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Abstract

Background: Biomarker detection presents itself as a major means of translating biological data into clinical
applications. Due to the recent advances in high throughput sequencing technologies, an increased number of
metagenomics studies have suggested the dysbiosis in microbial communities as potential biomarker for certain
diseases. The reproducibility of the results drawn from metagenomic data is crucial for clinical applications and to
prevent incorrect biological conclusions. The variability in the sample size and the subjects participating in the
experiments induce diversity, which may drastically change the outcome of biomarker detection algorithms.
Therefore, a robust biomarker detection algorithm that ensures the consistency of the results irrespective of the
natural diversity present in the samples is needed.

Results: Toward this end, this paper proposes a novel Regularized Low Rank-Sparse Decomposition (RegLRSD)
algorithm. RegLRSD models the bacterial abundance data as a superposition between a sparse matrix and a low-rank
matrix, which account for the differentially and non-differentially abundant microbes, respectively. Hence, the
biomarker detection problem is cast as a matrix decomposition problem. In order to yield more consistent and solid
biological conclusions, RegLRSD incorporates the prior knowledge that the irrelevant microbes do not exhibit
significant variation between samples belonging to different phenotypes. Moreover, an efficient algorithm to extract
the sparse matrix is proposed. Comprehensive comparisons of RegLRSD with the state-of-the-art algorithms on three
realistic datasets are presented. The obtained results demonstrate that RegLRSD consistently outperforms the other
algorithms in terms of reproducibility performance and provides a marker list with high classification accuracy.

Conclusions: The proposed RegLRSD algorithm for biomarker detection provides high reproducibility and
classification accuracy performance regardless of the dataset complexity and the number of selected biomarkers. This
renders RegLRSD as a reliable and powerful tool for identifying potential metagenomic biomarkers.

Keywords: Biomarker detection, Metagenomics, Matrix decomposition, Alternating direction method of multipliers,
Augmented Lagrangian

Background
Thanks to the progress witnessed by the high-throughput
sequencing technologies, large-scale investigation of bac-
terial collectivities has become possible by means of
metagenomic approaches. This large-scale analysis lead
to the discovery of bacterial groups that could not
be analyzed through the conventional cultivation-based
methods (90% of microbes are not recognized yet and
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not cultivable [1, 2]). In addition to bacterial compo-
sition, metagenomic techniques employed the whole-
metagenome shotgun sequencing methods to infer the
functional role of microbial colonies [3, 4].
Recently, several metagenomic studies have pointed out

that the distortion of the normbiosis state of bacterial
communities is a key player in the progression of many
diseases such as obesity [5–7], diabetes [8], inflamma-
tory bowel disease (IBD) [9], and cancer [10, 11]. These
findings suggest employing microbes as possible biomark-
ers for the health status and certain diseases of the host.
Currently, the determination of microbial biomarkers is
carried out by finding the operational taxonomic units
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(OTUs), whose corresponding abundances differentiate
for samples pertaining to distinct phenotypes.
Biomarker detection is crucial to understand disease

development and design antibiotic and/or probiotic ther-
apies. Mathematically, the task of biomarker identification
can be formulated as determining the most revealing fea-
tures that can differentiatemultiple sets of samples or con-
ditions (i.e., various stages of a disease, different categories
of diseases, etc.). The methods proposed in literature to
address the biomarker discovery problem can be classified
into two categories: machine learning (pattern recogni-
tion) methods and statistical methods, respectively.
In general, the statistical approaches tackle the problem

by using a statistical hypothesis test to calculate the sta-
tistical significance (i.e., p-value) of each feature. Then,
the features associated with p-values lower than a well-
selected level are declared as potential biomarkers. A
major issue linked with the statistical-based methods is
the multiple comparisons problem, which is commonly
solved by substituting the p-values with the correspond-
ing false discovery rates (FDRs). Metastats [12] and LEfSe
[13] are the current standard approaches that belong to
this category. Specifically, Metastats utilizes the permuta-
tion t-test and the exact Fisher’s test for non-sparse and
sparse features, respectively [12]. On the other hand, to
improve the robustness of biomarker discovery, LEFSe
relates the statistical study with the impact of size estima-
tion [13]. In particular, LEFSe exploits the Kruskal-Wallis
and Wilcoxon-Mann-Whitney detection algorithms for
class and subclass comparative studies, respectively.
In the machine learning framework, the problem of

detecting the biomarkers is formulated as a feature deter-
mination task. The filtering methods are the most widely
adopted approaches for biomarker detection. In filter-
ing methods, each OTU is assigned a score based on
the relevance between its abundance levels across the
samples and the class labels of the samples. The opera-
tional taxonomic units that present the largest scores are
declared as potential biomarkers. This scoring process is
carried out one by one for each OTU and separately of
the other OTUs. Therefore, filtering methods are com-
putationally fast and easily interpretable. However, the
individual ranking ignores the inter-dependencies among
different variables.
Contrary to the individual ranking, the feature

transformation-based methods try to generate more
revealing features where each newly detected feature
is depedent of all the original features. Considering all
the initial characteristics in the construction of new
traits accounts for the interactions between OTUs.
Transformation approaches are divided broadly into
two categories based on whether the labels of the
samples are considered in the transformation process.
These categories are the supervised and unsupervised

approaches. Linear discriminant analysis (LDA) and par-
tial least-squares (PLS) represent the two most employed
supervised approaches. On the other hand, the principal
component analysis (PCA) presents itself as one of the
most remarkable unsupervised methods.
Identifying the most discriminating features in metage-

nomic datasets is a challenging task. One major challenge
is that the number of biomarkers might be much larger
than the number of available samples, a condition that it is
commonly termed as the ‘high dimension low-sample size
(HDLSS)’ problem. The HDLSS problem is also associated
with serious analytical challenges [14, 15]. In addition,
metagenomic analysis presents its own challenges such
as: (i) metagenomic-specific artifacts such as sequencing
errors and chimeric reads [16, 17], (ii) high dynamics of
the bacterial populations due to the complex interactions
with the host [18] and between its members [19–21], and
(iii) inter-subject variability. For example, the results of [6]
show that the gut microbiota of twins differ significantly.
These challenges point to a severe inconsistency issue

that blocks the current biomarker identification meth-
ods from selecting the true biomarkers. For example, the
authors of [22] reported that out of the 70 genes that
were suggested as potential biomarkers for breast cancer
by the two gene expression studies [23, 24], only three
genes were found to be common. Therefore, developing
a robust biomarker detection algorithm that ensures the
reproducibility of the outcomes obtained from biological
data plays a critical role in infering correct biological state-
ments and making use of these results in good clinical
decisions.
Toward this end, we propose herein paper the Regular-

