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Abstract

Background: DNA-binding proteins perform important functions in a great number of biological activities.
DNA-binding proteins can interact with ssDNA (single-stranded DNA) or dsDNA (double-stranded DNA), and
DNA-binding proteins can be categorized as single-stranded DNA-binding proteins (SSBs) and double-stranded
DNA-binding proteins (DSBs). The identification of DNA-binding proteins from amino acid sequences can help to
annotate protein functions and understand the binding specificity.

In this study, we systematically consider a variety of schemes to represent protein sequences: OAAC (overall amino
acid composition) features, dipeptide compositions, PSSM (position-specific scoring matrix profiles) and split amino
acid composition (SAA), and then we adopt SYM (support vector machine) and RF (random forest) classification

model to distinguish SSBs from DSBs.

Results: Our results suggest that some sequence features can significantly differentiate DSBs and SSBs. Evaluated by
10 fold cross-validation on the benchmark datasets, our prediction method can achieve the accuracy of 88.7% and
AUC (area under the curve) of 0.919. Moreover, our method has good performance in independent testing.

Conclusions: Using various sequence-derived features, a novel method is proposed to distinguish DSBs and SSBs
accurately. The method also explores novel features, which could be helpful to discover the binding specificity of

DNA-binding proteins.

Keywords: SSBs (Single-stranded DNA-binding proteins), DSBs (Double-stranded DNA-binding proteins), Binding

specificity, Protein sequence

Background

Proteins-DNA interaction is important for a great
number of biological processes such as DNA replica-
tion, transcription, DNA repair and gene expression
[1-4], etc. DNA-binding proteins contain essential
protein-DNA binding domains, and they have spe-
cific or general affinities for either ssDNA or dsDNA
[5-7]. Currently, X-ray crystallography, NMR and
filter binding assays have been used to dissect struc-
tural features [8—10], multiple domain structures of
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SSBs [11], uncover the biological functions [12-15],
etc. However, wet methods of identifying DSBs and
SSBs are relatively expensive and time-consuming.
Therefore, a reliable and effective computational
method is an urgent task, and computational method
plays a crucial role in protein function annotation
and the identification of proteins. However, a great
number of computational methods have been focused on
analyzing the specific binding sites of DSBs [16-22],
classification of DNA binding proteins [23-28] and
protein-DNA binding specificities [29] etc. But few
methods pay attention to the large-scale identification
of DSBs and SSBs. In our previous work [30], we
constructed a SVM prediction model to classify DSBs
and SSBs based on the structure information. Although
structure-based methods can produce high-accuracy per-
formances, they can’t be applied in high-throughput
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function annotation because limited structures are known.
In contrast, the prediction based on sequence information
has more potential use in practice. In this work, we pre-
dict whether a protein binds ssDNA or dsDNA without
relying on the geometry of the protein. The protein se-
quence can provide lots of information for predicting pro-
tein function [31]. At present, the most familiar methods
for predicting protein function involve sequence features
[32]. Many methods are employed to predict protein func-
tion classes, such as homology detection, sequence pat-
terns, structural similarity, and so on. However, few
computational works have studied the sequence features
and identify SSBs and DSBs sequences. The recent study
[8] shows that SSBs bind with specifically and non-
specifically to ssDNA and SSBs have lower sequence
conservation. Some DSBs with similar functions have
common subsequences, and diverse DSBs involved in
different functions seem to have lower conserved subse-
quences [33]. Recognizing DNA-binding protein se-
quences helps to realize the implications of properties
of proteins and reveal the undiscovered protein
features, which help to understand the mechanism of
protein-DNA interactions. [34—36].

Here, we propose a novel method to predict DSBs or
SSBs by using the SVM algorithm and random forest
(RF) algorithm with various sequence-derived features.
Specifically, consider a variety of sequence-derived features,
including OAAC, PSSM, dipeptide composition, and phys-
icochemical properties, which can provide diverse informa-
tion to differentiate ssDNAs from dsDNAs. Fig. 1 shows
the workflow of our method. In the computational experi-
ments, our model achieves MCC of 0.647 (Matthew’s cor-
relation coefficient), accuracy of 0.887, sensitivity of 0.908
and specificity of 0.788 based on 10-fold cross-validation,
respectively. The results show that our method can per-
form well in predicting SSBs or DSBs for novel proteins.

