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Abstract

Background: Immunoinformatics has become a crucial part in biomedical research. Yet many immunoinformatics
tools have command line interfaces only and can be difficult to install. Web-based immunoinformatics tools, on the
other hand, are difficult to integrate with other tools, which is typically required for the complex analysis and
prediction pipelines required for advanced applications.

Result: We present ImmunoNodes, an immunoinformatics toolbox that is fully integrated into the visual workflow
environment KNIME. By dragging and dropping tools and connecting them to indicate the data flow through the
pipeline, it is possible to construct very complex workflows without the need for coding.

Conclusion: ImmunoNodes allows users to build complex workflows with an easy to use and intuitive interface
with a few clicks on any desktop computer.
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Background
Immunoinformatics methods have become a vital part of
biomedical research. Their applications span a wide variety
ranging from basic immunological to translational research,
especially in the field of cancer research [1–3]. These applica-
tions often involve several methods, varying from pre- and
post-processing routines, to complex statistical analysis pro-
cedures, and require a high amount of development time.
Additionally, the lack of standardized interfaces and data for-
mats renders the use of different tools in the same pipeline
difficult. To overcome these problems, several groups have
developed web-based workbenches that allow interacting
with several different approaches via a unified interface [4, 5].
However, factors such as data volume, speed, robustness, or
legal restrictions (e.g., data privacy or restrictions on data
sharing), often prevent the use of web-based solutions.
Due to the variety and number of tasks that a typical

immunoinformatics analysis conveys, we have developed
ImmunoNodes, a set of components, each carrying out one
specific task in immunoinformatics (e.g., human leukocyte
antigen (HLA) ligand binding prediction or statistical
analyses). By chaining several of these tools together one

can form a complete data analysis workflow. Workflows
not only enable complex automation tasks, but they also
increase reproducibility of scientific studies by documenting
the complete data analysis in a standardized form.
In this work, we present an immunoinformatics toolbox

whose components can be used without transferring data
to a central server across the Internet (thus circumventing
data privacy restrictions). It enables the user to build
complex workflows and offers unified interfaces and data
formats. In order to facilitate collaboration between its
several components, we have fully integrated Immuno-
Nodes into the Konstanz Information Miner Analytics
Platform (KNIME) [6, 7], an application for visual workflow
development. We thus benefit from KNIME’s rich
functionality covering data mining, statistics, visualization,
chemo- and bioinformatics [8–10], as well as computa-
tional proteomics [11–13]. ImmunoNodes provides a wide
range of well-known tools for HLA binding prediction,
HLA class I antigen processing prediction, HLA genotyp-
ing, as well as epitope-based vaccine design including
epitope-selection and string-of-beads assembly.
Having integrated ImmunoNodes into such a versatile

workflow development environment that KNIME is, we
hope to ease its use and thus to spread the application of
advanced immunoinformatics tools to a wide range of users.
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ImmunoNodes is available for all major platforms
(Windows, OSX, Linux) and released under a 3-clause
BSD license. It can be directly installed from the
KNIME-Community repository and its source code can
be found at GitHub (https://github.com/FRED-2/Immu-
noNodes). The accompanying Docker image can be
found at Docker Hub (https://hub.docker.com/r/aperim/
immunonodes).

Implementation
KNIME Integration
KNIME is a free, stand-alone, open-source, workflow de-
velopment framework for personal computers. Out of
the box, it includes hundreds of sample workflows, more
than 1,000 different tools (nodes) including a wide range
of solutions for statistics analysis, data acquisition and
visualization [14]. KNIME runs on all major operating
systems and can be easily extended by writing plug-ins
and extensions. It is thus a popular and widespread plat-
form for data analysis.
The ImmunoNodes framework has dependencies on

command line tools that, with some considerable effort,
could be imported as KNIME nodes. However, the
Generic Knime Node (GKN) extension was developed to
assist users to add arbitrary command line tools into
KNIME. Instead of asking the end user to focus on writing
code to enable the interaction between external command
line tools and KNIME, GKN enables pipeline designers to
mainly concentrate on describing the tools to be added.
This description has to be contained in a Common Tool
Descriptor (CTD) file [15]. A CTD file is an XML
document defining input data, output data, and all param-
eters required by each tool. Input and output data types
are identified by their MIME content types (e.g., text/xml,
application/zip) and parameters can be as simple as a
single integer number restricted to a range or as complex
as a list of nested values. CTDs also contain a section to
map named parameters to command line parameters and
thus enable the execution of arbitrary command line tools.
We use CTD as an abstraction layer for the description of
all tools in ImmunoNodes. The software package Generic
KNIME Nodes (GKN) (https://github.com/genericwork-
flownodes) is then used to automatically generate the
KNIME plugins from these abstract representations.
Several of the software components used in Immuno-
Nodes are often difficult to install or are available exclu-
sively for Linux. To address these issues, we have
extended GKN to be natively able to execute command
line tools provided within a Docker container. Docker is a
software project that enables a lightweight virtualization
of software applications, which internally allows an easy
deployment of fully configured software suites to the end
user. Docker also permits the execution of Linux-only
third-party immunoinformatics tools on Windows and