ized Low Rank-Sparse Decomposition (RegLRSD) algo-
rithm for biomarker detection. RegLRSD formulates the
biomarker discovery problem as a matrix decomposi-
tion problem and provides an efficient solution for this
decomposition. In particular, RegLRSD models the bac-
terial abundance data as the superposition of a sparse
matrix and a low-rank matrix. The motivation for this is
due to the fact that most of microbes do not play any
role. Hence, the abundance profiles of these uninforma-
tive bacteria do not vary between samples associated with
different phenotypes. Therefore, considering their abun-
dance profile as a low-rank matrix is natural. In addition,
few microbes may be relevant to the biological condi-
tion under study. Consequently, the abundance profiles of
these relevant microbes are expected to vary significantly
between the different phenotypes. Therefore, modeling
these informative bacteria as a sparse matrix is legitimate.
To improve the accuracy of extracting the low-rank

and sparse matrices, we exploit the prior knowledge
that the abundance profiles of non-informative bacteria
do not exhibit significant variation. This is achieved by
adding a smoothness constraint on the recovered low
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rank matrix. The RegLRSD algorithm presents several
advantages. First, RegLRSD improves the reproducibility
performance because of the following traits: (i) RegLRSD
incorporates prior knowledge in the detection process,
which constrains the analysis. Consequently, this mit-
igates the conventional challenges associated with the
HDLSS nature of metagenomic data. (ii) The multivariate
nature of RegLRSD algorithm accounts for the complex
interactions between the members of the bacterial com-
munity. This contrasts the univariate-based methods (i.e.,
statistical hypothesis testing and filtering techniques) that
ignore such sophisticated relationships between bacte-
ria. Second, the proposed matrix decomposition formu-
lation is convex. This provides several benefits such as:
(i) global optimality, (ii) efficient solvers, and (iii) flex-
ibility to add convex constraints without affecting the
convex structure of the problem. Third, unlike feature
transformation-based algorithms, the output of RegLRSD
is easily interpretable in the sense that it keeps the features
in their original domain.
This paper also sheds light into the design of an eval-

uation protocol which provides a fair and an accurate
assessment of the efficiency of a biomarker detection algo-
rithm. The absence of the “ground truth” (i.e., no absolute
knowledge of the true biomarkers) prevents the objective
evaluation of the biomarker detection methods. There-
fore, the assessment criteria and comparisons have to be
conducted with great care to make sure that all the exist-
ing prior knowledge about the true markers is taken into
account.

Methods
Low rank-sparse model of metagenomic data
Consider the matrix D ∈ �p×n of bacterial abundance
data, each line of D denotes the relative abundance of an
OTU in all the n samples, and each column stands for
the abundance values of all the p OTUs in one sample.
In general, p � n. Therefore, it represent a challenging
high-dimensional small-sample size problem. The back-
bone of our approach is to capture the differentially and
non-differentially abundant OTUs via a sparse matrix
and low-rank matrix, respectively. In particular, most of
the bacterial groups do not play any role in the consid-
ered biological system. Thus, these inappropriate OTUs
are expected to exhibit high abundance levels that do
not change significantly between two different pheno-
types. Therefore, it makes perfect sense to model their
abundance-level matrix as a low-rank matrix (represented
by matrix L). Also, the abundance levels of the few key
OTUs might present relevant changes between the two
phenotypes. Such a condition will be captured bymeans of
a sparsematrix (in our case, thematrix S).Mathematically,

D = L + S. (1)

Extracting the sparse matrix via RegLRSD
Exploiting the low rank-sparse decomposition model of
the bacterial abundance profiles (1), identifying poten-
tial biomarkers boils down to a matrix decomposition
problem, with the aim of extracting the sparse matrix.
This decomposition can be cast mathematically as the
following optimization:

minimize rank(L) + λ‖S‖0
subject to D = L + S,

(2)

where ‖S‖0 denotes the l0-norm of the matrix S, which
by definition is equal to the number of nonzero elements
in S. Problem (2) is commonly known as the robust PCA
(RPCA) problem. This formulation of RPCA, given by
(2), is highly non-convex because of the combinatorial
optimization required by the rank operator and the l0-
norm. However, the authors in [25, 26] pointed out that
under general conditions, one exactly estimate both com-
ponents (i.e., low rank and sparse matrices) by carrying
out a convex optimization, referred to as the Principal
Component Pursuit (PCP). This convex formulation is
based on recent theories and results that show: (i) the
l1 norm represents the closest convex approximation of
the l0-norm, and minimizing l1-norm yields the spars-
est solution to underdetermined linear systems [27], (ii)
the nuclear norm provides a tight approximation of the
matrix rank operator and minimizing the nuclear norm
provides the lowest rank solution under wide assumptions
[28]. Mathematically, PCP is expressed as

minimize ‖L‖∗ + λ‖S‖1
subject to D = L + S,

(3)

where λ represents a positive regularization factor that
monitors the degree of sparseness and smoothness in S
and L, respectively. Variable ‖L‖∗ stands for the nuclear
norm of L and is equal to the sum of the singular values.
Finally, the notation ‖S‖1 denotes the l1 norm of S, and it
is defined as the summation of the absolute values of the
matrix elements.
In an attempt to enhance the estimation accuracy of S

and L, we extend the formulation in (3) by adding a penalty
term in order to enforce the smoothness of each row of
L. This penalty term incorporates the prior knowledge
that the abundance profiles of non differentially abundant
OTUs are smooth. In this paper, the first order difference
(FOD) is adopted as a measure of smoothness, which is
defined as:

‖X‖FOD =
∑

j
‖Fxj‖1, (4)
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where xj denotes the jth column ofX, and F represents the
first order difference operator defined as:

F =

⎡

⎢⎢⎢⎣

−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . −1 1

⎤

⎥⎥⎥⎦ . (5)

Thus, the RegLRSD algorithm aims to untie the opti-
mization problem:

(L∗, S∗) = argmin
L,S

{
f (D,L, S) = 1

2
‖D − L − S‖2F

+ α‖L‖∗ + λ‖S‖1 + β

p∑

i=1
‖FlTi ‖1

}
,

(6)

where lTi stands for the ith row of L. One key advantage of
this formulation is that that the optimization problem (6)
is convex. The above-mentioned convex optimization for-
mulation yields several benefits: (i) it enables a global opti-
mal solution, (ii) it enables utilizing the well-established
theory and tools for solving convex optimization prob-
lems, and (iii) it allows the luxury to take into account
extra convex constraints to capture better the existing
prior information. However, direct application of generic
convex solvers may not be feasible due to the high dimen-
sional nature of our problem. For example, interior point
methods exhibit high order complexity. Moreover, there
is no approach available to determine the jointly optimal
solution for the optimization (6). Therefore, herein paper
we consider an efficient alternating-based algorithm to
carry out (6). The alternating-minimization approach first
optimizes f (L, S) with respect to S (matrix L is considered
constant), and then it optimizes f (L, S) with respect to L
(matrix S being considered a fixed constant). In particular,
it adopts the following updating steps:

S(k) = argmin
S

f (L(k−1), S) (7)

L(k) = argmin
L

f (L, S(k)). (8)

This strategy utilizes the fact that the two sub-problems
(7) and (8) admit efficient solutions. In particular, the
problem in (7) can be reformulated as follows:

S(k) = argmin
S

1
2
‖D − L(k−1) − S‖2F + λ‖S‖1. (9)

Problem (9) admits the following closed form solution:

S(k) = Sλ(D − L(k−1)), (10)

where Sτ : � → � denotes the shrinkage operator,
expressed as:

Sτ (x) = sgn(x)max(|x| − τ , 0), (11)

and where τ ≥ 0 denotes the threshold level. In the case of
a matrix, the shrinkage operator will be applied onto each

constituent element of the matrix. The problem in (8) can
be cast as:

L(k) = argmin
L

1
2
‖D − S(k) − L‖2F + α‖L‖∗

+ β

p∑

i=1
‖FlTi ‖1.

(12)

The current formulation of the optimization problem
in (12) is neither in a format that admits a closed-form
expression as (7) nor in the format of a well-established
problem that admits an efficient solution. Moreover, rely-
ing on generic convex techniques to solve (12) may not
be efficient. The difficulty exhibited by this minimiza-
tion problem arises from the combination of the two
non-smooth terms ‖L‖∗ and

∑p
i=1 ‖FlTi ‖1. Therefore,

we propose to reformulate (12) by introducing an addi-
tional variable and constraint to separate these two terms.
Adding this auxiliary variable enables the decomposition
of (12) into two subproblems that can be solved efficiently.
The first subproblem is the nuclear-norm regularized
least-squares (LS) optimization problem which presents
a closed-form solution [29]. The second problem can be
recast as the total variation denoising problem [30], which
presents an efficient solution [31]. In particular, (12) is
reformulated as:

(L,Y) = argmin
L,Y

1
2
‖D − S(k) + L‖2F + α‖L‖∗

+ β

p∑

i=1
‖FyTi ‖1,

subject to Y = L,
(13)

where yTi stands for the ith row of the auxiliary vari-
able Y. To solve (13), we make use of the alternating
direction method of multipliers (ADMM) [31]. In general,
the ADMM algorithm converts the constrained optimiza-
tion problem into an unconstrained optimization problem
with a novel objective that it is referred to as the aug-
mented Lagrangian. The augmented Lagrangian associ-
ated with the optimization (13) is:

Lρ(L,Y,Z) = 1
2
‖D − S(k) + L‖2F + α‖L‖∗

+ β

p∑

i=1
‖FyTi ‖1 + 〈Z,L − Y〉

+ ρ

2
‖L − Y‖2F ,

(14)

where Z represents the Lagrange multiplier matrix. Thus,
the ADMM formulation of (13) is given by:

(L,Y,Z) = arg min
L,Y,Z

Lρ(L,Y,Z). (15)
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The ADMM solution of (15) is of recursive nature. Each
recursion, in particular the r-th iteration, assumes the
updates:

L(r) = argmin
L

1
2
‖D − S(k) − L‖2F

+ α‖L‖∗ +
〈
Z(r−1),L − Y(r−1)

〉

+ ρ

2
‖L − Y(r−1)‖2F ,

(16)

Y(r) = argmin
Y

〈
Z(r−1),L(r) − Y

〉

+ ρ

2
‖L(r) − Y‖2F + β

p∑

i=1
‖FyTi ‖1,

(17)

Z(r) = Z(r−1) + ρ(L(r) − Y(r)) (18)

Remark 1 For any arbitrary vectors u, v ∈ �n, and
scalars a, b ∈ �, the following relation holds:

〈av + bu,u〉 = b
∥∥∥− a

2b
v − u

∥∥∥
2

F
− a2

4b
‖v‖2F . (19)

Based on Remark-1, the problem in (16) is recast as:

L(r) = argmin
L

α‖L‖∗

+ 1 + ρ

2

∥∥∥∥∥
D − S(k) + ρY(r−1) − Z(r−1)

1 + ρ
− L

∥∥∥∥∥

2

F
(20)

According to [29], problem (20) admits the following
closed form solution:

L(r) = D α
1+ρ

(
D − S(k) + ρY(r−1) − Z(r−1)

1 + ρ

)
, (21)

where Dτ is the singular value shrinkage operator defined
by:

Dτ (X) = UDτ (�)VT , Dτ (�) = diag({σi−τ }+) (22)

where U, V, and σi stand for the left singular vectors,
right singular vectors and singular values of X, respec-
tively, and the notation (x)+ denotes the positive part of
x (i.e., (x)+ = max(0, x)). In other words, Dτ (X) employs
a soft-thresholding operation onto the singular values of
X, shifting these towards zero. This is the reason why this
transformation it is also referred to as the singular value
shrinkage operator.
Considering Remark-1, problem (17) is recast as:

Y(r) = argmin
Y

ρ

2

∥∥∥∥∥
Z(r−1) + ρL(r)

ρ
− Y

∥∥∥∥∥

2

F

+ β

p∑

i=1
‖FyTi ‖1.

(23)

The rows of Y are updated separately according to the
optimization:

yTi
(r) = argmin

y

ρ

2

∥∥∥∥∥
zTi

(r−1) + ρłTi
(r)

ρ
− y

∥∥∥∥∥

2

F
+ β‖Fy‖1,

(24)

where zi and li are the ith rows of Z and L, respectively.
Problem (24) is often called the total variation denois-
ing problem [30], and it admits an efficient solution via
ADMM as described in Section 6.4.1 in [31]. Alterna-
tively, problem (24) can be cast as a special case of the
Fused Lasso Signal Approximator (FLSA), which can be
properly addressed via the subgradient finding algorithm
(SFA) [32].
The RegLRSD algorithm is summed up via Algorithm 1.