Methods

Training datasets

In this study, DNA-binding proteins were obtained
from UniProtKB/Swiss-Prot (www.uniprot.org). The
dataset consists of 2136 DSBs and 339 SSBs which
are extracted from literature and manually reviewed
entries (Additional file 1). Then we used the CD_HIT
toolkit [37] to extract sequences with non-redundant
proteins (Sequence identity cut-off 0.7). Finally, we
obtained 873 DSBs and 183 SSBs (Additional file 2),
which is called Uniprotl065. To deal with the unbal-
anced datasets, a larger number of samples were
selected by down-sampling methods during the train-
ing process. We obtained a “Negative sample” dataset
by randomly selecting subsequences which has the
equal size of the SSBs dataset from DSBs dataset.
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Fig. 1 The whole workflow of our method

Independent datasets

Further, an independent dataset was obtained from
PDB (www.rcsb.org/pdb/) to evaluate the performance
in predicting novel proteins. PISCES is used (http://
dunbrack.fccc.edu/Guoli/PISCES.php) to obtain the
non-redundant PDB401 dataset, in which every struc-
ture is determined by X-ray or NMR, and resolution
better than 3 A. The sequence similarity is lower than
30%, and the sequence length is higher than 40 resi-
dues. In addition, we checked the similarity between
the training and independent test sets. We also used
the CD_HIT toolkit to extract the non-redundant
proteins in the independent dataset. As a result, we
obtained the non-redundant independent set of 125
DSBs and 41 SSBs (Additional file 3).

Protein features

Sequence-derived features can reflect the characteris-
tics of the protein sequences. Here, we consider four
types of sequence-derived features, including overall
amino acid composition (OAAC), dipeptide compos-
ition, PSSM profiles and physicochemical properties.
The overall amino acid composition expresses the
global descriptors of proteins. Dipeptide composition
is the detailed descriptors of sequences and the
other two kinds of properties are transformed with
the split amino acid composition for describing local
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features of sequence. The details of features are de-
scribed as follows.

Overall amino acid composition (OAAC)’

The OAAC method is a 20-dimensional descriptor of a
protein sequence, which describes the frequencies of
amino acids in the sequence. It is defined as the follow:

p="0 (i=1,2-,20) (1)
L
Where p; is the occurrence frequency of the i-th amino
acids occurrence, L is the total sequence length, and #; is
the sum of the i-£h amino acids in the sequence.
Researches have shown that a better result can be
reached by computing the square root of p; [38]. There-

fore, f; is used for the OAAC features.

fi=+Pi (i=1,2---,20) (2)

Dipeptide composition

Dipeptide component is an important representation of
a protein sequence, and has been widely used in the sec-
ondary structure prediction [39], subcellular localization
and fold recognition [24]. Dipeptide composition con-
tains two consecutive residues information of each se-
quence, which has 400 patterns [40]. In this work, three
types of dipeptide compositions were calculated for
every two residues in case of 0, 1 and 2 of intervals re-
spectively, as illustrated in Fig. 2. The dipeptide compos-
ition is defined as:

Ds(i,j)

fs(i’j) = N-1

(i,j=1,2,3-,20 s=0,1,2)
(3)
Where D(i, j) represents the total of each type of i

and j dipeptides with s of intervals where s = 0, 1, 2, and
N is the sequence length of protein. f(i, j) is the

Page 3 of 10

occurrence frequency of every dipeptides. Finally, we got
a total of 1200 dimensional vectors with dipeptides of
varying intervals together.

Physicochemical properties

Physicochemical properties play a major role in analyz-
ing DNA-binding mechanism. AAindex is widely used in
many studies of physicochemical properties of amino
acids. A great number of algorithms for predicting
protein functions had been developed by using physico-
chemical properties from AAindex. Here, we used 28
AAindex properties (Table 1) which are selected by the
Auto-IDPCPs methods [41]. Each protein is represented
by a set of 28*L matrix array along with the L-residue
number.