Mac OS X operating systems and thus gives Immuno-
Nodes full portability. GKN automatically generates the
required Docker calls and handles the interaction between
the host system and the virtualized Docker container. The
majority of nodes in ImmunoNodes are command line
tools written with FRED 2 [16]. FRED 2 is an immunoin-
formatics Python module that provides standardized inter-
faces to the immunoinformatics software.

Node Implementation
ImmunoNodes offers twelve different nodes covering epi-
tope, proteasomal cleavage, and transporter associated
with antigen processing (TAP) prediction, distance-to-self
calculations of peptides, as well as HLA genotyping
(Table 1). It also offers nodes for vaccine design including
epitope selection and assembly. Each node wraps a variety
of state-of-the art tools, many of which were covered in a
recent review on immunoinformatics [17].

Epitope prediction node
Consumes two files, namely, a text file containing HLA
alleles, one per line, in new nomenclature (see http://
hla.alleles.org), and a text file either containing protein
sequences in FASTA format or short peptide sequences,
one per line. Besides specifying the desired epitope length,
the user can choose an epitope prediction method from a
variety of options (Table 1 - Epitope Prediction). The node
returns a tab-separated file containing the predicted score
for each peptide and allele.

Neoepitope prediction node
Consumes a VCF file containing the identified somatic
genomic variants, besides a text file containing HLA alleles,
and generates all possible neo-epitopes based on the anno-
tated variants contained in the VCF file by extracting the
annotated transcript sequences from Ensemble [18] and in-
tegrating the variants. Optionally, it consumes a text file,
containing gene IDs of the reference system used for anno-
tation, which are used as filter during the neoepitope gener-
ation. The user can specify whether frameshift mutations,
deletions, and insertions should be considered in addition
to single nucleotide variations (default). NeoEpitopePredic-
tion currently supports ANNOVAR [19] and Variant Effect
Predictor [20] annotations for GRCh37 and GRCh38 only.

Cleavage prediction node
Takes a FASTA file and predicts the cleavage probability
for each site (Table 1 – Cleavage Prediction). In addition,
the user can specify a peptide length, which in turn will
alter the output to a tab-separated text file containing
peptide sequences of the specified length with their C-
terminal cleavage score.
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TAP prediction node
Consumes either a FASTA file or a file containing
peptide sequences. Besides the TAP prediction model to
use (Table 1 - TAP Prediction), the user can specify the
required peptide length (if the input was a FASTA file).
Its output is again a tab-separated file containing the
peptide sequences and the predicted TAP score.

HLA typing node
Takes a paired-end or single-end whole exome, whole
genome sequence, or RNA-Seq FASTQ files and infers
the most likely HLA class I and II genotype depending
on the method used (see Table 1 - HLA Typing). The
resulting file contains the most likely genotype with one
HLA allele per line.

Epitope selection node
Selects an optimal set of epitopes from a set of candidate
epitopes that maximizes the overall predicted immunogen-
icity. The tool implements OptiTope, an integer linear
programming-based epitope selection framework proposed
by Toussaint et al. [21]. As input it takes a file containing
the results of (Neo)EpitopePrediction and a tab-separated
HLA allele file with assigned population frequencies, simi-
lar to the type of files that AlleleFrequency can generate.
Optionally, EpitopeSelection accepts a tab-separated file
containing the epitope sequences of the EpitopePrediction
result with assigned conservation scores. The user can
specify the number of epitopes to select, the percentage of
HLA alleles and antigens that have to be covered by the
selected epitopes, and a HLA binding threshold that
specifies at what point a peptide is considered to bind to a
specific HLA allele. If an epitope conservation file is pro-
vided, the user can define a minimum conservation to filter
the epitopes with.

Epitope assembly node
Assembles a set of epitopes into an optimal string-of-beads
polypeptide vaccine construct. It consumes a peptide list
and generates a traveling salesman problem (TSP) instance
as described in [22]. Each node of the underlying fully
connected graph represents a peptide, each edge’s weight
expresses the cleavage probability of the connected epitopes
predicted by the user specified cleavage site prediction
model. Solving the TSP instance yields a string-of-beads
construct that has the highest probability to be fully recov-
ered. The user can either specify to solve the TSP instance
either optimally via integer linear programming by using the
CBC solver (https://projects.coin-or.org/Cbc), or to obtain
an approximate solution by using the Lin-Kernighan
heuristic [23]. Optionally, the user can specify a weight
parameter (which defaults to 0) that activates and
weights an additional term of the objective function.
The additional term represents the non-junctional
cleavage likelihood, which, by providing a weight
greater to zero, will be minimized, whilst the junction
cleavage likelihood will be maximized.

