free sequence comparison
The string kernel considered here is inspired by the con-
volution string kernels introduced by D. Haussler [41],
adapted by Saigo et al [35] as the local alignment kernels,
and later by Smale and co-workers [36]. We provide here
the key elements of its construction. Readers should refer
to the original papers for a more detailed presentation,
notably for the proofs of the mathematical properties that
are relevant to kernels in general.

Notations Let X be a finite set of size n. A kernel K is a
symmetric function from X × X to R such that the Gram
matrix G of size n × n defined by G(i, j) = K(xi, xj) is
symmetric, positive, and definite. Let A be the set of the
standard twenty amino acids found in proteins. A protein
sequence S is a string of elements fromA. We note |S| the
length of S.

Akernel for amino acid pairs. Let SA be a function from
A × A to R, such that SA(i, j) measures the similarity of
the amino acids i and j, and let SM be the Gram matrix
associated to SA. Examples of SM include the matrices
representing the raw data of any BLOSUM matrices [42],
namely the raw counts of how often amino acid i is substi-
tuted by amino acid j in a set of selected protein sequence
alignments that is then normalized by considering its row
sums P(i):

P(i) =
20∑

j=1
SM(i, j)

SM2(i, j) = SM(i, j)
P(i)p(j)

(1)

We have checked that when SM is a raw count BLOSUM
matrix, then SM2 is symmetric, positive, and definite.
Note that when SM is such a raw count matrix, the cor-
responding BLOSUM matrix BL is defined as BL(i, j) =
round(log2(SM2(i, j))), where round is the function that
rounds a real number to its nearest integer. Given a strictly
positive real number β , we define the function K1 : A ×
A → R as:

K1(i, j) = SM2(i, j)β (2)
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K1 is a kernel function on A × A, as long as SM2 is sym-
metric, positive, definite, and β is strictly positive. The
same definition was used in [36].

A kernel for comparing two strings of the same length.
Let k be a strictly positive integer and let Ak be the k-th
Cartesian power of A. An element of Ak is a string of k
letters taken fromA, it is usually referred to as a k-mer, or
a k-gram. Let uk = (u1, . . . ,uk) and υk = (υ1, . . . , υk) be
two k-mers inAk . The function Kk

2 defined by:

Kk
2 (uk , υk) =

k∏

i=1
K1(ui, υi) (3)

is a kernel on Ak , the set of all k-mers. We note that Kk
2 is

a convolution kernel [41].

A kernel for computing protein sequence similarity.
Let S = (s1, . . . , sn) and T = (t1, . . . , tm) be two protein
sequences; both are strings, with S ∈ An and T ∈ Am.
Let uk and υk be substrings of length k (i.e. k-mers) of S
and T respectively. uk and υk are considered contiguous,
i.e. we do not allow gaps. There are therefore n − k + 1
andm− k+1 such substrings in S and T, respectively. We
define

Kk
3 (S,T) =

∑

uk∈S

∑

υk∈T
Kk
2 (uk , υk) (4)

and

K3(S,T) =
p∑

k=1
Kk
3 (S,T). (5)

where the summation extends to p = min(n,m),with n
andm the lengths of the two sequences that are compared.
Finally, we define the correlation kernel K̂3 as:

K̂3(S,T) = K3(S,T)√
K3(S, S)K3(T ,T)

(6)

Following [41] and [36], we make the following remarks:

i) The input kernel matrix SM is not a traditional
substitution matrix, as it does not involve applying
the logarithm function on the probability measures.
While the latter is needed to make scores additive, a
necessary condition for the use of dynamic
programming algorithms in generating pairwise
sequence alignment, it is not needed for the string
kernel we use here. Note that this differs from the
local alignment kernel, which is designed to mimic
pairwise alignment.

ii) The kernel K3 is computed as an unweighted sum of
the individual kernels Kk

3 that are computed with a
fixed k value. We could have considered a weighted
sum instead, similar in spirit to the weighted degree
kernels [34]. We leave this option for future work.

iii) The summation in Eq. 5 extends to the length of the
smallest sequence. This summation can be truncated
however to only include k-mers up to a fixed length
set to be kmax. This will be discussed in details.

iv) K̂3 is a kernel as long as SM2 and β (which define K1)
are definite positive, and strictly positive,
respectively. Note that for any kernel K1 defined on
A × A, we can define a correlation string kernel K̂3.

v) As defined, K̂3 does not consider gap penalties, or
even gaps.We consider this as an advantage, as it does
reduce the number of parameters that defines K̂3.

vi) The string kernel K̂3 is a similarity measure in the
space of sequences. Notice that for all sequences S,
K̂3(S) = 1. This similarity measure can be
transformed into a distance measure, using

D(S,T) =
√
K̂3(S, S) + K̂3(T ,T) − 2K̂3(S,T) =√

2 − 2K̂3(S,T). D(S,T) takes values between 0 and√
2.