PSSM profiles

The PSSM is an important tool to predict protein
function, and the PSSM profiles represent the evolu-
tion information, which has been widely used in pro-
tein function prediction [42]. Here, PSSM profiles are
obtained by using PSI-BLAST [43]. The PSSM was
calculated by three iterations of PSI-BLAST to search
the non-redundant NCBI database based on the sub-
stitution matrix of BLOSUM62. The parameter of e-
value was set to 0.001. This PSSM scoring matrix has
L rows and 20 columns, and L rows are the sequence
length of a protein, and 20 columns represent the
occurrence of each kind of 20 amino acids.

Split amino acid (SAA) transformation

SAA transformation was used to describe the local com-
position of protein sequences [44]. SAA transformation
partitions each sequence into three regions: the parts of
the N-terminal, middle and C-terminal. The compos-
ition of each region is shown in Fig. 3. The variable
length sequences were partitioned with a fixed length
pattern of the 6 dimensional vectors. The sequences are
defined as N-terminal regions, middle regions and C-
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Fig. 2 Schematic representation for three kinds of dipeptide composition. The dipeptide compositions are calculated for every two residues in




Wang et al. BMC Bioinformatics (2017) 18:300 Page 4 of 10
Table 1 The list of AAIndex physicochemical properties we used

D AAlndex D AAlndex D AAlIndex D AAlIndex

39 CHOP780202 102 GEIM800106 229 PALJ810107 401 ZIMJ680104
56 CIDH920103 139 KANMB800102 280 QIAN880123 422 AURR980120
58 CIDH920105 146 KLEP840101 299 RACS770103 431 MUNV940103
86 FAUJB80109 147 KRIW710101 321 RADA880108 449 NADH010104
88 FAUJ880111 167 LIFS790101 356 ROSM880102 451 NADH010106
95 FINA910104 178 MEEJ800101 365 SWER830101 512 GUYH850105
100 GEIM800104 214 OOBM770102 399 ZIMJ680102 528 MIYS990104

terminal regions based on their position. For the se-
quences with varied lengths, we used three definitions to
represent the local composition (Fig. 3).

Classification model and evaluation method

The classification models are built by using SVM and
random forest with above mentioned features. SVM
models are implemented by the SVM package in
Matlab 2012a. The default parameters of SVM are
adopted in the experiments. The random forest models
are implemented by using Andy Liaw’s Matlab package.
The number of trees is set to 3000. Two classifiers are
used to build prediction models and then compared.
The performances of classification models were evalu-
ated by AUC (area under the ROC curve), F1 (F-meas-
ure), Acc (accuracy), Spe (specificity), Sen (sensitivity)
and MCC (Matthew’s correlation coefficient).

The 10-fold cross-validation is usually adopted to evalu-
ation performances of classification models. In the 10-fold
cross-validation, data is randomly divided into ten equal
parts. In each fold, one part is kept for the testing dataset
and nine parts are used as the training dataset. In each
training dataset, classification models were constructed
based on different features and predictions for testing set

is given by combining outputs of classification models by
majority voting strategy. The ensemble learning is a strat-
egy to improve the performances of classification, and has
lots if successful applications [45—54]. The majority voting
strategy is a popular way of the ensemble learning, and
can combine various sequence-derived to predict single-
stranded and double-stranded DNA binding proteins.

Results and discussion

OAAC results

To evaluate the OAAC method, we detected the se-
quence composition of two kinds of proteins, and the
comparisons of the two types of proteins are shown in
Fig. 4. DSBs residues have only slightly higher fre-
quency than SSBs, including Arg (R), Lys (K), Glu (E),
Pro (P), Ser (S), Leu (L) and His (H). Clearly, the posi-
tive charge residues (Arg, His and Lys) in DSBs have a
higher level than these of SSBs, and it coincides with
the fact that dsDNA strand has higher negative charge
than ssDNA strand, and dsDNA has a stabilized
double-helix structure while ssDNA presents un-
wound and irregular helix. Therefore, the positive
charges of sequence residues are more enriched to
DSBs than SSBs. Asn (N), Gly (G), Phe (F), Tyr (Y)

a [24d\+20+dc

N-terminal dy=25 middle=20 dc=10
| N1 | N2 | N3 | N4 | M | C
b 4dy+de<L<4dy+20+0dc

dy =20 middle<20  de=10

| Nt | N2 | N3 | N4 | M | c |
C L<4dy+de

(L-d)2  (L-d)f2  de=10

v [ wm [ o]