Spacer design node
Generates a string-of-beads design similar to the
EpitopeAssembly node but also constructs optimal spacer
sequences maximizing the cleavage probability of the

Table 1 Supported immunoinformatics methods sorted by field
of application

Method Version Purpose Reference

Epitope Prediction:

• BIMAS 1.0 MHC-I binding [35]

• SVMHC 1.0 MHC-I binding [36]

• ARB 1.0 MHC-I binding [37]

• SMM 1.0 MHC-I binding [38]

• SMMPMBEC 1.0 MHC-I binding [39]

• Comblib 2008 1.0 MHC-I binding [40]

• PickPocket 1.1 MHC-I binding [34]

• NetMHC 4.0 MHC-I binding [32]

• NetMHCpan 3.0 MHC-I binding [41]

• HAMMER 1.0 MHC-II binding [42]

• TEPITOPEpan 1.0 MHC-II binding [43]

• NetMHCII 2.2 MHC-II binding [44]

• NetMHCIIpan 3.1 MHC-II binding [45]

• SYFPEITHI 1.0 T-cell epitope [46]

• UniTope 1.0 T-cell epitope [25]

• NetCTLpan 1.1 T-cell epitope [47]

• Callis
propensity

1.0 T-cell epitope/
Immunogenicity

[48]

Cleavage Prediction:

• ProteaSMM
(C/S20)

1.0 Cleavage site [49]

• PCM 1.0 Cleavage site [50]

• NetChop 3.1 Cleavage site [51]

TAP Prediction:

• SVMTAP 1.0 TAP affinity [50]

• SMMTAP 1.0 TAP affinity [52]

• Additive matrix 1.0 TAP affinity [53]

Epitope Selection:

• OptiTope 1.0 Epitope selection
for vaccine design

[21]

Epitope Assembly:

• TSP approach 1.0 String-of-beads design [22]

• Spacer
design + TSP

1.0 Spacer design [24]

HLA Typing:

• OptiType 1.0 MHC-I typing [54]

• Seq2HLA 2.2 MHC-I/II typing [55]
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desired epitopes. The tool consumes a peptide list and
generates a TSP instance. Additionally, it calculates short
spacer sequences connecting two epitopes to increase the
cleavage likelihood of the epitopes while simultaneously
reducing the formation of neoepitopes [24]. The user has to
specify an epitope prediction model in addition to the
required cleavage site model. The output, like in
EpitopeAssembly, is a FASTA file containing the designed
string-of-beads vaccine.

Distance-to-self nodes
Can be used to calculate the distance of a given l -mer pep-
tide to the whole human proteome or a user-defined set of
proteins. To this end, distance-to-self uses a memory effi-
cient trie-based data structure to hold the reference prote-
ome or any set of protein sequences and to query it with a
target peptide as previously described in [25]. The distance
calculation is based on a distance measure derived from a
transformed BLOSUM substitution matrix and lies between

Fig. 1 HLA ligandomics workflow combining native KNIME, OpenMS, and ImmunoNodes nodes. The workflow extracts MS data from PRIDE
(FTP Connection and Download node) and performs mass spectra identification with the peptide search engine X!Tandem (XTandemAdapter),
annotates the results with details of the given target/decoy database (PeptideIndexer), calculates false discovery rates (FalseDiscoveryRate) and
filters for 5% FDR (IDFilter) using OpenMS’ nodes. The identified peptides are annotated with their respective binding affinity predicted by
NetMHC using the EpitopePrediction node. Finally, simple summary statistics and visualizations are generated with the use of native KNIME nodes
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0 (most similar) and 1 (most dissimilar). ImmunoNodes pro-
vides two distance-to-self nodes: Distance2SelfGeneration
and Distance2SelfCalculation. Distance2SelfGeneration can
be used to generate custom reference tries for a given
protein FASTA and the desired length of peptides in the trie,
while Distance2SelfCalculation calculates the distances of the
k closest reference peptides of a custom build, or pre-
calculated reference trie for a list of peptides given in a tab-
separated file. There are four pre-calculated reference tries
generated from all 8−, 9−, 10−, and 11−mers of the human
reference proteome (Uniprot, TrEMBL, accesse 04/07/2016).