Implementing the string kernel
Equation 5 above leads to a simple, naive algorithm for
computing the K3 kernel for two sequences S and T : for
any length k, generate all n − k + 1 and m − k + 1 k-
mers in S and T, and perform the (n − k + 1)(m − k + 1)
corresponding Kk

2 kernel evaluations using Eq. 3. Such an
implementation however would come at a high computing
cost, namely O(nmk2max), where n and m are the lengths
of S and T and kmax is the longest k-mer considered. We
notice however that for any k-mers uk and υk , we have:

Kk
2 (uk , υk) = Kk−1

2 (uk−1, υk−1)K1(uk , υk) (7)

where uk−1 is the string of length k − 1 formed from the
k − 1 first components of uk (with a similar definition
for υk−1). This simple recursion formula leads to a more
efficient algorithm for computing the string kernel K3 of
order O(nmkmax). We note that this complexity remains
large for protein sequence comparison.

Datasets of protein sequences
Our first dataset includes 10,619 domains from the CATH
[37] v4.0 domains, each with a CATH classification. As
we focus on protein structure fold prediction, we consider
the first three layers of the CATH classification, namely,
Class (C), Architecture (A), and Topology (T). A set of
structures with the same C, A, and T defines a fold. By
using a set of structures with significant sequence diver-
sity, we ensure that the data is duplicate-free. Such a filter
when selecting the sequences also assures that the prob-
lem of detecting structural similarity is non-trivial. The
10619 structures were selected as follows: (i) Randomize
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the list of 235,858 CATH v4.0 domains; (ii) Start with the
first domain on the randomized list, and remove from the
list all domains that share significant sequence similar-
ity with it (FASTA [43] SSEARCH E-value < 10−4, with
the alignments computed with the BLOSUM62 substitu-
tion matrix [42], and gap penalties of -11 (opening) and
-1 (extension)). (iii) Repeat step (ii) with all domains in
the list that have not yet been removed, until there are
no domains left for selection. The set of 10619 domains
resulting from this procedure is referred to as CATH40e4.
There are 1363 folds in CATH40e4, many of which

only include a single representative (734). To improve sta-
tistical analysis and remove possible biases from those
folds with a low number of representative, we selected
five of the most populated folds in CATH40e4 as a
more specific test set, including at least one fold from
each CATH class: CATH fold 1.10.10, a fully α fold
(arc repressor, 381 members), CATH fold 2.60.40, a fully
β fold (immunoglobulin-like, 555 members), and three
alternating α/β folds: 3.20.20, (TIM-like, 251 members),
3.30.70, (two layer sandwich, 368 members) and 3.40.50
(Rossmann fold, 1278 members). The same five folds were
previously used in other studies [44, 45], but with different
members as based on a different version of CATH. Over-
all, these five folds consist of a total of 2833 proteins (set
CATH2833). Table 1 provides general information about
the distributions of proteins in those five folds, while
Fig. 1 illustrates the geometries of those folds, using the
structure representatives defined by CATH.
As seen in Table 1, the proteins in the five folds included

in CATH2833 vary significantly in length. To assess the
importance of length differences when computing the
string kernel between two sequences, we generated a sub-
set of CATH2833, CATH793, that contains all proteins
whose lengths are between 120 and 180 amino acids.
General information about those proteins is available in
Table 1.
Finally, we extracted a second dataset from CATH40e4

that contains all folds with at least 40 representatives,
excluding the five folds included in CATH2833. There are

Table 1 Statistics of the sequences included in the two datasets

Dataset

CATH2833 CATH793

CATH fold ID Na L (SD)b N L (SD)

1.10.10 381 79 (26) 36 135 (10)

2.60.40 555 110 (29) 130 140 (16)

3.20.20 251 294 (69) 2 157 (14)

3.30.70 368 182 (59) 52 141 (18)

3.40.50 1278 153 (77) 573 151 (17)

aNumber of proteins in the fold
bMean (standard deviation) of the lengths of the proteins in the fold

40 of those folds, covering all three classes of proteins,
and 13 architectures. This dataset contains a total of 3744
proteins and is referred to as CATH3744.

ROC analysis of protein fold recognition
We quantify the effectiveness of a distance measure in
identifying correctly if two sequences correspond to pro-
teins that belong to the same CATH group using the
receiver operating characteristic (ROC) analysis [46]. In
the following, a “group” may be the class of the sequence
(i.e. α, β , or α/β), the architecture of the corresponding
protein structure, or the topology of the protein struc-
ture, as defined by CATH. A pair of protein sequences is
defined as similar, or “positive”, if the sequences are mem-
bers of the same group, and “negative” otherwise. All pairs
of protein sequences in a dataset are then compared using
a similarity measure. For varying thresholds of the mea-
sure considered, all pairs that fall below the threshold are
assumed to be positive, and all above it are considered
negative. The pairs that agree with the assumed standard
are then called true positives (TP), while those that do not
are deemed false positives (FP). A ROC analysis is set to
measure the rate of TP as a function of the rate of FP. The
“quality” of the similarity measure, namely its ability to
separate positive pairs from negative pairs, is then scored
using the Area Under the corresponding Curve, namely
the AUC. An AUC score of 1 would indicate that all TP are
detected first: this is consistent with an ideal measure. An
AUC score of 0.5 indicates that TP and FP follow the first
diagonal: they therefore appear at the same rate, indicating
that the measure is not discerning.
When the number of groups considered is larger than

two, we have performed two types of ROC analyses. In the
first approach, we label a pair of proteins that belong to
a given group as positive, independent of the group con-
sidered. In this case, an average behavior over all possible
groups is derived. In the second approach, only pairs of
proteins that belong to a specific group are called positive.
This provides a group specific ROC analysis.