Algorithm 1: RegLRSD algorithm to solve the regu-
larized low rank-sparse matrix decomposition problem
(6).
Input : D
while not convereged do

update Sk using Eq. 10;
while not convereged do

update Lr using Eq. 21;
update Yr by solving (24) using ADMM solver
or FLSA solver;
update Zr using Eq. 18;

end
Lk ← Lr ;

end
Output: L, S

Extracting the differentially abundant bacteria via RegLRSD
The proposed approach for biomarkers detection assumes
two stages. First, employ RegLRSD to resolve the original
bacterial abundance data matrix into a low-rank matrix
that models the non-differential abundant bacteria and a
sparse matrix that models the differential abundant bacte-
ria. Second, construct a scoring vector as a function of the
extracted sparse matrix to rank each OTU (i.e., feature).
Then, them highest scores OTUs are declared as potential
bacterial biomarkers.
The reasoning for employing the sparse matrix for

extracting the potential biomarkers is that the abundance
levels of informative OTUs can be considered to be a
sparse perturbation matrix superposed over the low-rank
matrix that models the abundance levels of the non-
informative microbes (i.e., D = L + S). The stronger the
variation in the abundance levels of OTUs, the larger the
magnitude of the corresponding elements in the sparse
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matrix S. It is pertinent to mention that the strength of
the variation of each OTU between the two phenotypes is
determined by the absolute values of the non-zero entries
in S rather than their exact values. This is because the
elements of S could be either positive or negative based
on the role (i.e., activation or deactivation) played by the
microbes. Therefore, the score of the ith OTU is achieved
by adding up the absolute values of the elements located
on the ith line of S. Thus, the scoring vector sv is expressed
as :

v =
⎡

⎣
n∑

j=1
|s1j|, . . . ,

n∑

j=1
|spj|

⎤

⎦
T

. (25)

Parameter selection
RegLRSD algorithm is equipped with four regulariza-
tion parameters, α, β , λ and ρ that control the impact
of the rank (i.e., ‖L‖∗), smoothness

(
i.e.,

∑p
i=1 ‖FlTi ‖1

)
,

sparseness (i.e., ‖S‖0), and fitness
(
i.e., ‖L − Y‖2F

)
penal-

ties in (6) and (14). In order to select the appropriate
values for these parameters, we relied on similar mod-
els and utilized the recommended settings proposed in
literature. For example, the PCP problem (3), which is a
pruned variant of the objective of RegLSRD algorithm,
was addressed in [26]. In particular, PCP assumes the fol-
lowing objective ‖L‖∗+λ‖S‖0. The authors in [26] proved
that undermild assumptions, the twomatrices L and S can
be recovered with high probability when λ/α = 1/

√
max{n,p}.

Therefore, in our experiments, we set α = 1 and
λ = 1/

√
max{n,p}.

In what concerns the fitness penalty parameter ρ,
which is the single parameter that is associated with the
ADMM method, the ADMM technique is known for its
robustness to poor selection of its parameter. Specifically,
the convergence of ADMM is guaranteed, under broad
assumptions, for all positive values of its parameter [33].
Here, we set ρ = 1. In addition, herein paper, we set
β = 0.1α.

Implementation and disponibility of the method
The RegLRSD algorithm is carried out in MATLAB and
exploits the original codes of the SFA algorithm (i.e., "flsa"
function included in the SLEP package [34]) in order to
solve the subproblem (24). Therefore, RegLRSD cannot be
used for commercial applications without consent from
the authors of SFA algorithm and RegLRSD. To support
ongoing metagenomic analysis and to extend the utility
of RegLRSD for non-MATLAB users, RegLRSD is imple-
mented as a standalone executable software package and
is made available at https://sites.google.com/a/tamu.edu/
mustafa/software/reglrsd. This package is provided with a
graphical interface to enable the user to set the algorithm
parameters and to report the detected markers.

Nearest centroid classifier (NCC)
A nearest centroid classifier represents a special case
of a distance-based supervised learning approach. The
NCC-based classification approach assumes two steps.
The first step trains the classifier by exploiting the labeled
data (i.e., di) to determine the mean (i.e., centroid) of each
class. The average vakue of the k′th class (μCk ) is obtained
as follows:

μCk = 1
|NCk |

∑

di∈Ck

di. (26)

The second step assigns a test sample (z) to the class
that presents a closer centroid. This reduces to the
optimization:

Ĉ(z) = argmin
Ck

dis(μCk , z), (27)

where dis(μCk , z) stands for the distance between the test
sample z and the centroid of the samples associated with
the k′th class (μCk ).

Data description
The abundance levels of the OTUs were generated from
filtered 16S rRNA gene sequencing by exploiting the naive
Bayesian classifier already implemented in the Riboso-
mal Database Project (RDP) [35]. The reads that present
confidence below 0.8 were rebinned not certain. The per-
sample normalized bacterial abundance profiles were col-
lected into a matrix, referred to as the taxonomic relative
abundance matrix. RegLRSD algorithm takes this matrix
as input. Due to the unsupervised nature of RegLRSD, the
sample labels are not necessary.

Dogs with idiopathic inflammatory bowel disease (IBD)
dataset
This dataset compares the fecal microbiota between 10
healthy dogs and 12 dogs diagnosed with IBD. The
extracted DNA from fecal samples was sequenced by 454-
pyrosequencing. OTUs were attributed by making sure
at least 97% sequence similarity against the Greengenes
reference database [36] using Quantitative Insights Into
Microbial Ecology (QIIME) [37]. The sequencing data
were stored into the National Center for Biotechnology
Information (NCBI)-Sequence Read Archive (SRA) with
the registration number SRP040310.

Dogs with exocrine pancreatic insufficiency (EPI) dataset
Three day pooled fecal samples were gathered from
18 healthy dogs and 7 dogs with EPI. Extracted DNA
was sequenced by Illumina sequencer, and the generated
sequences were analyzed using QIIME to obtain the final
OTU table with at least 97% sequence similarity against
the Greengenes reference database. The sequences can be

https://sites.google.com/a/tamu.edu/mustafa/software/reglrsd
https://sites.google.com/a/tamu.edu/mustafa/software/reglrsd
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accessed in the NCBI-SRA database under the accession
number SRP091334.

Mousemodel of ulcerative colitis (UC) dataset
This data set stands for the fecal microbiota of the
mice model with UC and control mice. The description
of the samples collection, processing and DNA extrac-
tion is described in [38]. The microbiota of 20 T-bet−/−
x Rag2−/− (UC) and 10 Rag2−/− (control) mice was
assessed using 16S data from fecal samples. The taxo-
nomic relative abundance table is publicly available in the
Supplementary Material of [13].

Results and discussions
This section presents the comparison of RegLRSD algo-
rithm with the latest existing algorithms over the three
metagenomic investigations described in the Material
and Methods Section. In particular, the RegLRSD algo-
rithm is contrasted with LEFSe [13] and MetaStats [12]
from the statistical biomarker detection algorithms fam-
ily, MetaBoot [39] and the entropy-based filtering method
from the machine learning family. Additionally, RegLRSD
is compared with the RPCA algorithm for metagenomic
biomarker detection [40] in order to examine the impact
of adding the smoothness constraint into the original PCP
problem (2).

Evaluation criteria
The competing algorithms were evaluated based on
their classification and reproducibility performance. The
essence of this evaluation relies on generating a high
number of variations in the original dataset. Then, the
evaluation metrics are computed by averaging the results
obtained over all these different variations as shown
Algorithm 2. The details of the evaluation protocol is
discussed in the following two subsections.

