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Abstract

Background: Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop
protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded
from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins,
no computational tool is available till date. Thus, development of such a computational tool will be helpful in
predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides.

Results: Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino
acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to
map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in
support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies
were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC
feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating
resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-
based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed
for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed
approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while
assessed using an independent dataset of 75 insecticide resistant proteins.

Conclusions: This paper presents the first computational approach for discriminating the insecticide resistant proteins
from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has also been
developed for computational prediction of insecticide resistant proteins, which is accessible at http://cabgrid.res.in:
8080/dirprot/. The proposed approach is believed to supplement the efforts needed to develop dynamic insecticides
in wet-lab by targeting the insecticide resistant proteins.
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Background
Insecticides are used to control the insects affecting the
agricultural crops, parasitizing livestock, as well as to
eradicate the pests transmitting dangerous infectious
diseases. However, frequent application of insecticides
has resulted in the resurgence of pests and appearance
of resistant pest species. Insecticide resistance is the
heritable change in the sensitivity of a pest population

that is reflected in the repeated failure of a product
(insecticides) to achieve the expected level of control
when used according to the level of recommendation for
that pest species [1]. Several studies have indicated the
involvement of multiple genes in conferring the resistance
to many insect species [2–4]. Thus, characterization of
these genes is useful to understand the development of
resistance and designing new strategies to minimize the
development of insecticide resistance [5].
Three major mechanisms are involved in insecticide

resistance [5]: (i) detoxification of insecticides through al-
teration in the activities of enzymes like esterase, oxidases
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or glutathione S-transferases (GSTs) that prevents the
insecticide from reaching to its site of action [6–8], (ii)
Insensitivity of the insecticide target proteins [9, 10], be-
cause of which the insecticide no longer binds to its target
[11, 12] and (iii) reduction in insecticide uptake due to de-
crease in permeability of insect cuticle [13, 14]. Though
there is evidence of alteration in cuticular penetration,
most of the studies have focused and evaluated the
target site insensitivity and detoxification of insecticides
(metabolic resistance) mechanisms. Moreover, these
two mechanisms have been reported to cover a wide range
of resistance levels to almost all available insecticides [9].
The cytochrome P450 family of genes in insect play an

important role in the detoxification of insecticides re-
sulted in the development of resistance to insecticides
[4, 15, 16]. Besides, GSTs have also been reported to be
involved in the detoxification of insecticides [17, 18]. As
far as target-based mechanism is concerned, there are
three main targets for conventional insecticides viz.,
GABA (γ-amino butyric acid)-gated chloride ion chan-
nel, voltage-gated ion channel and acetylcholinesterases
[19]. The GABA receptor is the site of target for cyclodi-
ene (dieldrin) insecticides [20], where the resistance to
dieldrin (Rdl) is conferred by the change of a single
amino acid in GABA-gated chloride ion channel
encoded by Rdl gene [21]. Further, knockdown resist-
ance (Kdr) is one of the major forms of resistance to
DDT and pyrethroid insecticides [22], which is associ-
ated with mutations in the voltage-gated sodium channel
[22–25]. Acetylcholinesterase (AChE) in nerve synapses
is the target protein for the insecticides like organophos-
phorus (e.g., malathion, fenitrothion) and carbamate
(e.g., propoxur, sevin) [12]. The point mutation in the
insecticide-binding site of AChE has been identified as
the cause of insensitivity to these insecticides [26].
The above mentioned works help enable to under-

stand the molecular mechanisms involved in the insecti-
cide resistance. Further, the analysis of bio-molecules
involved in this phenomenon has confirmed the import-
ance of single genes in target site resistance and involve-
ment of multi-gene families like cytochrome P450 in
metabolic resistance [27]. Several studies on the effects
of mutational changes in target proteins on insecticide
resistance aid to the knowledge on the insect proteins
involved in this process. For instance, Riveron et al. [28]
demonstrated that the single amino acid change (L119F)
in an up regulated GST gene, GSTe2, confers high level
of metabolic resistance to DDT in the malaria vector
Anopheles funestus. In another study, Nwane et al. [29]
identified that two mutations at position 1014 of the S6
transmembrane segment of domain II in the voltage
gated sodium channel i.e., leucine to a phenylalanine
(L1014F) or to a serine (L1014S) confers resistance to
DDT and pyrethroid insecticides in Anopheles gambiae.

In the recent past, several studies have identified species-
specific insecticide resistant genes through transcriptome
and expression profile analysis. Hsu et al. [30] identified
90 P450, 42 GST, 31 CoE-related genes in Bactrocera
doralis, representing three major enzyme families involved
in insecticide metabolism and resistance. In another study,
49 P450, 31 GST and 21 CES-specific genes of Liposcelis
bostrychophila were reported to be involved in insecticide
resistance, through transcriptome and differential gene
expression analysis [31]. Recently, Cui et al. [32] identified
relevant genes in response to flubendiamide insecticide in
Asian corn borer (Ostrinia furnacalis), through de novo
transcriptome and expression-profile analysis.
Though the transcriptome and expression profile ana-

lysis is one way of identifying the resistance genes, it is
species specific. Moreover the expression profile analysis
is expensive as well as time consuming. Thus, develop-
ment of a computational tool for identifying the resistant
genes independent of the species and economically as
well would help in augmenting the research related to
the identification of insecticide resistant genes. However,
no computational tool is reported till date for the dis-
crimination of insecticide resistant proteins from the
proteins that do not confer resistance. Keeping this in
view, we propose a computational approach to discrimin-
ate the insecticide resistant proteins from non-resistant
proteins. The developed computational approach can be
used for identification of the resistant proteins across
species as well as with minimum resource (cost and time).
We have also developed an online prediction server that
can be easily used by experimental scientist and
researchers to predict an unknown protein sequence as
either insecticide-resistant or non-resistant protein. More-
over, computational identification of insecticide resistant
proteins will supplement the efforts needed to develop
insecticides in targeting the resistance proteins.