Fold classification experiments
The ROC analysis described above ranks the distance
measures of pairs of protein sequences and checks if this
ranking is consistent with an existing classification; it is
not designed to achieve the classification itself. We have
expanded the ROC analysis to the actual issue of fold
recognition by carrying out a second set of experiments.
Each experiment involves a data set of protein sequences,
D, a level of classification with groups, G, and a distance
measure, d. We start by dividing randomly the sets of
sequences in D into two subsets of approximately equal
size. The first subset defines a training set, while the sec-
ond subset corresponds to the test set. A test sequence
is assigned a class by mapping it to the group of its
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1.10.10: Arc Repressor 2.60.40: Immunoglobulin 3.20.20: TIM Barrel

3.30.70: Alpha-beta plait Rossmann Fold

Fig. 1 Representatives of the five fold classes in our test set CATH2833. The arc repressor mutant, subunit A fold (CATH 1.10.10) is a common
orthogonal helix bundle, found, for example, in the Zb domain from the RNA editing human enzyme ADAR1 (CATH code 1xmkA00). The
immunoglobulin-like fold is a β sandwich, found in many immunoglobulin-like proteins, such as the human MCG protein (CATH code 4unuA00).
The TIM barrel is a very common α/β fold, shown in an isomerase of the parasite Leishmaniamexicana (CATH code 2vxnA00). The α − β plait fold is
a two-layer sandwich, shown here in a human nucleoprotein, HNRNP (CATH code 1l3kA01). The Rossmann fold is a very common three-layer
sandwich fold in the mixed α − β class, found, for example, in the D-amino acic oxydase from Rhodotorula toruloides (CATH code 1c0pA01). All
images were generated using Pymol http://www.pymol.org

nearest neighbor in the training set. Here the nearest
neighbor is found by computing first the mean normal-
ized distance between the test sequence and all sequences
in the training set that belongs to a given group, for all
groups in the training set, and then taking the smallest of
those mean distances. The results are gathered in a con-
fusion matrix, C, whose element C(i, j) corresponds to the
number of test sequences from group i that have been
classified as belonging to group j. The efficiency of the
classifier d is then defined to be the quotient of the trace
of the confusion matrix over the sum of all its elements.
This quotient corresponds to the percentage of correctly
classified sequences.

Protein structure comparison
We have used STRUCTAL [47] to perform geomet-
ric alignments of two curves representing two protein
structures. STRUCTAL starts with an initial alignment
(a correspondence between residues of the two struc-
tures), and computes the rigid-body transformation that
leads to the “best” geometric superimposition of the cor-
responding residues. It then identifies an optimal align-
ment for this superposition, using dynamic programming.
The new alignment defines a new correspondence, which
is used to superimpose the structures again. This proce-
dure is then iterated until it converges to a local optimum
that depends on the initial alignment. To alleviate biases
due to that dependence, STRUCTAL repeats the iterative
search using several different initial correspondences.
The traditional measure of similarity between two pro-

tein structures after optimal alignment is the root mean

square displacement of atomic positions, also called cRMS
for coordinate root mean square displacement, computed
as:

cRMS =
√∑N

i=1 dist(ai, bi)
N

(8)

where N is the number of positions in the correspondence,
and ai and bi are the Cartesian positions of two residues a
and b from the two structures. The cRMS however is not
a good measure of structural similarity [48]. Intuitively,
a “good” measure of geometric, or structural similar-
ity should favor alignments with many residues that are
matched, low cRMS deviations, and few gaps. Unfortu-
nately, these properties are not unrelated. For example, a
lower cRMS deviation can always be achieved by select-
ing a smaller number of matches. In fact, given the fixed
inter-CA distance there is the extreme case of alignments
that only include two residues that have cRMS deviations
of exactly zero. Also, the addition of gaps may lengthen
the alignment without increasing the cRMS value. Differ-
ent similarity measures have been proposed that attempt
to balance these values in different ways. In this work, we
have implemented the Structural Alignment Score, SAS:

SAS = 100
cRMS
N

, (9)

originally introduced by the authors of STRUCTAL [47].

http://www.pymol.org
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Reproducibility
The program SeqKernel described above, as well as all the
datasets of sequences used in this study are available from
the authors upon request.

Results and Discussion
Two proteins with highly similar sequences almost always
have similar structures. The reverse, however, is not
always true. In a comprehensive analysis of the relation-
ship between sequence similarity and structure similarity,
Rost [16] has shown that pairs of proteins with simi-
lar structures possess, on average, only 8-10% sequence
identity. This observation is at the root of the difficulties
observed when attempting to classify proteins based on
sequence information only. We have tested an alternative
method to standard pairwise sequence comparison. We
propose to use a string kernel that provides an alignment-
free measure of the similarity of two protein sequences.
We then use that measure to classify those protein
sequences and compare the corresponding classification
results with classifications derived from 3D structures and
sequences only. Our aim is to parameterize the string ker-
nel such that it performs better than sequence alignment
based methods, mimicking to some extend the classifi-
cations derived from structure. We use CATH2833 and
CATH793 as our main test sets. CATH2833 is a dataset
of 2833 protein sequences that correspdond to the three
main classes of CATH: one α fold, one β fold, and three
α/β folds (see “Methods” section above). CATH2833 was
designed in such a way that the sequences of any pair of
proteins included have statistically no detectable similar-
ity, by enforcing a FASTA [43] SSEARCH E-value > 10−4.
CATH793 is a subset of CATH2833 that contains those
proteins whose lengths are limited to a small range, from
120 to 180 amino acids.