Algorithm 2: Evaluation protocol for assessing the the
reproducibility and classification performance.
Input : D
for k = 1 : K do

divide D ∈ �p×n
+ into two subsets:

• Training set: Dtrain
k ∈ �p×�r.n�

+ .
• Testing set: Dtest

k ∈ �p×(n−�r.n�)
+

apply the biomarker detection algorithm over
Dtrain

k
train the classifier with Dtrain

k
test the classifier against Dtest

k
end
compute the average consistency using Eq. 28
compute the average sensitivity, specificity, and
accuracy over the K iterations

Reproducibility performance
The reproducibility performance of a biomarker detection
algorithm is empirically measured by generating differ-
ent variations of the original dataset, and comparing the
output of the algorithm based on these different vari-
ations. The reasoning behind this procedure is that a
stable biomarker detection approach must provide alike
outcomes in the presence of small variations in the data
samples. This requirement is in line with the hopes of biol-
ogists that expect that changing the sample size by taking
out or including a few samples must not alter dramatically
the biomarkers detected by the algorithm.
The evaluation methodology for estimating the repro-

ducibility performance can be formalized as follows. First,
divide the original dataset D ∈ �p×n

+ into two sub-
sets: Dtrain

k ∈ �p×�r·n�
+ and Dtest

k ∈ �p×(n−�r·n�)
+ , where

r ∈ (0, 1). This random division is repeated K times,
and the sub-index k represents the iteration number. Sec-
ond, the biomarker detection algorithm is applied on
each of the K training subsets. This results in K sets of
potential biomarkers (i.e., {Fk}Kk=1, where Fk denotes the
set of identified markers when applying the algorithm
over Dtrain

k ). Third, the pairwise similarity between the
K(K −1)/2 pairs of the marker sets is measured by means
of a similarity index. Fourth, the reproducibility perfor-
mance of the algorithm (Cavg) is expressed as the mean of
the all pairwise similarities, i.e.,

Cavg = 2
∑K

i=1
∑K

j=i+1 SI(Fi,Fj)

K(K − 1)
, (28)

where SI stands for the similarity index that measures the
similarity between any two marker sets Fi and Fj. Among
the variety of similarity indexes that have been proposed,
the Kuncheva index (KI) [41] was adopted as a measure of
similarity in this work. This is because KI includes a cor-
rection term to account for the possible bias that results
from the existence of common markers among the two
signature lists that are randomly selected. Formally, KI is
expressed as:

KI(Fi,Fj) = p.|Fi ∩ Fj| − |F |2
|F | (p − |F |) = |Fi ∩ Fj| − (|F |2/p)

|F | − (|F |2/p)
(29)

where |F | represents the size of the identified markers
(i.e., |F | = |Fi| = |Fj|). The values of Kuncheva index
range from −1 to 1. Larger KI values indicate higher sta-
bility performance. Due to the correction term (|F |2/p),
which accounts for selecting markers that are common
among marker sets due to chance, the KI may take nega-
tive values.
In this paper, the stability performance was visualized

by presenting three types of descriptive plots. The first
plot shows the average KI over all pairwise comparisons.
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The second plot provides more details about the distribu-
tion of all the KI values by presenting their histogram. An
ideal algorithm in terms of stability will have the Dirac-
delta distribution at KI equal to 1. This means that the
algorithm generates the same set of markers over all sub-
samples. Practically, the more concentrated the histogram
is to the right side of the plot, the more stable is the algo-
rithm. The third plot aims to depict the stability of the
ranked microbial marker lists. This is achieved by order-
ing all the selected markers based on their ranks. Then,
a boxplot is generated for the ranks obtained in all the K
subsamples for each selected marker. A perfect algorithm
in the sense of stability of the ranked lists will have box-
plots that are centered at the 45◦ line, which means that
the algorithm perfectly preserves the order of the detected
markers in all subsamples.

Classification performance
Accuracy, sensitivity, and specificity are the three metrics
that were used to measure the classification performance.
The classification accuracy represents the fraction of the
number of samples that were correctly predicted to the
total number of samples. One major drawback of accu-
racy is that its value is dominated by the class with the
majority of samples. Therefore, in case of imbalanced class
distribution or when the forecast of the minority group is
critical, accuracy may be misleading. Thus, class-specific
measures (i.e., sensitivity and specificity) are needed to
provide a more accurate picture about the classification
performance. Sensitivity (specificity) is expressed as the
contribution of the correct predictions in the positive
(negative) class. Formally, let TN and TP represent the
number of correctly identified negative and positive sub-
jects. Consider that FN and FP represent the number
of false-predicted instances in the negative and positive
classes, respectively. The accuracy, sensitivity and speci-
ficity measures are expressed as:

Accuracy = TP + TN
TP + FN + TN + FP

(30)

Sensitivity = TP
TP + FN

(31)

Specificity = TN
TN + FP

. (32)

The classification performance is measured empirically
according to the evaluation protocol shown in Algorithm
2. At the kth iteration, the classifier is trained by the data
corresponding to the selected markers

(
Dtrain

k (Fk)
)
. Then

it is tested against the remaining Dtest
k (Fk). One major

benefit from repeating the evaluation K times is to mit-
igate the over-optimistic results that are associated with
the conventional cross-validation on small-sample studies
[42]. In our experiments, two versions of the nearest cen-
troid classifiers were employed. The first version relies on

the l1 norm, while the second version exploits the l2 norm.
Therefore, herein paper, the first classifier is referred to as
NCC-1, while the second one is denoted as NCC-2.

Discussion of evaluation criteria
A critical challenge for assessing the performnce of
biomarker detection approaches is the lack of information
about the true biomarkers. This hampers the objective
assessment of the performance of competing biomarker
selection algorithms. To overcome this challenge, evalu-
ation criteria have to be properly developed to replicate
comparisons as if the true markers were known. The
evaluation criteria have to capture the features of the
true biomarkers. The true biomarkers exhibit two proper-
ties. The first feature is the fact that the true biomarkers
must allow differentiating different phenotypes. In gen-
eral, this is assessed via the performance of a classifier
designed based on the selected biomarkers. The second
feature relies on the fact that true signatures appear not
to be sensitive against variations in the training samples.
This feature is evaluated via empirical assessment of the
biomarker identification algorithm stability.
A common practice is to use only the classification per-

formance as a measure of the effectiveness of a biomarker
detection algorithm. In addition to ignoring the repro-
ducibility performance, relying solely on the classification
performance may be misleading for several reasons. First,
the classification performance depends on factors other
than the quality of the selected variables (i.e., biomark-
ers). In particular, the preprocessing steps and classifier
model employed significantly impact the classification
performance. Second, in the small sample size setups, the
empirical estimation of classification accuracy may not
reflect the true performance of a classifier.
Unfortunately, the existing metagenomic biomarker

identification schemes have not yet considered the repro-
ducibility performance in their assessments. This calls the
utility of these methods under question. Similarly, assess-
ing a biomarker detection algorithm based on its stability
performance is delusive. For example, a trivial algorithm
that returns the same features irrespective of the train-
ing samples will achieve a perfect stability performance.
Thus, reproducibility needs to be assessed together with
the classification performance.