Methods
Collection and processing of data
In this study, protein sequences corresponding to four
important groups of insecticide resistant genes viz., cyto-
chrome P450, Kdr, Rdl and AChE were collected from
insecticide resistance gene database (http://www.cib.re
s.in/irgd/). We considered these four categories of genes
because they represent important families of insecticide
resistant genes which are resistant to commonly used
insecticides. Besides, the resistant protein sequences
were reported to be involved in two important resistance
mechanisms viz., detoxification-based and target-based.
Further, target-based resistant proteins are confined to
three main targets of insecticides i.e., AChE, GABA-
gated chloride ion channel and voltage-gated sodium
channel. A total of 822 sequences (772 cytochrome
P450, 30 AChE, 17 Rdl and 3 Kdr) belonging to 11
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insect species (Additional file 1) were collected. Ini-
tially, we removed the sequences having non-standard
residues. Then, four positive sets having 128, 285, 349
and 442 sequences were prepared, where the maximum
pair-wise sequence identities were 40%, 60%, 70% and 90%
respectively. The sequences with more than considered
level of pair-wise sequence identity were removed using
CDHIT [33]. For negative set, protein sequences (other
than the positive sets) of the considered species were
collected from the Uniprot (http://www.uniprot.org/)
database. For the species Acyrthosiphon pisum and Tribo-
lium castaneum, only the reviewed sequences were col-
lected, as large number of sequence are present in
Uniprot for these two species. On the other hand, all the
sequences available for remaining nine species were col-
lected. After removing the sequences having non-standard
residues as well as the identical sequences, a total of
12613 sequences were obtained. Further, to avoid homolo-
gous bias in the negative dataset, sequences with >40%
pair-wise identity were removed using CDHIT. Finally a
dataset with 3919 sequences was obtained and considered
as the negative dataset.

Feature generation
Protein sequences are the strings of amino acid residues,
and hence they need to be mapped onto numeric feature
vectors before being used as input in machine learning
classifier. In this study, amino acid composition (AAC),
di-peptide composition (DPC), pseudo amino acid com-
position (PAAC), composition-transition-distribution
(CTD) and auto correlation function (ACF) were used to
transform the protein sequences into numeric feature
vectors.

Amino acid composition (AAC)
AAC is a basic feature of protein sequence [34], which is
closely associated with its attributes, such as sub-cellular
location [35, 36], secondary structure content [37] and
domain [38]. AAC consists of 20 discrete numbers, each
of which represents the frequency of the native amino
acids in a protein sequence. Based on the AAC, each
protein sequence was encoded into a 20-dimensional
numerical vector.

Di-peptide composition (DPC)
One of the limitations of AAC is that it does not take
into account the local order information of amino acids
in the protein. On the other hand, DPC, which gives a
fixed pattern length of 400 (20 × 20), encapsulates the
global information about each protein sequence and the
order it contains [39]. For any di-peptide, its compos-
ition was computed as the ratio of the frequency of that
di-peptide to the total number possible di-peptide in the
protein sequence.

Pseudo amino acid composition (PAAC)
The concept of PAAC was originally introduced by Chou
[40] for predicting the protein sub-cellular locations and
membrane protein types. Based on the conventional AAC,
Chou proposed a set of discrete numbers to take into ac-
count the sequence order effects. PAAC has been proven
to be an extremely effective feature in many proteins and
protein-related systems [41]. The PAAC for each protein
sequence can be represented by a (20 + d)-dimensional
vector for d-tier correlation factor. Here, the PAAC was
extracted for 1st-tier correlation only, by which each
sequence was transformed into a 21-dimensional numeric
vector. For further details, one can refer to [40, 42, 43].

Composition-transition-distribution (CTD)
The CTD feature was introduced by Dubchak et al. [44]
for predicting protein folding classes. Thereafter, the
CTD feature has been adopted by many researchers for
protein function and structure studies [45, 46]. In CTD
feature, composition (C) is the number of amino acids of
a particular type divided by the total number of amino
acids. Transition (T) characterizes the frequency per-
centage with which amino acids of a particular type is
followed by other amino acids. Distribution (D) mea-
sures the chain length within which the first 25%,
50%, 75% and 100% of the amino acids of a particular
type is located respectively. Based on the CTD fea-
ture, each protein sequence of length L was encoded
to a L+{L*(L-1)/2} + (L*5)-dimension numeric vector.