Assessing the different protein sequence distances using
receiver operator curve (ROC) analyses
ROC analysis of protein fold recognition based on FASTA
E-values for pairwise sequence comparison, SAS scores
for 3D structure comparison using STRUCTAL (see
“Methods” above), and two conditions for the alignment-
free SeqKernel comparisons are shown in panels a and
b of Fig. 2 for the datasets CATH2833 and CATH793,
respectively. These ROC analyses are based on averaged
behaviors over the five folds included in those two datasets
(i.e. a pair of sequences is considered to be positive if
they belong to the same fold, independent of this fold.
Results broken down by fold are given in Tables 2 and 3
for CATH2833 and CATH793, respectively.
The FASTA SSEARCH tool [43] is the implementa-

tion of a fast Smith and Waterman sequence comparison;
it measures the similarity between two sequences either
using directly the raw score of the alignment, or with
a corresponding E-value. We have used the latter as a
similarity measure. All SSEARCH alignments were per-
formed using the BLOSUM62 substitution matrix [42],
with gap penalties of -11 (opening) and -1 (extension).
The ROC curves for this FASTA measure are marginally
above the first diagonal, with AUC scores of 0.54 for both
CATH2833 and CATH793. This behavior is expected, as
by design all protein pairs in those datasets have little or
no sequence similarity. The AUC values for the individ-
ual folds are very similar, ranging from 0.51 to 0.58, with
one exception, fold 1.10.10 within the CATH793 dataset.
We note however that this fold only contains 36 repre-
sentatives in this dataset, making it the smallest set of all
folds considered here. As such, this result is statistically
unreliable.
Assignment of structural fold is expected to work best

when it is based on 3D structural information. Indeed,
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Fig. 2 ROC analyses of three measures of protein similarity. We compare the efficiency of two sequence comparison methods, pairwise sequence
alignment using SSEARCH from FASTA (red), the SeqKernel alignment free method introduced in this paper with two sets of parameters, (kmax = 2,
β = 0.0001) (green), (kmax = 10, β = 0.2) (cyan), and the 3D structure alignment program STRUCTAL (purple) to detect fold similarity in two different
sets of proteins, CATH2883 (panel a), and CATH793 (panel b). “True” relationships are defined according to CATH topologies. Curves close to the first
diagonal (such as the ROC curve for FASTA) indicate poor performance, while the upper most curves (such as the 3D structure-based curve) indicate
good performance
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Table 2 Area Under the Curve (AUC) of ROC analyses for the FASTA, STRUCTAL, and SeqKernel distances for comparing protein
sequences from CATH2833

Distance

CATH fold ID N a FASTA b STRUCTAL c SeKernel(0.2,10) d SeqKernel(0.0001,2) e

1.10.10 381 0.58 0.85 0.31 0.62

2.60.40 555 0.58 0.97 0.38 0.65

3.20.20 251 0.53 0.99 0.88 0.85

3.30.70 368 0.53 0.92 0.33 0.62

3.40.50 1278 0.53 0.92 0.77 0.77

All five folds 2833 0.54 0.93 0.69 0.76

aNumber of proteins in the fold
bAUC based on FASTA E-value
cAUC based on STRUCTAL SAS score
d and eAUC based on SeqKernel distance, with (β , kmax) = (0.2, 10) (d) and (β , kmax) = (0.0001, 2) (e)

the ROC curves obtained based on the SAS STRUCTAL
scores illustrate excellent classification results, with AUC
scores of 0.93 and 0.99 for CATH2833 and CATH793,
respectively. We note that even with X-ray structure infor-
mation the classification is not perfect, especially for
CATH2833. This again is not a surprise. CATH is a semi-
automatic classification of protein structures and some
proteins are included in the same class based on more
information than structure alone [37]. As such, two pro-
teins may belong to the same class even though their
structures are loosely similar. In addition, structural align-
ment programs work with heuristic algorithms and as
such may miss the optimal alignment [48]. Finally, it is
possible that a small fully α or fully β protein is found to be
similar to an α/β protein, based on local alignment of the
helical, or strand regions of the proteins. This is observed
for example for proteins in fold 1.10.10 (the arc repressor
all-α fold), with an AUC of 0.85 for CATH2833. That said,
STRUCTAL scores based onX-ray structures still perform
remarkably well.
The ROC curves based on the alignment free sequence

comparisons obtained with SeqKernel are intermediate

between the FASTA and STRUCTAL curves, for the two
sets of parameters considered. Clearly, kernel similarity
measures improve the classification of proteins into folds,
especially for those proteins whose sequences bear lit-
tle similarity. This improvement is significant, from an
overall AUC score of 0.54 for CATH2833 with FASTA to
AUC values between 0.63 and 0.76 for CATH2833 with
SeqKernel, depending on the values given to the param-
eters kmax and β . Similar improvements are observed
for CATH793. Interestingly, the improvements between
FASTA and SeqKernel are not consistent over all types
of folds considered. SeqKernel performs significantly bet-
ter for proteins in the α − β class (folds 3.20.20 and
3.40.50) than for the full α fold (1.10.10) and for the
full β fold (2.60.40). Of similar interest, there is a dis-
crepancy between the results obtained on CATH2833
and CATH793: for the former, a significantly better over-
all AUC is observed when the pair (kmax,β) is set to
(2,0.0001), while for the latter, a better overall AUC is
observed when the pair (kmax,β) is set to (10,0.2). In
addition, results using (kmax,β)=(2,0.0001) are more con-
sistent over the five folds considered. While differences