Fig. 3 The SAA method defining the N-terminal, middle, and C-terminal regions based on the sequence length L. If L is no less than 4dy + 20 + d_,
the N-terminal of each part dy is represented 25 residues in the start region of sequence. The middle regions have more than 20 residues, and
the length of the C-terminal regions d_ is set as 10 residues (a). If L is between 4dy + d. and 4dy + 20 + d_, the N-terminal of each part dy is
represented by 20 residues in the start part. Thus, the middle part has less than 20 residues (b). For short sequence, if L is no less than 4dy + d,,
the N-terminal part is not divided and the lengths of the middle and N-terminal regions are set as (L-d.)/2 (c)




Wang et al. BMC Bioinformatics (2017) 18:300

Page 5 of 10

0.1

=SSB

0.09
0.08

0.07

0.06
0.05

0.04
0.03
0.02
0.01

0

ARNDTC CO QEGH

I

Fig. 4 The frequency distributions of 20 kinds of amino acids in DSBs and SSBs

and Val (V) in the SSBs sequences have a higher fre-
quency than those in the DSBs. It is believed that the
differences of sequences can be used to distinguish
DSBs and SSBs. The OAAC values (20 x N dimension
matrices, N is the number of proteins) of each protein
are used as features.

Dipeptide composition analysis

In the study, dipeptide compositions are used to obtain
the global sequence information. The dipeptide compo-
sitions is analyzed statistically by computing pairs of
amino acids conditions with 0, 1 and 2 of intervals re-
spectively [55]. The dipeptide frequency of 0, 1 and 2 of
intervals is shown in Fig. 5. The differences for 16 kinds
of dipeptide of frequency are more than 0.003 (AL, RA,
EE, EL, GN, GQ, GG, LE, LS, KA, KE, KG, KT, PK, VA
and VE) and 2 kinds of dipeptide (ES, EB) are less than
0.005 in Fig. 5a. The frequency differences of 25 kinds of
dipeptide are more than 0.003, which are shown in Fig. 5b
(AR, AN, AK, RR, RP, RT, NN, NG, NV, DV, QG, EI, EL,
EV, GA, GG, GL, LD, LE, KE, KL, PG, PT, SG and SL)
and those 6 kinds of dipeptide are less than 0.005 (KL, LE,
GG, GL, EI and NG). The frequency difference of 19 kinds
of dipeptide are more than 0.003, which are shown in
Fig. 5¢ (RR, RL, NN, NG, DG, DP, QL, EE, EK, GA,
GQ, GG, LL, LK, KR, KK, FF, SL and TE) and the 5
kinds of dipeptide are less than 0.005 (GG, GQ, LK,
EE and RR). The results show the effectiveness of the
dipeptide compositions feature.

The studies on protein-DNA binding have found
some related physicochemical properties of amino
acid, which were regarded as critical factors of
protein-DNA binding mechanism. There are several
typical physicochemical properties which are discov-
ered to be associated with protein-DNA binding in-
cluding charge, hydrophobicity, flexibility, solvent
accessibility, polarity, volume and pK, etc. However, it
is still unknown that whether those physicochemical
properties are associated with the proteins specific
binding to dsDNA or ssDNA. It is difficult to screen

out related physicochemical properties for predicting
SSBs and DSBs specific to biological methods. There-
fore, 28 kinds of typical physicochemical properties,
which are significantly different in 6 parts of SAA, are
selected to analyze DSBs and SSBs. The physicochemical
properties were evaluated for revealing protein-DNA
interactive mechanism by computational methods. Here,
we present a feature analytical method of the physico-
chemical features. The method is defined as follows.

K-%
Max(K1, K)

(4)

Where X is the physicochemical properties difference
in rate for DSBs and SSBs. K; and K, are the average
for all physicochemical properties in every part of SAA.