Auto correlation function (ACF)
Sequence autocorrelation-based features assume that the
disturbances in each area are systematically related to
those in adjacent areas [47]. This concept helps to
analyze the dependency among the features of sequences
in each location. Autocorrelation features were com-
puted based on the distribution of amino acid properties
along the sequence, using all the 531 amino acid indices
available in AAindex database [48]. In this feature en-
coding, for an autocorrelation of order n, each sequence
was transformed into a numeric vector of length 531*n.

Supervised learning technique
For classification purpose we used the support vector
machine (SVM), which is a nonparametric algorithm
developed by Vapnik [49]. It is a very promising and
popular method for pattern recognition that has been
widely used for prediction purpose in the field of bio-
informatics [50–56]. It is proven to be very efficient in
many biological analyses due to their ability to handle
noise and large input dataset [57, 58]. A brief descrip-
tion about the working principle of SVM is described
as follows:
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Consider a binary classification problem with N sam-
ples or input vectors xi ∈ R

d, (i = 1, 2, …, N), where xi
with class levels yi ∈ {−1, 1} can be considered as the ith

protein or vector defined in d-dimensional space (which
depends upon the sequence encoding approach). In
present work, 1 refers to resistant class and −1 repre-
sents non-resistant class. The objective here is to con-
struct a binary classifier from the available sample
(training set) that has less probability of misclassifying
future sample (test set). Non-linear SVM maps input
vectors xi ' s into high dimensional feature space and
constructs an optimal separating hyper-plane (OSH) that
maximizes the distance between hyper-plane and nearest
data points of each class in the space. Mathematically, the
hyper-plane is represented as y = sgn(wTx + b), where w
represents a weight vector that can map training data in
the input space to the outer space and b represents bias.
For a two class problem, it can be formulated as

wTxi þ b≥1 if yi ¼ 1
wTxi þ b≤−1 if yi ¼ −1

�
:

The SVM training procedure involves optimization of
convex quadratic problem i.e., with lagrangian multipliers

αi ≥ 0, maximize
XN
i¼1

αi−
1
2

XN
i¼1

XN
j¼1

αiαjyiyjK xixj
� �

subject

to the constraints 0 ≤ αi ≤ c (i = 1, 2,…,N) and
XN
i¼1

αiyi ¼ 0

, where c is the regularization parameter that controls
trade-off between margin and classification error. The xj '
s are called support vectors only if corresponding αj > 0.
After the SVM has been trained, the decision function for
classification of query sequence (x) can be formulated as

f xð Þ ¼ sgn
XN
i¼1

yiαiK x:xið Þ þ b

 !
.

The choice of the proper kernel function K is import-
ant to train SVM model because the power of SVM
comes from the kernel representation that allows the
nonlinear mapping of input space to a higher dimen-
sional feature space. In this work, four commonly
used kernel functions [59] viz., linear (xi

′xj), polyno-
mial ((γxi

′xj + r)d), radial basis (− exp{−γ‖xi − xj‖
2}) and

sigmoid (tanh(γxi
′xj + r)) were used, where r, d, γ >0

are the kernel parameters.

Validation of the model
Cross-validation procedure has been widely accepted for
assessing the performance of classifiers [60]. Thus, we
used the 10-fold cross-validation to assess the perform-
ance of our approach. It was carried out by partitioning
the dataset into 10 approximately equal-sized sets at
random, where nine partitions were used to train the

model and the remaining one part was used to assess
the model accuracy. This process was repeated 10 times
in such a way that each partition was tested once in the
model.

Performance evaluation
Different performance metrics viz., sensitivity (Sn), specifi-
city (Sp), accuracy (Ac), precision (Pre) and Matthew’s
correlation coefficient (MCC) were used to measure the
accuracy of the developed prediction approach. The Sn, Sp,
Ac, Pre and MCC parameters are defined as:Sn = tp/
(tp + fn), Sp = tn/(tn + fp), Ac = (tp + tn)/(tp + fn + tn +

fp), Pre = tp/(tp + fp), MCC ¼ tp� tnð Þ− f p� f nð Þ½ �=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpþ f nð Þ � tpþ f pð Þ � tnþ f nð Þ � tnþ f pð Þp

. True
positive (tp) is the number of resistant proteins cor-
rectly predicted as resistant proteins, true negative
(tn) is the number of non-resistant proteins correctly
predicted as non-resistant proteins, false negative
(fn) is the number of resistant proteins incorrectly
predicted as non-resistant proteins and false positive
(fp) is the number of non- resistant proteins incor-
rectly predicted as resistant proteins. Besides the
above mentioned performance metrics, area under
receiving operating characteristic curve (AUC-ROC)
[61] was also used to measure the predictive ability.
For given false positive rate (α) and true positive rate
(1-β) at different threshold values, the AUC-ROC

was computed as
X
i

1−βi:Δα
� �þ 1=2ð Þ Δ 1−βð Þ:Δα½ �� �

,

where Δ(1 − β) = (1 − βi) − (1 − βi − 1), Δα = αi − αi − 1

and i = 1,2, …, m (number of test instances) [62]. A
subroutine in R programming language was written
to compute the values of these performance metrics.