Table 3 Area Under the Curve (AUC) of ROC analyses for the FASTA, STRUCTAL, and SeqKernel distances for comparing protein
sequences from CATH793

Distance

CATH fold ID N a FASTA b STRUCTAL c SeKernel(0.2,10) d SeqKernel(0.0001,2) e

1.10.10 36 0.75 0.91 0.61 0.61

2.60.40 130 0.55 0.98 0.44 0.54

3.30.70 52 0.51 0.89 0.45 0.47

3.40.50 573 0.57 0.98 0.69 0.62

All five folds 791 0.55 0.98 0.69 0.62
aNumber of proteins in the fold
bAUC based on FASTA E-value
cAUC based on STRUCTAL SAS score
d and eAUC based on SeqKernel distance, with (β , kmax) = (0.2, 10) (d) and (β , kmax) = (0.0001, 2) (e)
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are expected for different parameter values, the ranking of
those parameter values is expected to remain the same on
different datasets, especially here as CATH793 is a subset
of CATH2833. This difference warrants a systematic study
of the impact of the kernel parameters on its performance
in fold recognition.

Understanding the parameters β and kmax for the string
kernel SeqKernel
The string kernel, SeqKernel, considered in this paper
depends on two parameters, the coefficients β and kmax.
β is a power coefficient, i.e. it is used to compute the
Hadamard power of the input substitution matrix SM. As
it is used in a Hadamard power, all strictly positive val-
ues for β are possible, as the power matrix remains a
Gram matrix. The parameter kmax defines the longest k-
mers that are considered in the comparison of the two
sequences. Note that the maximum value for kmax is the
size of the smallest sequence. Intuitively, using large val-
ues for kmax are expected to help as the longer k-mers
capture correlations in the protein sequences. However,

as described in the implementation section, large kmax
values come at a computational cost. We have tested a
range of values for β from very small, 10−5, to relatively
large, 1, and a range of values for kmax, from 1 (i.e. sin-
gle amino acid comparison) to 20. For pairs of values (β ,
kmax) taken from their respective ranges, we computed
the similarity scores for all pairs of proteins in CATH2833
and CATH793, and assessed the ability of those scores
for fold recognition using ROC analysis. The resulting
AUC scores are reported in Fig. 3. Note that the higher
the AUC, the better the performance. In parallel, we also
compared the string kernel similarity scores with the cor-
responding STRUCTAL SAS scores. As STRUCTAL was
found to perform extremely well in the ROC analysis (see
Fig. 2), the SeqKernel similarity scores should mimic the
SAS scores for good fold recognition. We therefore com-
puted the Pearson’s correlation coefficient PCC between
the two sets of values, i.e. similarity scores and SAS values,
for all pairs of proteins that belong to the same folds. The
resulting PCC values are also reported in Fig. 3. Again, the
higher the PCC, the better the performance.
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Fig. 3 Parameterizing the string kernel SeqKernel. The string kernel defined in this paper is defined by two parameters, β and kmax (see text for
details) We varied those two parameters in the respective ranges [ 10−5, 1] and [ 1, 20]; for each corresponding pairs of values, we applied the
corresponding kernel to compute the similarities of all pairs of proteins in CATH2833 and CATH793 and checked the rankings of these similarities
with the CATH classification of the proteins, using a ROC analysis. The corresponding AUC values are reported in panels a and b, respectively. High
values of AUC indicate better fold recognition. Notice the different behaviors on the two datasets (panel a vs panel b). In panel c and d, we report in
parallel the Pearson’s correlation coefficients between the kernel similarity measures and the STRUCTAL SAS values, for all pairs of parameters
considered. As we assess the performance of SeqKernel in fold recognition, the SeqKernel values are expected to mimic the SAS scores, and
therefore the larger the correlation coefficient, the better the performance of SeqKernel



Nojoomi and Koehl BMC Bioinformatics  (2017) 18:137 Page 10 of 15

The results on the CATH2833 dataset show two differ-
ent behaviors depending on the β values: for very small β
values (below 10−3), all the AUC=f(kmax) curves reach the
same plateau with a relatively high value of 0.76, while for
larger values of β (> 0.1), the same curves behave similarly
but reach different maxima, with the β values corre-
sponding to these maxima decreasing as kmax increases.
Interestingly, the results on the CATH793 dataset are very
different: while the same behavior is observed for the large
values of β , SeqKernel provides poor fold recognition for
very small β values. The key difference between the two
datasets is that the latter includes proteins that cover a
very small range of lengths. The discrepancy in behavior
therefore hints to SeqKernel being able to pick differences
in protein lengths for small β values. Indeed, as β → 0,
all the values in the kernel K1 tend to 1, and K1 becomes
a matrix of ones. While this matrix does not correspond
to a kernel (it is not positive definite), it can still be used
in practice as input to SeqKernel. Using this matrix, the
semi-kernel K3 can in fact be computed analytically:

K3(S,T) =
kmax∑

k=1
(n − k + 1)(m − k + 1) (10)

Using this semi-kernel, we found that it performs with
an AUC of 0.76 on the classification of the proteins in
CATH2833. This high value of 0.76 therefore only reflects
the differences in the distribution of lengths of the pro-
teins in the five folds. Those differences are significant, see
Table 1. While an interesting observation by itself, this is
not the string kernel we are interested in. Indeed, Eq. 10
shows that it is independent of the actual sequences them-
selves, and only captures length differences; for example,
the corresponding correlation semi-kernel takes the value
of 1 for all pairs of sequences of the same lengths. These
results suggest to use a kernel based on larger values of
β . Figure 3a and b indicate that any value of kmax is pos-
sible, pending that the proper value for β is chosen. We
suggest using the pair (β , kmax)=(0.2,10). Interestingly, the
corresponding kernel leads to the same AUCs on the two
datasets, CATH2833 and CATH793 (see above).
Comparisons of the kernel values with the STRUCTAL

SAS values confirm this analysis, see panels c and d in
Fig. 3. The PCC values between these two measures are
found low for small values of β . In such conditions, the
kernel was shown to mainly capture lengths, while the
STRUCTAL scores are mostly independent of lengths. For
larger values of β , the PCC values reach maxima for the
same pairs of values (β , kmax) than the AUC values.

Choosing the input substitution matrix
There is one other parameter that defines the string ker-
nel SeqKernel, namely the input substitution matrix. We
compared fold recognition performance as measured by

ROC analysis of both FASTA and SeqKernel (with β and
kmax set to 0.2 and 10, respectively) on the two datasets
CATH2833 and CATH793 for different input substitu-
tion matrices. Results are shown in Fig. 4. As a reminder,
FASTA and SeqKernel use different matrices as input:
FASTA uses a BLOSUM-like matrix, while SeqKernel uses
its own count-based matrix. Those two matrices however
are mathematically related by a simple log function. We
note that there are little variations in the performance
of both FASTA and SeqKernel as we change their input
matrices. More surprisingly, SeqKernel performs quite
well with the Identity matrix as input. This indicates that
at least for the two datasets considered here, a strict score
that does not favor replacement is good enough for fold
recognition.

Protein fold classification
We extended the ROC analyses of our sequence similar-
ity measures to assessing their performances for actual
fold recognition by performing a set of computational fold
classification experiments. Note that we are not inter-
ested in establishing a classification for a family of protein
structures: rather, we are interested in testing the abil-
ity of distance measures based on sequences to assign
a protein to the structural class it belongs to. We per-
form this test using a series of computational experiments.
For those experiments, we consider all folds included in
Cath40e4 with at list 40 members, excluding the five folds
considered in CATH2833, to eliminate possible biases as
SeqKernel was parametrized based on these folds. There
are 40 such folds, for a total of 3744 proteins, which we
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refer to as CATH3744.We consider three levels of classifi-
cations for those proteins, as defined by CATH: the Class
level (3 such classes, α, β , and mixed α/β , the Architec-
ture level (13 such architectures, 3 in the α class, 4 in the
β class, and 6 in the mixed α/β class), and at the Topol-
ogy (or fold) level (40 such topologies, 10 in the α class,
10 in the β class, and 20 in the mixed α/β class). Each
experiment starts with those proteins, and a choice for the
classification level. We pick at random half of the proteins
of each group at the level considered, and define them
as the training set. The remaining proteins form the test
set. The training set is used to define the groups for the
distance-based classifiers (see “Methods” for details). The
experiment then proceeds by assigning a group to each
protein in the test set. A protein is considered success-
fully classified if it is assigned to its actual CATH group
(C, A, or T, based on the experiment considered). Experi-
ments are repeated 10,000 times and the results averaged
to remove potential bias in the choice of proteins that
define the folds.
For those fold classification experiments, we considered

8 possible distances between protein sequences. As a null
reference, we assign a random value between 0 and 1 for
the distance between two proteins. We call this distance
RANDOM. On the other end of the spectrum, we include
results based on the STRUCTAL SAS scores; those results
directly reflect structural similarities. The third distance
is based on the FASTA SSEARCH E-value. The fourth and

fifth distances are computed with SeqKernel. As described
in the previous section, there seem to be two regimes
for SeqKernel, based on the values for the parameters β

and kmax. We picked one example from each regime, set-
ting (β , kmax) to (0.0001,2) and (0.2,10), respectively. The
last three distances are based on other string kernels for
comparing strings. We considered the subsequence string
kernel introduced by Lodhi et al [28], Subseq, the Spec-
trum string kernel of Leslie et al [31], and WDegree, the
weighted string kernel of Rätsch and colleagues [33, 34].
For those last kernel distances, we used the implementa-
tions provided in the package Harry [49, 50], with default
parameters. Results of the classification experiments are
given in Fig. 5.
Results from the reference RANDOM distances are on