The differences of physicochemical properties are shown
in Fig. 6. According to statistical results, DSBs and SSBs
show significant difference in some properties, and the
AAindex IDs of physicochemical properties are shown in
Table 2. Obviously, five parts share some properties,
including RADA880108 (Mean polarity), NADH010104
(Hydropathy scale, 20% accessibility), NADH010106
(Hydropathy scale, 36% accessibility), and four parts share
KLEP840101 properties (Net charge), CIDH920103
(Standardized hydrophobicity measures), MIYS990104
(Self-consistent estimation of inter-residue protein) [56].
The N-terminal (N1 and N3) and C-terminal share
GUYH850105 (Amino acid side-chain partition energies).
There are significant differences with polarity, hydrop-
athy, net charge and protein contact energies between
DSBs and SSBs. Therefore, these properties are play-
ing critical roles in selecting the specific binding of
dsDNA and ssDNA.

Prediction performance of the classifiers

In order to identify whether the selected features can
be employed to classify DSBs and SSBs, we constructed
the SVM and random forest classifier with different fea-
tures by 10-fold cross validation and leave-one-out
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Table 2 AAindex IDs of significant differences in different SAA parts
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SAAC parts

AAindex IDs of significant differences

N-terminal(N1)
N-terminal(N2)
N-terminal(N3)
N-terminal (N4)
Middle(M)
C-terminal(C)

CIDH920103,CIDH920105,KLEP840101,RADA880108 ROSM880102,NADHO10106,GUYH850105,MIYS990104
CIDH920103,RADA880108 NADHO10104,NADHO010106,MIYS990104
CIDH920103,RADA880108,ROSM880102,NADHO010104,GUYH850105,MIYS990104
KLEP840101,NADHO10104,NADHO010106,

CIDH920103,CIDH920105,FAUJ880111,KLEP840101, RADA830108 NADHO10104,NADHO10106,MIYS990104
FAUJ880109,FAUJB80111,KLEP840101,RADA880108 ROSM880102,NADHO10104,NADHO10106,GUYH850105

cross validation in Uniprot1065 set. Here, we con-
structed six predicting models with individual features.
ROC plots the summarizing results of the SVM and
random forest testing in the dataset using the different
features described in Figs. 7 and 8, and the ROC shows
that all features dramatically improved the predicted
performance. In addition, the results of leave-one-out
cross validation are shown in Additional file 4. The
Gini importance of each feature type is an importance
characteristic parameter in random forest. We tested
the Gini importance of each feature, and obtained the
average value of Gini values in 10-fold cross-validation,
and found out some significant difference in the fea-
tures. The figures of Gini importance are provided in
Additional file 5. For example, we can observe that Leu
(L), Gly (G), Phe (F), Asn (N) and Trp (W) are hydro-
phobic, and have comparatively high Gini importance
in Additional file 5: Figure S1. The results show that
hydrophobicity may be one of the most significant
characteristics between DSBs and SSBs.

Receiver Operating Characteristic (ROC) curve
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Fig. 7 The ROC curve of the SYM model. The ROC plots the
summarizing results of the SVM testing in the dataset using the
different features. The red curve represents the result of independent
test on PDB dataset, and others represent the results of 10-fold cross
validation on Uniprot1065 set

From the results of Tables 3 and 4, we can find that all
single features can predict SSBs and DSBs with good
performance. In experimentations, we found that the
best precision is obtained by using multiple features with
the highest prediction accuracy of 0.887, SN of 0.908, SP
of 0.788 and AUC of 0.919 based on random forest
model. The results suggest that the OAAC, PSSM, Di-
peptide and AAindex features are important features to
predict SSBs from DSBs sequences. Moreover, compar-
ing Table 3 with Table 4, the random forest models also
show better classification performance than SVM
models. The results show that the random forest may be
advantageous to deal with problems with high dimen-
sions and unbalanced samples. Based on the results of
individual modules, the predicting models based on
Dipeptide = 1 feature obtained better performance than
any other features, which illustrate that the Dipeptide = 1
feature of the sequences is more crucial to predicting
DSBs from SSBs.
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Fig. 8 The ROC curve of random forest models. The ROC plots the
summarizing results of random forest testing in the dataset using the
different features. The red curve represents the result of independent
test on PDB dataset, and others represent the results of 10-fold cross
validation on Uniprot1065 set
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Table 3 The performance of different kinds of feature
descriptors in non-redundant dataset by SYM method
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Table 5 The performance of all feature descriptors with various
machine learning algorithms based on independent dataset