Training and testing datasets
Using four positive sets and one negative set (mentioned
under “collection and processing of data”), four datasets
were prepared that consists of both positive and negative
sequences. Here each dataset contains a different posi-
tive set and the same negative set (3919 negative se-
quences). All the four datasets are highly unbalanced as
the number sequences present in one class (non-resist-
ant class) is much larger than the other class (resistant
class). To avoid biasness towards the non-resistant class
(major class) while predicting using machine learning
classifier like SVM, balanced datasets were prepared that
consists of same number of sequences from both the
classes, where the sequences of the major class were
randomly drawn from the available sequences of the
major class. For instance, first balanced dataset contains
128 positive and 128 negative sequences, where the 128
negative sequences were randomly drawn from 3919
negative sequences. As the generalized predictive ability
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cannot be assured based on a single dataset, 100 sample
sets were prepared, where each sample set consists of
same number of positive and negative instances. Further,
in each sample set, a 10-fold cross validation procedure
was adopted. The performance metrics were computed
by taking average over the 10 folds as well as over 100
sample sets.

Mechanism-based classification
The insecticide resistance mechanism can be broadly
categorized into two types, viz., target-based mechanism
and detoxification-based mechanism. The Rdl, Kdr and
AChE genes come under target-based and cytochrome
P450 genes come under detoxification-based mechanism.
To test whether the genes under these two categories are
different or not, a binary classification was carried out by
employing SVM, where 15 sequences (with <90% pair-
wise sequence identity) from target-based and 452 se-
quences (with <90% pair-wise sequence identity) from
detoxification-based category were used. Similar to the
classification of resistant and non-resistant proteins, 100
sample sets were prepared where each sample set consists
of 15 sequences from each class. Since, there are 452
sequences in the detoxification-based category, 15 se-
quences were randomly drawn each time. As the number
of sequences in each sample is not large, leave-one-out
cross validation (LOOCV) technique was adopted for
classification of detoxification- and target-based resist-
ant proteins. Here, detoxification-based category was
considered as positive class and target-based category
as negative class.

Comparison with blast algorithm
Performance of the proposed approach was also compared
with that of Blastp [63], PSI-Blast [64] and Delta-Blast
[65], which are powerful algorithms to detect protein
homologs. Further, comparison was made through 10-fold

cross validation technique. For cross validation, offline
(local) Blast software was used with blastp, psiblast and
deltablast modules/programs in which the training set for
each fold of cross validation was defined as the database
and sequences of the corresponding test set were used as
query. Each query sequence was predicted as the resistant
or non-resistant category based on the top hit found in
the blast search. Three different e-values i.e., 0.1, 1 and 10
were used to assess the performance of the Blastp, PSI-
Blast and Delta-Blast. Furthermore, performance of the
proposed approach was compared based on best feature
set with which higher accuracies were obtained as
compared to the other feature sets.

Performance evaluation using independent dataset
To assess the generalized predictive ability of the proposed
approach, its performance was further tested using an inde-
pendent test dataset. The independent dataset was
collected based on published literature that includes 53
cytochrome P450, 2 Kdr, 3 Rdl and 17 AChE proteins.
Specifically, 115 cytochrome P450 genes were reported by
Hsu et al. [30]. Out of 115, we used 53 as they are available
in NCBI. Similarly, 2 Kdr, 3 Rdl and 17 AChE genes were
collected from NCBI, based on the study of Zuo et al. [66],
Wondji et al. [67] and Li and Han [68] respectively.
Sequences of the independent test set are provided in
Additional file 1.

Development of prediction server
An online prediction server was developed using HTML
and PHP, where the combination of best feature set and
classifier was used. A developed R-code was executed in
background upon submission of the sequences in
FASTA format to the server. The user has to submit the
protein sequences having only standard amino acid resi-
dues. This server can be used to predict the likelihood of

Fig. 1 Composition of amino acids in all the four categories of insecticide resistant proteins. It is observed that proportions of leucine are higher,
whereas proportions of cystene and tryptophan are lower in all the four categories
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Fig. 2 a ROC curves of SVM for different kernels and features, b bar plots of corresponding AUC-ROC values. It is seen that the AUC-ROC values
are higher for RBF kernel as compared to other kernels
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any unknown protein sequence being an insecticide re-
sistant protein with certain probability.

Results
Analysis of amino acid compositions
The composition of amino acids in four different groups
of insecticide resistant proteins is shown in Fig. 1. It is
seen that the proportions of leucine (L) are higher,

whereas the proportions of cystene (C) and tryptophan
(W) are lower in all the four categories.

Analysis of kernel functions
Based on a sample dataset consisting of 100 positive and
100 negative sequences that were drawn randomly from
the available positive and negative sequences, perform-
ance of SVM was analyzed. ROC curves for all the four

Table 1 Estimates of different performance metrics for SVM with RBF kernel in discriminating resistant from non-resistant proteins,
under all the feature sets as well as different percentage of sequence identity in the positive dataset