par with what is expected from the numbers of groups at
each level of classification considered: 31% at the C level
(1/3 ≈ 33%), 9% at the A level (1/13 ≈ 8%), and 3% at the
T level (1/40 ≈ 3%). With no surprise, the results based
on FASTA mirror those RANDOM results: as described
above, there is no information in the FASTA distances by
design. Also, without surprise, the classifications based
on the STRUCTAL distances between structures are sig-
nificantly more accurate than those based on sequence
only. It is interesting however that even those results are
far from perfect. At the C level for example, only 54% of
the proteins are correctly classified.Mostmisclassification
come from α + β proteins being classified as α or β
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Fig. 5 Classifying proteins in structural groups based on sequence-based distances. Three levels of structural classifications are considered, the
C(lass), A(architecture), and T(opology) levels defined by CATH. Proteins are classified based on their shortest distance to a known group, where the
distance is one of seven sequence-based distances between proteins, a RANDOM distance, a FASTA-based distance based on alignment, two
distances based on the string kernel defined in this work, corresponding to two different parameter settings, (β , kmax )=(0.2,10) and
(β , kmax )=(0.0001,2), and three other string kernel distances, Subseq [28], Spectrum [31], and WDegree, a weighted string kernel [33, 34]). We also
include results based on the STRUCTAL SAS scores; those results include structural information and should only be considered for reference. The
classification accuracy (y-axis, in %) is computed as the ratio of proteins correctly classified over the total number of test proteins (see text for details)
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proteins. This is not unexpected, as STRUCTAL performs
a local structural alignment. The classifications obtained
with SeqKernel with (β , kmax) set to (0.2,10) are signifi-
cantly more accurate than those observed with the other
sequence-based distances, at least at the Architecture and
Topology levels. This includes the results obtained with
SeqKernel with (β , kmax) set to (0.0001,2), confirming that
a somewhat large value for β is preferred. Interestingly,
the Subseq and Spectrum string kernels perform better
at the Class level. It is likely that those two kernels cap-
ture the amino acid compositions of the sequences, which
have been shown to be good discriminants of the protein
structural class (as defined by CATH) [51, 52].

Alignment-free phylogeny reconstruction
A large number of biological modeling methods depend
on accurate (multiple) sequence alignments. Protein
structure prediction is one of those methods; it relies
heavily on fold recognition. In the previous sections,
we covered the use of alignment free methods for per-
forming this task, comparing our string kernel SeqKernel
with alignment-based methods. Another important mod-
eling task that relies on sequence alignment is phyloge-
netic tree inference, a critical step in evolutionary studies.
The majority of methods that perform this task follow
a two step process, with the construction of a multi-
ple sequence alignment followed by statistical tree infer-
ence [53, 54]. These methods, though widely used, have
known limitations related to uncertainties in the multi-
ple sequence alignment [38, 39, 55–57]. Among all the
approaches recently developed to alleviate those limi-
tations, we note the alignment-free methods based on
analyses of k-mers in the sequences that are compared
[39, 40, 58, 59]. As SeqKernel provides a mean to quantify
the similarity between two sequences using such k-mers,
we tested it on a simple toy problem of phylogenetic tree
inference originally described by Thorne and Kishino [38].

To illustrate their methods for computing evolutionary
distances between protein sequences, they considered 10
sequences of the second largest RNA polymerase subunit.
We have repeated their analysis on the same sequences.
These sequences include two eukaryotic pol I sequences,
two eukaryotic pol II sequences, two eukaryotic pol III
sequences, two archaebacterial sequences, a eubacterial
sequence, and a chloroplast sequence; they are defined in
Table 4.
We considered 5 different distance matrices between

those sequences. The first matrix is the original distance
matrix proposed by Thorne and Kishino. The second
matrix is derived from the multiple sequence alignment
of those 10 sequences, computed with Clustal Omega
[60], and converted into a distance matrix using the pro-
gram ProtDist from the software package Phylip [61]. We
used the Jones, Taylor and Thornton model of amino acid
change [62] within ProtDist to compute the distances. The
third matrix is based on the Bit scores of the sequence
alignments generated by SSEARCH from FASTA, com-
puted with Blosum62 as a substitution matrix and gap
penalties of -11/-1 for opening/extension, respectively.
The fourth and fifth matrices are derived from SeqKer-
nel, with two settings for the parameters β and kmax,
namely (0.0001,2) and (0.2,10). We have built trees based
on those five distance matrices using the programs Fitch
and Drawtree from the Phylip package [61]. Fitch is an
implementation of the Fitch and Margoliash [63] method
for constructing trees from a distance matrix under the
“additive tree model”. In this model, the distance between
two sequences is expected to be equal to the sum of
branch lengths between the sequences on the tree. These
five trees are shown in Fig. 6.
With the exception of the tree generated from the dis-

tance matrix derived from the SeqKernel distances with β

and kmax set to (0.0001,2) the trees are qualitatively simi-
lar to each other. As the 10 sequences have approximately