Features ACC SN SP AUC MCC F1 Method Features ACC SN SP AUC MCC F1
OAAC 0.802 0.801 0811 0.858 0.505 0.870 Random forest  OAAC 0697 0.734 0585 0660 0290 0.785
Dipeptide = 0 0.797 0.798 0.795 0.870 0490 0.867 Dipeptide =0 0.570 0.557 0610 0.583 0.144 0.660
Dipeptide = 1 0.810 0814 0.791 0.884 0.506 0877 Dipeptide =1 0696 0.731 0590 0687 0292 0.784
Dipeptide = 2 0.792 0.801 0.750 0.859 0459 0.865 Dipeptide =2 0546 0516 0634 0575 0.130 0631
AAindex 0.792 0.795 0.779 0.857 0473 0.864 AAindex 0.703 0.798 0415 0607 0211 0802
PSSM 0.795 0.797 0.790 0.863 0484 0.866 PSSM 0.703 0.774 0488 0631 0249 0.797
All features 0.860 0.863 0.845 0.923 0615 0911 All features 0.727 0807 0488 0647 0288 0816
SVM All features 0642 0613 0732 0672 0.298 0.720
Baseline All features 0509 0492 0.558 0526 0044 0.591

Independent test on PDB set

Furthermore, we had done an independent test using
PDB401 dataset to validate our method. The results
listed in Table 5 demonstrate that SVM classifier ob-
tains a better performance. In SVM model, the com-
bination of all features achieves the good performance
with accuracy of 0.642, sensitivity of 0.613, specificity
of 0.732, Matthew correlation coefficient of 0.298, and
AUC of 0.672, respectively. The random forest
method achieves a higher accuracy of 0.727, but the
results of random forest methods show some of the
biases in sensitivity and specificity. The random forest
method achieves a higher sensitivity but a lower spe-
cificity, and the SVM model performs better than that
of random forest in specificity and AUC. As we know
that there is no computational works to identify SSBs
and DSBs sequences, therefore we had train a base-
line model by permuting the labels of SSBs and DSBs
in the training data, and applied this model to predict
the independent dataset. The results are shown in
Table 5. In addition, we extracted the structures of
727 un-annotated DNA binding proteins from PDB.
Then, we used CD-HIT to get the non-redundant set.
We finally got 568 un-annotated proteins. The un-
annotated proteins are predicted by using the predic-
tion method, and the results are shown in Additional
file 6. In general, the result indicates that our method

Table 4 The performance of different kinds of feature
descriptors in non-redundant dataset by random forest method

Features ACC SN SP AUC MCC F1

OAAC 0.849 0.856 0817 0.900 0.581 0.904
Dipeptide = 0 0.872 0.892 0.780 0.910 0612 0.921
Dipeptide = 1 0.879 0.900 0.781 0912 0.625 0.925
Dipeptide = 2 0.870 0.885 0.797 0.908 0612 0918
AAindex 0819 0.844 0.698 0.846 0475 0.886
PSSM 0.836 0.855 0.744 0.884 0.527 0.896
All features 0.887 0.908 0.788 0.919 0.647 0.930

has good generalization abilities in classifying DNA-
binding proteins in novel proteins.

Conclusions

In this study, we compile a non-redundant sequence
dataset consisting of 873 DSBs and 183 SSBs, and build
four kinds of typical features underlying DNA binding
proteins sequences. Using the features, we developed
SVM-based model and RF-based model to predict SSBs
from DSBs sequences. The results confirmed the distin-
guishing abilities of the features. Interestingly, OAAC,
dipeptide compositions and physicochemical properties
presents remarkable difference between DSBs and SSBs.
The independent test confirms the effectiveness of the
model. Based on the sequence-derived features, RF
model has a prediction accuracy of 88.7% and AUC of
0.919, and SVM performs better in independent data set.
In general, our results indicate that the method can
effectively predict DSBs and SSBs sequence to investi-
gate DNA binding protein sequences, and these amino
acid properties may be critical to describe the specific
binding of a protein for ssDNA or dsDNA molecule.
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