Performance metrics

Id(%) Feature Sn Sp Ac Pre MCC AUC-ROC

40 AAC 0.836 ± 0.018 0.952 ± 0.014 0.894 ± 0.012 0.946 ± 0.015 0.794 ± 0.024 0.924 ± 0.020

DPC 0.849 ± 0.013 0.983 ± 0.011 0.916 ± 0.009 0.980 ± 0.012 0.839 ± 0.017 0.948 ± 0.011

PAAC 0.836 ± 0.018 0.956 ± 0.014 0.896 ± 0.013 0.951 ± 0.015 0.798 ± 0.026 0.922 ± 0.018

CTD 0.841 ± 0.015 0.981 ± 0.011 0.911 ± 0.010 0.978 ± 0.013 0.831 ± 0.020 0.932 ± 0.010

ACF 0.836 ± 0.017 0.9530.016 0.895 ± 0.012 0.947 ± 0.017 0.795 ± 0.025 0.901 ± 0.017

60 AAC 0.870 ± 0.012 0.959 ± 0.008 0.914 ± 0.008 0.955 ± 0.009 0.832 ± 0.016 0.946 ± 0.008

DPC 0.875 ± 0.008 0.986 ± 0.007 0.931 ± 0.006 0.984 ± 0.007 0.866 ± 0.011 0.972 ± 0.005

PAAC 0.870 ± 0.014 0.960 ± 0.010 0.915 ± 0.010 0.956 ± 0.011 0.833 ± 0.020 0.947 ± 0.010

CTD 0.860 ± 0.011 0.985 ± 0.007 0.923 ± 0.007 0.983 ± 0.008 0.852 ± 0.014 0.959 ± 0.006

ACF 0.869 ± 0.011 0.964 ± 0.009 0.917 ± 0.007 0.960 ± 0.009 0.837 ± 0.015 0.932 ± 0.009

70 AAC 0.886 ± 0.011 0.961 ± 0.008 0.924 ± 0.008 0.958 ± 0.008 0.850 ± 0.015 0.953 ± 0.008

DPC 0.883 ± 0.008 0.987 ± 0.005 0.935 ± 0.005 0.986 ± 0.005 0.875 ± 0.009 0.973 ± 0.004

PAAC 0.891 ± 0.010 0.961 ± 0.008 0.926 ± 0.007 0.958 ± 0.008 0.854 ± 0.013 0.955 ± 0.007

CTD 0.866 ± 0.010 0.987 ± 0.005 0.926 ± 0.006 0.985 ± 0.006 0.859 ± 0.012 0.961 ± 0.006

ACF 0.888 ± 0.008 0.963 ± 0.009 0.925 ± 0.006 0.960 ± 0.009 0.853 ± 0.013 0.948 ± 0.007

90 AAC 0.886 ± 0.010 0.959 ± 0.006 0.923 ± 0.006 0.956 ± 0.006 0.847 ± 0.012 0.955 ± 0.006

DPC 0.899 ± 0.009 0.989 ± 0.005 0.944 ± 0.006 0.988 ± 0.005 0.892 ± 0.011 0.978 ± 0.004

PAAC 0.889 ± 0.011 0.959 ± 0.007 0.924 ± 0.007 0.956 ± 0.007 0.850 ± 0.014 0.956 ± 0.006

CTD 0.887 ± 0.008 0.987 ± 0.005 0.937 ± 0.005 0.985 ± 0.006 0.878 ± 0.010 0.972 ± 0.005

ACF 0.894 ± 0.010 0.967 ± 0.006 0.930 ± 0.006 0.964 ± 0.006 0.863 ± 0.013 0.949 ± 0.006

Id(%): maximum percentage of pair-wise sequence identity present in the positive dataset
Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s correlation coefficient, AUC-ROC area under ROC curves

Fig. 3 Performance metrics of SVM with RBF kernel for different feature sets and different percentage of pair-wise sequence identity in the
positive set. It can be seen that the performance metrics are higher for DPC feature set as compared to other feature sets, irrespective of the
percentage of sequence identity in the positive dataset
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kernels as well as for all the five feature sets are shown
in Fig. 2a and the corresponding AUC-ROC values are
shown in bar plots (Fig. 2b). From the ROC curves it is
not clear that which kernel is better, whereas from
AUC-ROC plots it is clear that the values of AUC-ROC
are higher for the RBF kernel, irrespective of the feature
set used. Though in RBF kernel the AUC-ROC for ACF
feature set is highest, it is difficult to choose the best fea-
ture set while other three kernels are taken into account.
Therefore, all the feature sets and the RBF kernel were
used for further analysis.

Cross-validation performance analysis
For all the four datasets (mentioned under “Training
and testing datasets”) as well as for all the feature sets,
performance metrics averaged over 10-fold as well as
100 sample sets are given in Table 1. Moreover, to
analyze the trend in accuracies, performance metrics are
also plotted in line graphs (Fig. 3). It is observed that the
sensitivities are less as compared to the specificities
(Table 1). Further, higher accuracies are observed for the
dataset having resistant proteins with <90% pair-wise
sequence identity, whereas lower accuracies are observed
for the dataset having resistant proteins with <40% pair-
wise sequence identity (Table 1 and Fig. 3). Though the
specificities are observed almost unchanged, sensitivities
are observed to be increased with increase in the per-
centage of pair-wise sequence identity in the positive
dataset (Fig. 3). Besides, it is seen that the most of the
performance metrics for DPC and CTD feature sets are
higher as compared to the other feature sets (AAC,
PAAC and ACF). In particular, overall accuracy
(~90%), MCC (~89%) and AUC-ROC (~98%) are

observed to be highest for DPC feature set. Since the
number of sequences in the positive dataset having
sequences with <90% pair-wise sequence identity is larger
as compared to the dataset having sequences with <40%
pair-wise sequence identity, the former one is used in
subsequent analyses.