Allele frequency node
Is a very simple node that takes a list of HLA alleles and
assigns the probability that a given HLA allele occurs in
the user-specified geographic region or population ex-
tracted from dbMHC [26]. The output is a tab-separated
file, each row containing an HLA allele and its probabil-
ity of occurrence in the given region or population.

Epitope conservation node
Consumes a multiple sequence alignment, calculates the con-
sensus sequence and generates peptides of a user specified
length. In addition to that, the multiple sequence alignment
is used to calculate peptide conservation, which is defined as
the product of column-wise conservation of the MSA. In the
case of multiple epitope origins the maximum epitope con-
servation is reported [21]. The output is a tab-separated file
containing the peptide sequences and their conservation.

Results
Example workflow 1: HLA ligandomics analysis pipeline
Recently, high throughput methodologies based on liquid
chromatography and mass spectrometry (MS) have been
successfully used to identify therapeutic targets for cancer
immunotherapies [27–29]. Here, we present a peptide iden-
tification workflow for ligandomics analysis using OpenMS

[30] and ImmunoNodes (Fig. 1, http://www.myexperimen-
t.org/workflows/4947). At the same time, this workflow will
exemplify the synergistic effects of combining native KNIME
nodes, other community extensions, and ImmunoNodes.
First, ligandomics data of JY cell lines are downloaded

from PRIDE [31] via an FTP download node. Then, pep-
tide identification at 5% FDR is applied using OpenMS
nodes [11]. The resulting peptides are then annotated
with their predicted binding affinity using Immuno-
Nodes’ EpitopePrediction with NetMHC [32] and simple
statistics of the predicted binding affinities are calculated
and visualized using native KNIME nodes.

Example workflow 2: population-based vaccine design
against Zika virus
To demonstrate the usage of ImmunoNodes for vaccine
design, we extracted all 221 partially and 30 fully sequenced
genomes of Zika virus from the Virus Pathogen Resource
database [33] (access 02/22/2016). Epitope prediction was
performed with PickPocket [34] using HLA alleles with a
minimal prevalence of 1% in the South American popula-
tion and nine-mer peptides generated from the extracted
protein sequences. The candidate epitopes were filtered
based on a binding threshold of 500 nM, and EpitopeSelec-
tion was allowed to select up to ten epitopes that guaranteed
the maximal obtainable antigen and HLA allele coverage
(Fig. 2, http://www.myexperiment.org/workflows/4948).
The ten selected epitopes (Table 2) covered more than

95% (20 of 21) of the HLA alleles prevalent in the South
American population, as well as 92% (287 of 312) of the ex-
tracted Zika antigens. The alleles of HLA-A, −B, −C of the
South American population could be covered by 100%,
83%, and 100% respectively with the selected epitopes,
resulting in a 99% population coverage (i.e., the probability
that a person of the South American population carries at
least one HLA allele that is covered by the vaccine is 99%).

Fig. 2 Population-based vaccine design workflow in KNIME. AlleleFrequency is used to specify the geographical region or population of interest and
returns a tab-separated list of HLA alleles with their corresponding occurrence probability within the selected population. This file, together with a
FASTA file containing protein sequences, or a file containing peptides is used as input to EpitopePrediction, which generates a file containing the
predicted binding affinities of the (generated) peptides and the selected HLA alleles. This file, in turn, is used as input to EpitopeSelection, which selects
a user-defined number of epitopes out of the candidate pool and writes these together with other statistics into an output file
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Conclusion
The complexity and development time of accurate, state-
of-the-art immunoinformatics tasks is high. To maximize
quality in the results and to decrease implementation time,
it is common that immunoinformatics software makes use
of already existing, thoroughly tested libraries. Unfortu-
nately, the installation and configuration of the different
components of such pipelines tends to be non-trivial and
often exceeds the technical capabilities of many end users.
Having these aspects in mind, we developed Immuno-

Nodes, an immunoinformatics framework that covers
essential tasks of pipelines such as epitope discovery, HLA
inference, antigen processing, and vaccine design. Struc-
turing complex scientific tasks into a collection of small,
easily executable, simpler computations (i.e., a pipeline or
workflow) brings the benefit of adding a certain degree of
reproducibility, an aspect desired in all scientific en-
deavors. Being fully integrated into KNIME using GKN, it
enables a wide audience to develop complex analysis
workflows without the need of having mastered a pro-
gramming language. Also, the complexity of installation
and configuration of required third-party libraries has
been lifted from the end user as a result of the provided
Docker images. We therefore are confident that Immuno-
Nodes will enable a wide range of users to develop innova-
tive and complex pipelines, thus spreading the usage of
state-of-the-art immunoinformatics approaches.
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