Table 4 The ten RNA polymerases

Abbreviation Protein Species Accession number Length

SC1 RNA Pol I subunit RPA2 Yeast RPA2_YEAST 1203

DR1 RNA Pol I subunit RPA2 Drosophila megalonaster RPA2_DROME 1129

SC2 RNA Pol II subunit RPB2 Yeast RPB2_YEAST 1203

DR2 RNA Pol II subunit RPB2 Drosophila megalonaster RPB2_DROME 1129

SC3 RNA Pol III subunit RPC2 Yeast RPC2_YEAST 1203

DR3 RNA Pol III subunit RPC2 Drosophila megalonaster RPC2_DROME 1129

SUL RNA Pol subunit β Sulfolobus acidocoldarius A0A0U3H235_9CREN 1126

MET RNA Pol subunit B’ Methano-bacterium RPOB1_METTW 1123

thermoautotrophicum

ESC RNA Pol subunit β Escherichia coli RPOB_ECOSE 1342

SPI Chloroplast RNA Pol subunit β Spinacia oleracea RPOB_SPIOL 1070
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Fig. 6 Inferred RNA polymerase phylogeny. Five different phylogenetic trees were constructed for a group of 10 RNA polymerases, using five
different distance measures between their sequences: (a) the original distances proposed by Thorne and Kishino [38], (b) distances derived from a
Multiple Sequence Alignment of the 10 sequences computed with Clustal Omega [60], (c) the BIT distances from FASTA SSEARCH tools, and the
distances computed with SeqKernel with two different settings, namely (β , kmax) = (0.2, 10) (d) and (β , kmax) = (0.0001, 2) (e). Abbreviations for
species names are provided in Table 4. Branches corresponding to eukaryotic sequences are colored red, those for archaebacterial sequences are
shown in blue, and the eubacterial and chloroplast sequences are highlighted in orange and green, respectively

the same lengths, and as SeqKernel with a small value
of β basically captures differences in length, the excep-
tion is not surprising. This result however does reinforce
our choice for (β , kmax) to (0.2,10). To quantify the differ-
ences between the four remaining trees, we first scaled the
distance matrices so that all distances ranged between 0
and 1, and then regenerated the trees. The resulting trees
are then compared with the program TreeDist, imple-
mented in the software package Phylip. TreeDist is based
on the branch score distance of Kuhner and Felsenstein
[64] to evaluate the similarity between two trees. We find
that the distances between the original tree of Thorne
and Kishino and the Clustal-based, FASTA-based, and
SeqKernel-based trees are 0.3, 0.57, and 0.39, respectively.
Note that the distance between the original tree and the
SeqKernel-based tree when (β , kmax) is set to (0.0001,2)
is 0.99. While we cannot assess the meaning of the abso-
lute values of these distances, and the significance of
the differences between those values, we do notice that
the original Thorne and Kishino tree resembles most the

tree computed with the Clustal-based tree, and the tree
computed with the method introduced here.

Conclusions
The amino acid sequence of a protein encodes for its
structure and ultimately its function in a cell. As such,
sequence comparison remains one of the core tools used
in many modeling methods in molecular biology that
handle problems such as protein fold recognition and phy-
logenetic tree inference. We have shown that a string
kernel that captures the similarity of all k-mers in two
protein sequences provides an alignment-free method for
fold recognition and phylogenetic tree reconstruction that
performs well when its parameters have been selected
appropriately. We refer to this string kernel as SeqKernel.
It depends on two parameters, β , a power coefficient that
modulates the values of the input substitution matrix,
and kmax, the maximum lengths of k-mers considered.
We have performed a systematic analysis of the impact of
those two parameters on the performance of SeqKernel in
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fold recognition experiments involving remote homologs.
We have shown that on our test datasets, SeqKernel per-
forms remarkably well for very small values of β (< 10−3),
independently of kmax. With such small values of β how-
ever, SeqKernel is basically tuned to capture the difference
in lengths of proteins, which is not of interest for fold
recognition. We have shown that for larger values of β ,
there are pairs of values (β , kmax) that provide significant
performance in fold recognition. We suggest to use the
pair (β , kmax)=(0.2,10). Interestingly, in the first presenta-
tion of a kernel equivalent to SeqKernel [36], the authors
advocate the use of kmax = 10, and referred to β as a mys-
terious parameter that they fixed to 0.11, i.e. close to the
value of 0.2 that we propose here.
SeqKernel, just like any alignment-based sequence com-

parison method, depends on a score matrix, also called
substitution matrix. Such a matrix provides a quantita-
tive measure of the similarities of amino acids. We have
shown that SeqKernel is not sensitive to the choice of
this score matrix, at least on the two datasets CATH2833
and CATH793 used in this study. We note however that
most of the score matrices, such as the BLOSUM matri-
ces considered in this study, have not been optimized
for the purpose of fold recognition. There has already
been attempts to perform such optimization [65, 66]. In
future studies, we will explore further the problem of
defining an optimal score matrix within the context of
SeqKernel.
This paper represents work in progress. It is dedicated

to the understanding of the parameters that define the
string kernel SeqKernel as well as to the illustration of
its applications in fold recognition problems and phyloge-
netic tree inference. In the latter, we have only presented
a small toy example to highlight that a alignment-free
estimate of the distances between protein sequences can
perform as well as a method based on multiple sequence
alignment. Much work remains to be done before SeqK-
ernel can become a commodity tool for sequence analysis.
The scores computed with SeqKernel, while correspond-
ing to a metric, do not include information on signifi-
cance. The computing time for comparing two sequences
using SeqKernel is high, suggesting that SeqKernel may
not be used for large database searches. All the tests
performed in this study were related to single domain pro-
teins, or to specific domains within a protein. There is a
need to expand the range of applications of SeqKernel to
multi-domain proteins, as those are more the norm than
single-domain proteins. Applications to phylogenomics
need to be expanded and validated on a much larger scale.
All those points will serve as research topics in our future
studies.
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