Analysis of mechanism-based classification
The values of performance metrics, with regard to classi-
fication of resistant proteins involved in target-based
mechanism and detoxification-based mechanism, mea-
sured over LOOCV as well as 100 sample sets are given
in Table 2. Performance metrics for all the feature sets
are observed ≥90% and are found to be highest in case
of DPC feature set. More specifically, overall accuracy
for the DPC feature set is observed >97%, with >95%
MCC and >97% AUC-ROC. Though the number of fea-
tures for AAC and PAAC feature sets are almost same,
classification accuracies for AAC feature set are seen to
be higher than that of PAAC feature set. Since the sensi-
tivity and specificity are >90%, it is inferred that hardly
one sequence is misclassified in each category (as the
number of sequences in each category is only 15).

Discriminating target-based resistant proteins from
non-resistant proteins
With regard to classification of target-based resistant pro-
teins and non-resistant proteins, performance metrics
over LOOCV and 100 sample sets (where each sample set
consists of 15 target-based resistant proteins and 15 non-
resistant proteins that were randomly drawn from the
3919 non-resistant proteins) are given in Table 3. The
values of performance metrics are observed to be higher

Table 2 Estimates of performance metrics for classification of detoxification and target-based resistant proteins, under different feature sets

Feature Sn Sp Ac Pre MCC AUC-ROC

AAC 0.927 ± 0.020 0.966 ± 0.042 0.946 ± 0.024 0.966 ± 0.041 0.894 ± 0.049 0.960 ± 0.023

DPC 0.967 ± 0.067 0.985 ± 0.031 0.976 ± 0.035 0.986 ± 0.029 0.955 ± 0.065 0.972 ± 0.051

PAAC 0.929 ± 0.016 0.952 ± 0.048 0.941 ± 0.027 0.953 ± 0.046 0.883 ± 0.054 0.956 ± 0.028

CTD 0.895 ± 0.042 0.979 ± 0.035 0.937 ± 0.024 0.979 ± 0.035 0.879 ± 0.047 0.935 ± 0.036

ACF 0.912 ± 0.041 0.927 ± 0.051 0.919 ± 0.037 0.927 ± 0.049 0.840 ± 0.074 0.967 ± 0.021

Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s correlation coefficient, AUC-ROC area under ROC curves

Table 3 Estimates of performance metrics for discriminating target-based resistant proteins from non-resistant proteins, under
different features

Feature Sn Sp Ac Pre MCC AUC-ROC

AAC 0.912 ± 0.031 0.940 ± 0.055 0.926 ± 0.034 0.941 ± 0.052 0.854 ± 0.068 0.879 ± 0.045

DPC 0.924 ± 0.090 0.981 ± 0.041 0.952 ± 0.057 0.979 ± 0.043 0.909 ± 0.111 0.924 ± 0.083

PAAC 0.919 ± 0.029 0.947 ± 0.053 0.933 ± 0.034 0.948 ± 0.051 0.868 ± 0.067 0.880 ± 0.043

CTD 0.855 ± 0.037 0.945 ± 0.047 0.900 ± 0.034 0.941 ± 0.049 0.804 ± 0.069 0.844 ± 0.028

ACF 0.915 ± 0.037 0.927 ± 0.054 0.921 ± 0.037 0.928 ± 0.051 0.844 ± 0.074 0.846 ± 0.043

Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s correlation coefficient, AUC-ROC area under ROC curves
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for DPC feature set. Specifically, accuracies in terms of all
the performance metrics are observed ≥90% for DPC
feature set, whereas the values of MCC and AUC-ROC
for rest of the feature sets are observed to be <90%.

Discriminating detoxification-based resistant proteins
from non-resistant proteins
The classification was also made between 452 detoxification-
based resistant proteins and 3919 non-resistant proteins,
by using SVM with RBF kernel. Performances metrics
were computed over 10 folds of cross validation as well as
100 sample sets (where each sample consists of 452
detoxification-based resistant proteins and 452 non-
resistant proteins that were drawn randomly from the
3919 non-resistant proteins) are presented in Table 4. It is
observed that the accuracies are higher for DPC feature
set and lower for AAC feature set. In particular, the values
of all the performances metrics for both CTD and DPC
feature sets are ≥90% (Table 4). Barring sensitivity, the
values of performance metrics in discriminating the
detoxification-based resistant proteins from non-resistant
proteins (Table 4) are higher as compared to that of
discriminating target-based resistant proteins from non-
resistant proteins (Table 3).