Simulation setup
The classification and consistency metrics were used
to measure the efficiency of the six biomarker detec-
tion algorithms in identifying potential markers. The
consistency-classification evaluation protocol is pre-
sented in Algorithm 2. In our studies, a random sub-
sampling without replacement is utilized to generate 500
subsamples (i.e., K = 500) variations of the original
dataset. Each subsample contains 80% of the samples in
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the original dataset (i.e., r = 0.8). The classification and
consistency performance were evaluated at different num-
ber of selected markers to provide further insights on the
performance of the competing algorithms under varying
sizes of the biomarker sets. The reported outcomes stand
for the average over the 500 experiments.
The classification performance is measured empirically

according to the evaluation protocol shown in Algo-
rithm 2. At the kth iteration, the classifier is trained by the
data corresponding to the selected markers

(
Dtrain

k (Fk)
)
.

Then it is tested against the remaining Dtest
k (Fk). One

major benefit from repeating the evaluation K times is
to mitigate the over-optimistic results that are associated
with the conventional cross-validation on small-sample
studies [42]. In our experiments, two variants of the
nearest centroid classifiers were used. The first approach
employed the l1 norm as a measure of distance, while in
the second approach, the l2 norm was used. In this paper,
we refer to the first classifier as NCC-1 and to the second
one as NCC-2.

Discussion of evaluation criteria
A major bottleneck for the evaluation of biomarker dis-
covery algorithms is the lack of knowledge of the true
biomarkers. This hampers the objective assessment of
the performance of competing biomarker selection algo-
rithms. To overcome this challenge, evaluation criteria
have to be suitably designed in order to mimic compar-
isons as if the true markers were known. In particular,
the evaluation metrics need to capture the features of the
true biomarkers. True biomarkers are characterized by
two properties. The first property is that the true mark-
ers enable distinguishing between different phenotypes.
Commonly, this feature is measured via the classifica-
tion performance of a classifier model built using only
the selected biomarkers. The second feature is that true
signatures tend to be robust against the variation in the
training set. This feature can be assessed through empir-
ical estimation of the stability of the biomarker detection
algorithm.
A common practice is to use only the classification per-

formance as a measure of the effectiveness of a biomarker
detection algorithm. In addition to ignoring the repro-
ducibility performance, relying solely on the classification
performance may be misleading for several reasons. First,
the classification performance depends on factors other
than the quality of the selected variables (i.e., biomark-
ers). In particular, the preprocessing steps and classifier
model employed significantly impact the classification
performance. Second, in the small sample size setups, the
empirical estimation of classification accuracy may not
reflect the true performance of a classifier.
Surprisingly, the existing state-of-art metagenomic

biomarker detection algorithms have not considered the

reproducibility performance in their assessment. This
calls the utility of these methods under question. Sim-
ilarly, assessing a biomarker detection algorithm based
on its stability performance is delusive. For example, a
trivial algorithm that returns the same features irrespec-
tive of the training samples will achieve a perfect stability
performance. Thus, reproducibility needs to be assessed
together with the classification performance.

Simulation setup
The classification and consistency metrics were used
to measure the efficiency of the six biomarker detec-
tion algorithms in identifying potential markers. The
consistency-classification evaluation protocol is shown in
Algorithm 2. In our experiments, a random subsampling
without replacement is utilized to generate 500 subsam-
ples (i.e., K = 500) variations of the original dataset. Each
subsample contains 80% of the samples in the original
dataset (i.e., r = 0.8). The classification and consis-
tency performance were evaluated at different number of
selected markers to provide further insights on the per-
formance of the competing algorithms under varying sizes
of the biomarker sets. The reported results represent the
average over the 500 experiments.

Dogs with exocrine pancreatic insufficiency (EPI) dataset
The reproducibility performance in terms of the average
KI stability values over all the pairwise comparisons (i.e.,
K(K − 1)/2 = 124750 comparisons; K = 500) of the six
algorithms for a changing number of biomarkers from the
EPI dataset is illustrated in Fig. 1. As it is transparent from
Fig. 1, RegLRSD outperforms all the other algorithms. The
improvement gain of RegLRSD over the other algorithms
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Fig. 1 Average of Kuncheva Index (KI) at varying number of selected
markers for the six biomarker detection algorithms over the dogs
with EPI dataset
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in terms of reproducibility performance is higher at lower
number of selected markers. This indicates that RegLRSD
is more certain in identifying small subsets of potential
markers.
Figure 2 presents the histogram of the KI index com-

puted over the 124750 pairwise comparisons when the
size of the selected biomarkers equals 20. The concen-
tration of the histogram of RegLRSD at high KI values
reveals that the RegLRSD algorithm achieves a high repro-
ducibility performance. In particular, RegLRSD provides a
stability value that is larger than or equal to 90% for almost
90% of the times. On the other hand, the other algorithms
are less prone to achieve the same stability performance.
In particular, RPCA, LEFSe, and MetaStats yield a stabil-
ity performance that is larger than or equal to 90% for
only 75, 15, and 30% of the times, respectively, and less
than 5% of the times for both MetaBoot, and entropy-
based algorithm. Moreover, the spread of the histograms
of LEFSe, MetaStats, MetaBoot and entropy algorithms
over wide range of KI values indicates a serious inconsis-
tency problem that puts the outcomes of these algorithms
under question.
The ranking stability of the selected microbial signa-

tures over all theK = 500 variations of the original dataset
is depicted in Fig. 3. In addition to the high reproducibil-
ity performance, the RegLRSD algorithm corroborates its
ability to preserve the order (i.e., rank) of the selected
markers as revealed from the concentration of the box-
plots of the ranks around the 45◦ line. The spread of the
rank boxplots of the other algorithms indicates that the
rank of the selectedmarkers in these algorithms varies sig-
nificantly with respect to small variations in the dataset.
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Fig. 2 Histogram plots of the KI values generated by the six biomarker
detection algorithms over the dogs with EPI dataset. Each histogram
is created using 124750 values of KI which are generated from all
pairwise comparisons over the K = 500 runs (i.e., K(K−1)

2 = 124750
comparisons)
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Fig. 3 Rank boxplots in the subsamples against rank in the original
data set for the six algorithms over the dogs with EPI dataset. a
RegLRSD. b RPCA. c LEFSe. dMetaStats. eMetaBoot. f Entropy

For example, the rank of the marker that is ranked sixth
when applying the MetaBoot algorithm over the original
dataset varies significantly over 500 different subsamples
as cleared from Fig. 3.e. Specifically, the median value for
all these ranks (i.e., ranks obtained in the 500 subsamples)
equals 13 and the interquartile range (IQR) equals 6 (from
9 to 15). Moreover, in some subsamples, this marker was
ranked first, while in other subsamples it was ranked
twentieth.
The classification performance of the competing algo-

rithms is illustrated in Fig. 4. The first column in Fig. 4
depicts the outcomes for the NCC-1 classifier, while the
second column illustrates the outcomes for the NCC-2
classifier. In general, all the algorithms yield a robust per-
formance regardless of the number of selected biomark-
ers. The identified markers by RegLRSD, LEFSe, MetaS-
tats, and MetaBoot show high ability to distinguish
between healthy and diseased samples related to EPI as
revealed by the high accuracy, sensitivity and specificity
of these algorithms compared to RPCA and entropy algo-
rithms, especially when the NCC-2 is used. The better
performance of RegLRSD compared to RPCA demon-
strates that incorporating the prior knowledge improves
the performance markedly.
Figure 5 displays the top 20 identified markers by

RegLRSD and their scores. RegLRSD suggests that the
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Fig. 4 Classification performance of the six biomarker detection
algorithms using the two classification algorithms, NCC-1 (column 1)
and NCC-2 (column 2), over the dogs with EPI dataset. Classification
performance is measured in terms of a accuracy, b sensitivity and c
specificity

EPI may be characterized by the decrease in Blau-
tia, Bacteroides, Fusobacterium, Ruminococcus genera in
dogs with EPI. Also, the genera, Lactobacillus, Strepto-
coccus, Bifidobacterium present a significant growth in
their abundance levels in dogs with EPI when compared
to healthy dogs. Previous studies have also showed an
increase in Lactobacillus and Streptococcus abundance
levels in dogs with EPI. In particular, two culture-based
investigations reported an increased number of Lacto-
bacillus and Streptococcus in the duodenum [43], jejunum
and colon of dogs with EPI [44].

Dogs with idiopathic inflammatory bowel disease (IBD)
dataset
The stability performance measured in terms of the aver-
age KI values for the six algorithms over different num-
bers of biomarkers is depicted in Fig. 6. The results in
Fig. 6 illustrate that RegLRSD outperforms the rest of
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Fig. 5 Biomarker discovery results when we selected the top 20
markers from the dogs with EPI dataset using the RegLRSD algorithm.
Blue and red bars represent microbes that are enriched in control and
diseased samples, respectively

the algorithms in terms of reproducibility performance.
Moreover, adding the smoothing constraint in RegLRSD
results in an improvement in the stability performance
by almost 2 − 7% over the standard RPCA. Notice-
ably, LEFSe and MetaBoot provide a poor reproducibility
performance. For example, the average KI values range
around 30% − 50% for MetaBoot and around 40% − 65%
for LEFSe.
The histograms of the KI index computed over the

124750 pairwise comparisons when the size of the
selected biomarkers equals 20 is depicted in Fig. 7.
The histogram of RegLRSD illustrates the superior
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Fig. 6 Average of Kuncheva Index (KI) at varying number of selected
markers for the six biomarker detection algorithms over the dogs
with IBD dataset
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Fig. 7 Histogram plots of the KI values generated by the six biomarker
detection algorithms over the dogs with IBD dataset. Each histogram
is created using 124750 values of KI which are generated from all
pairwise comparisons over the K = 500 runs (i.e., K(K−1)

2 = 124750
comparisons)

performance of RegLRSD as it achieves 100% stability
for more than 65% of the times. RPCA and MetaStats
show an adequate consistency. On the other hand, LEFSe,
MetaBoot, and entropy-based approach tend to provide
poor performance as their corresponding histograms are
centered at low KI values and spread over wide range of
KI values.
The ranking stability of the selected microbial signa-

tures over all the K = 500 subsamples is presented in
Fig. 8. The rank of the selected markers by RegLRSD,
RPCA, and MetaBoot is more consistent against the vari-
ation in the dataset. This contrasts the performance of
the LEFSe, MetaStats, and entropy-based algorithms, in
which the importance (i.e., rank) of the selected features
varies drastically due to adding/removing a small number
of samples from the original dataset. In terms of classifi-
cation performance, the RegLRSD algorithm outperforms
the other algorithms especially when the NCC-2 classi-
fier is used as revealed from Fig. 9. Noticeably, RegLRSD
yields a significant improvement over the RPCA algo-
rithm. This reflects the efficiency of incorporating the
prior knowledge information in generating more accurate
results.
RegLRSD suggested several bacterial groups as poten-

tial markers for IBD. The top 20 detected biomarkers by
the RegLRSD algorithm and their scores are displayed in
Fig. 10. At higher phylogenetic levels, the majority of these
bacterial groups belong to Firmicutes, Bacteroidetes, and
Proteobacteria. In particular, the Enterobacteriaceae is
the main driver for increasing the abundance level of
Gammaproteobacteria in dogs with IBD. The quanti-
tative PCR (qPCR) assays suggest that this increase is
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Fig. 8 Rank boxplots in the subsamples against rank in the original
data set for the six algorithms over the dogs with IBD dataset. a
RegLRSD.
b RPCA. c LEFSe. dMetaStats. eMetaBoot. f Entropy

mainly due to Escherichia coli (i.e., E. coli). Several stud-
ies in human patients with IBD [45, 46] reported that E.
Coli exhibits virulent potential such as adhesive capac-
ity, invasive capacity, toxin production, and inflamma-
tory cytokine stimulation. Similarly, the results in [47]
associated several adherent and invasive strains of E. Coli
with granulomatous colitis in boxer dogs. RegLRSD have
suggested several genera belonging to Firmicutes to be as
a potential markers for IBD. In particular, Blautia, Turi-
cibacter, and Faecalibacterium were decreased in IBD.
Most of these bacterial groups belong to Clostridium
clusters IV and XIVa and are recognized as the major
producer of several metabolites including short chain
fatty acids (SCFA). Consequently, decreasing the abun-
dance level of these bacterial groups may impact the host
health. These findings comply with previous studies in
duodenal mucosal/luminal content and feces in dogs with
IBD [48–50].