Comparative analysis
For comparing the proposed approach with Blast algo-
rithms, we prepared two different datasets. The first
dataset contains 442 resistant proteins (with < 90%
pair-wise sequence identity) and randomly drawn 442
non-resistant proteins (with <40% pair-wise sequence
identity), and the second dataset contains 128 resist-
ant proteins (with <40% pair-wise sequence identity)
and randomly drawn 128 non-resistant proteins (with
<40% pair-wise sequence identity). Furthermore, per-
formance of the proposed approach was compared
based on DPC feature set only as higher accuracies
were obtained for this feature set as compared to the
other feature sets. In both the datasets, no hits were
found for most of the query sequences with e-values
0.1 and 1. However, hits were found for all the query
sequences with e-value 10. Therefore, comparison was
made based on e-value 10 only, and the accuracies
averaged over 10-folds are given in Table 5. It is

observed that the overall accuracies of the proposed
approach are ~10% higher than that of Blastp, PSI-
Blast and Delta-Blast, in both datasets (Table 5).
Though, true positive rates (sensitivity) of the Blast
algorithms are higher, false positive rates (specificity)
are much lower at the same time. Among the Blast
algorithms, Delta-Blast performed better than both
Blastp and PSI-Blast, with both the datasets (Table 5).
Barring sensitivity, the proposed approach performed
better than Blast algorithms in terms of all the per-
formance metrics. It is further seen that the specific-
ities are higher for the first dataset as compared to
the second dataset.

Performance analysis based on independent test dataset
Both the datasets mentioned in “comparative analysis”
section were used to train the model for prediction of
the level (as resistant or non-resistant) of each test se-
quence. Furthermore, none of the test sequences were
present in the training set. It is observed that 69 out of
75 are correctly predicted while first dataset is used as
training set (Table 6). On the other hand, all the 75 in-
stances are correctly identified as insecticide resistant
proteins with second dataset as training set (Table 6).
Besides, it is seen that most of the sequences are cor-
rectly predicted with >0.9 probabilities irrespective of

Table 4 Estimates of different performance metrics for discriminating detoxification-based resistant proteins from non-resistant proteins

Feature Sn Sp Ac Pre MCC AUC-ROC

AAC 0.898 ± 0.009 0.963 ± 0.006 0.931 ± 0.006 0.960 ± 0.007 0.863 ± 0.013 0.960 ± 0.007

DPC 0.911 ± 0.006 0.992 ± 0.004 0.951 ± 0.004 0.991 ± 0.004 0.905 ± 0.008 0.980 ± 0.004

PAAC 0.901 ± 0.008 0.965 ± 0.006 0.933 ± 0.006 0.962 ± 0.007 0.867 ± 0.012 0.960 ± 0.006

CTD 0.907 ± 0.007 0.990 ± 0.004 0.948 ± 0.005 0.989 ± 0.004 0.900 ± 0.009 0.974 ± 0.004

ACF 0.912 ± 0.007 0.969 ± 0.006 0.941 ± 0.005 0.968 ± 0.006 0.883 ± 0.010 0.959 ± 0.005

Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s correlation coefficient, AUC-ROC area under ROC curves

Table 5 Performance metrics for the proposed approach, Blast,
PSI-Blast and Delta-Blast, in discriminating the resistant proteins
from non-resistant proteins, where the positive dataset consists
of <40% (first) and <90% (second) pair-wise sequence identity

Dataset Method Sn Sp Ac Pre MCC

First Proposed 0.897 0.934 0.916 0.933 0.836

Blast 0.961 0.611 0.786 0.713 0.617

PSI-Blast 0.959 0.602 0.780 0.707 0.607

Delta-Blast 0.961 0.652 0.806 0.735 0.647

Second Proposed 0.875 0.891 0.883 0.901 0.784

Blast 0.958 0.350 0.654 0.596 0.392

PSI-Blast 0.958 0.358 0.658 0.601 0.400

Delta-Blast 0.958 0.466 0.712 0.646 0.495

Here, AUC-ROC values were not computed, as in Blast algorithms accuracies
are computed based on number of hits
Sn Sensitivity, Sp Specificity, Ac Accuracy, Pre Precision, MCC Matthew’s
correlation coefficient
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the training datasets (Fig. 4). More clearly, 2 test se-
quences of cytochrome P450 and 4 sequences of AChE
are misclassified in the first training dataset (Fig. 4).

Online prediction server: DIRProt
A web server DIRProt has been developed to discrimin-
ate the insecticide resistant proteins from non-resistant
proteins. This server has been trained with the SVM (with
RBF kernel) for prediction of insecticide resistant proteins
based on DPC feature set. The web pages showing the
execution and results for an example dataset are shown in
Fig. 5a and b respectively. Help pages are also provided to
guide the user regarding generation of features, prediction
method and input–output. The sequences in FASTA for-
mat along with the annotations and probabilities with
which they are predicted as resistance proteins are shown
in the result page. For reproducible research, the trained
datasets are also provided in the server. The predic-
tion server is made freely accessible at http://cabgri
d.res.in:8080/dirprot for academic users.

Discussion
Extensive use of chemical insecticides has been selecting
resistant population of insect species to different insecti-
cides, worldwide [69, 70]. Around 590 insect species
have been reported to resist different insecticides till the
end of 2014 [71]. Insecticidal resistance has been

associated with the genetic changes in insects. For in-
stance, a mutation in an insect can alter the behavior,
metabolism and physiology by which insect may gain ad-
vantage in resisting to different insecticides [70]. Most of
the earlier studies are dealt with the mutational changes
associated with the insecticide resistance. Though in-
secticide resistance is an important researchable issue,
there is no computational tool available for prediction of
insecticide resistant proteins. Therefore, we made an
attempt to present the first computational approach for
prediction of insecticide resistant proteins.
We considered four different categories of insecticide

resistant proteins corresponding to four different classes
of insecticide resistance genes viz., cytochrome P450,
AChE, Rdl and Kdr. The leucine content was predomin-
antly found in all the four categories of proteins, which
has been reported to play an important role in insecti-
cide resistance. For instance, Prince et al. [72] reported
that leucine-rich repeat receptor-like kinase “brassinos-
teroid insensitive1-associated kinase1” contributes to the
innate immunity to aphids in Arabidopsis. The valine to
leucine (V419L) and the leucine to isoleucine mutations
(L925I) were identified in three pesticide-resistant
strains of bed bug (Cimex lectularius) [73]. Further, the
composition of tryptophan which has been reported to
present in the active site that interacts with trimethyl-
ammonium cationic group of AchE was found lowest
[73]. Hassani et al. [74] described that lysine and trypto-
phan (Lys12 and Trp39 and Trp54) are the most reactive
residues that play important role in disrupting the func-
tion of neuronal sodium channels by Ts gamma, which
is the most potent neurotoxin in the venom of the Bra-
zilian scorpion Tityus serrulatus.
For classification of insecticide resistant and non-

resistant proteins, initially the sequences were trans-
formed into numeric feature vectors based on different
feature generation techniques viz., AAC, DPC, PAAC,
ACF and CTD. The encoded numeric vectors were then

Fig. 4 Heat map of the probabilities with which 75 test sequences are predicted in two different training datasets. All the 75 sequences are
correctly predicted as resistant proteins in the second training dataset, whereas 69 are correctly predicted with the first training dataset. It is
further seen that most of the test sequences are correctly predicted with high probabilities (>0.9)

Table 6 Performance of the proposed approach based on an
independent dataset of 75 insecticide resistant proteins

Predicted

Resistance family Observed 1st training model 2nd training model

Cytochrome P450 53 51 53

Kdr 2 2 2

Rdl 3 3 3

AChE 17 13 17

Total 75 69 75
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used as input in binary SVM classifier. Prediction accur-
acies were found to be higher for RBF kernel as com-
pared to the other three kernels of SVM. Further, the
classification accuracies were found higher for DPC fea-
ture set as compared to the other feature sets, which
may be due to the fact that in DPC the local ordering of
amino acids were taken into account [42, 43]. Further-
more, in cross validation analysis (Table 1), the sensitiv-
ity was found to be increased with increase in the
percentage of pair-wise sequence identity in the positive
dataset. This may be due to the fact that with increase in
the pair-wise sequence identity in the positive dataset, it
is less-likely that a positive sequence will be misclassified
in the negative dataset. The accuracy in discriminating

the target-based and detoxification-based resistance pro-
teins from non-resistant proteins was also found to be
higher. Besides, higher discrimination accuracy was also
observed between target-based and detoxification-based
resistance proteins. Thus, it can be inferred that the
composition of di-peptides are not only different be-
tween resistant and non-resistant proteins but also
among insecticide resistant proteins involved in different
insecticide resistance mechanisms.
The performance of the proposed approach was com-

pared with Blast, PSI-Blast and Delta-Blast algorithms.
Though, prediction was made for three e-values i.e., 0.1,
1 and 10, no hits were found for most of the query
sequences (particularly negative) for the first two e-

Fig. 5 a Server page of DIRProt, b result page after execution with an example dataset. The result page is displayed in a tabular form, where the
last column is the probabilities with which the each sequences are predicted as insecticide-resistant proteins
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values. Thus performance metrics were computed based
on e-value 10 only, which is also the default e-value in
Blast algorithms. Though the resistant proteins were
predicted with higher accuracy, the specificities were
found much lower. It was also found that the specific-
ities are higher for the first dataset as compared to the
second dataset. One of the possible reasons for this may
be that when the pair-wise sequence identity is <40% in
the positive class (first dataset), sequence similarity be-
tween the classes will be less. On the other hand, when
the pair-wise sequence identity is <90% in the positive
class, sequence similarity between the positive and nega-
tive classes will be more by which the likelihood of a se-
quence of the negative class to be predicted in the
positive class will be more and vice versa. In terms of
overall accuracy, the proposed approach outperformed
all the three variations of Blast algorithm. Among the
Blast algorithms, Delta-Blast performed better followed
by PSI-Blast and Blast. The performance of the proposed
approach was also assessed using an independent test
dataset consisting of 75 resistant protein sequences (53
cytochrome P450, 2 Kdr, 3 Rdl and 17 AChE). Out these
75 sequences, all were correctly predicted when the pair-
wise sequence identity was <90% in the positive dataset of
training set, whereas 69 were correctly predicted in
for the training dataset having positive sequences
with <40% pair-wise sequence identity. Nevertheless,
the proposed approach achieved higher accuracy for
predicting the insecticide resistant proteins.

Conclusions
This paper presents the first computational approach for
predicting the insecticide resistant proteins. Based on
this approach, a web server has also been developed that
can be easily used by the scientists and researchers to
computationally identify the insecticide resistant pro-
teins. The proposed computational approach is believed
to supplement the wet-lab experiments for identifying
and targeting the insecticide resistant proteins to de-
velop dynamic and efficient insecticides.

Additional file

Additional file 1: It contains the list of insect species and
corresponding insecticide resistant gene types that were used in this
study. This file also contains the 75 insecticide resistant protein
sequences that were used as independent dataset. (PDF 185 kb)
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