Mouse model of ulcerative colitis (UC) dataset
The mean KI values across all the pairwise comparisons
and their histograms in the presence of the 20 selected
biomarkers are presented in Figs. 11 and 12, respectively.
Figure 11 demonstrates that RegLRSD outperforms all
the other algorithms and exhibits a high reproducibility
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Fig. 9 Classification performance of the six biomarker detection
algorithms using the two classification algorithms, NCC-1 (column 1)
and NCC-2 (column 2), over the dogs with IBD dataset. Classification
performance is measured in terms of a accuracy, b sensitivity and c
specificity
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performance. In particular, the improvement gain is about
5% over RPCA and entropy-based algorithm, 15% over
MetaStats, 20 − 25% over MetaBoot, and more than 30%
over LEFSe.
The ranking stability of the selected microbial sig-

natures over all the K = 500 subsamples is illus-
trated in Fig. 13. The outcomes in Fig. 13 point a
serious inconsistency problem in the performance of
LEFSe, MetaStats and entropy-based algorithm. The two
matrix decomposition-based algorithms (i.e., RegLRSD
and RPCA) provide a comparable performance in terms
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Fig. 12 Histogram plots of the KI values generated by the six
biomarker detection algorithms over the mouse model of UC dataset.
Each histogram is created using 124750 values of KI which are
generated from all pairwise comparisons over the K = 500 runs (i.e.,
K(K−1)

2 = 124750 comparisons)
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Fig. 13 Rank boxplots in the subsamples against the rank in the
original data set for the six algorithms over the mouse model of UC
dataset.
a RegLRSD. b RPCA. c LEFSe. dMetaStats. eMetaBoot. f Entropy

of retaining the rank of the selected markers over different
subsamples of the data set.
The classification performance of the six algorithms in

the presence of a changing number of biomarkers from
the UC mice model data set is illustrated in Fig. 14. The
results in Fig. 14 point out that all the algorithms, except
the entropy-based algorithm, provide almost the same
classification accuracy (i.e., 80 − 84%).
The top 15 detected biomarkers by the RegLRSD algo-

rithm are depicted in Fig. 15. The majority of these mark-
ers comply with the previous studies. For example, the
authors of [51, 52] reported reduced concentrations of
Lactobacillus and Bifidobacterium in colonic biopsy spec-
imens in patients with active UC. The study [53] has
suggested that the UC could be depicted via a decline
in the abundance levels of Bacteroides. The authors of
[9] reported that the decrease in the abundance levels of
acetate producer clades such as Ruminococcaceae may
reduce the host capability to fix the epithelium and to
regulate inflammation. This may explain the selection
of Oscillibacter, which belongs to Ruminococcaceae, as
possible marker for UC. Subjects with UC showed sig-
nificant reduction in Helicobacter pylori [54], the most
well-known known species of Helicobacter genus.

a

b

c

Fig. 14 Classification performance of the six biomarker detection
algorithms using the two classification algorithms, NCC-1 (column 1)
and NCC-2 (column 2), over the mouse model of UC dataset.
Classification performance is measured in terms of a accuracy, b
sensitivity and c specificity

Conclusions
Recent advancements in metagenomic sequencing asso-
ciated microbes with several health and disease states
of the host. Identifying potential metagenomic mark-
ers is essential for understanding biological systems
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Fig. 15 Biomarker discovery results when we selected the top 15
markers from the mouse model of UC dataset using the RegLRSD
algorithm. Blue and red bars represent microbes that are enriched in
control and diseased samples, respectively
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and designing possible therapies for diseases. There-
fore, developing robust and stable biomarker detection
algorithms is crucial in order to infer correct biolog-
ical statements and translate these results into clini-
cal practice. Herein paper, we developed the RegLRSD
algorithm for biomarker detection. Apart from the con-
ventional statistical and feature selection frameworks to
tackle the problem of finding potential metagenomic
biomarkers, RegLRSD formulates the biomarker detec-
tion as a matrix decomposition problem. In particular,
RegLRSD models the abundance profiles of relevant and
irrelevant microbes as sparse and low-rank matrices,
respectively. This renders identifying potential biomark-
ers as the problem of decomposing the bacterial abun-
dance data matrix into a sparse matrix and a low-rank
matrix.
To enhance the accuracy of estimating the low-rank

matrix and the sparse matrix, RegLRSD constrains the
low rank matrix to be smooth in order to integrate the
prior knowledge that the abundance profiles of irrelevant
bacteria do not exhibit strong variation between differ-
ent phenotypes in the biomarker detection process. Then
we developed an efficient solution for this decomposition
problem by exploting the alternating direction method of
multipliers. In addition to the computationally efficient
solution for RegLRSD, a major advantage of RegLRSD
is the convex formulation of the biomarker detection
problem. This convex formulation enables adding con-
vex constraints that reflect our prior knowledge about
the biological system under study. These additional con-
straints help in designing better algorithms that are more
accurate and provide more consistent biological findings.
The improved performance of RegLRSD over the con-
ventional RPCA algorithm (i.e., without the smoothness
constraint) demonstrates the efficiency of incorporating
prior knowledge in the design of a biomarker detection
algorithm.
In addition to the development of a novel algorithm

for identifying metagenomic markers (i.e., RegLRSD), this
paper addressed an important feature of the metagenomic
biomarker discovery algorithms. This feature is the abil-
ity of biomarker detection algorithms to generate repro-
ducible results. This is crucial to translate the outcome
of these algorithms into practical applications. Surpris-
ingly, the stability/reproducibility performance was not
addressed by the existing metagenomic biomarker iden-
tification algorithms. Our simulation results demonstrate
that the existing methods for metagenomic biomarker
discovery present poor reproducibility performance. In
particular, the spread of the histograms of LEFSe, MetaS-
tats, MetaBoot and entropy-based algorithm over a wide
range of KI values indicates a serious inconsistency prob-
lem that puts the outcomes of these algorithms under
question.

Comprehensive comparisons with the latest biomarker
detection approaches were conducted. In particular,
RegLRSD was contrasted with two statistical-based
approaches (i.e., LEFSe and MetaStats), two machine
learning-based algorithms (MetaBoot and entropy) and a
reduced from of RegLRSD in which the smoothness con-
straint is not considered (i.e., RPCA). The competing algo-
rithms were tested against three realistic metagenomic
datasets. The first and second datasets pertain to healthy
dogs and dogs diagnosed with EPI and IBD, respec-
tively. The third dataset refers to a mouse model of UC.
These approaches were assessed in terms of classification
accuracy and reproducibility performance. The simula-
tion results show that the detected markers by RegLRSD
enable discriminating metagenomic samples belonging to
different phenotypes with a quite high accuracy. More-
over, RegLRSD exhibits superior consistency performance
when compared to other algorithms. This renders the
RegLRSD algorithm as a robust and reliable tool to iden-
tify potential metagenomic markers that may characterize
the difference between samples belonging to different
phenotypes.
The results presented in this paper demonstrate that

the two matrix decomposition-based algorithms (i.e.,
RegLRSD and RPCA) are successful in providing high
reproducibility and classification accuracy performance
compared to the conventional statistical and machine
learning-based algorithms. This validates the idea of mod-
eling the bacterial abundance data matrix as the superpo-
sition of a low-rankmatrix representing the uninformative
microbes and a sparse matrix containing the abundances
of informative microbes. Moreover, the improvement in
the performance of RegLRSD compared to RPCA demon-
strates (i) the validity of our assumption that the abun-
dance profiles of irrelevant bacteria are smooth, and
(ii) incorporating prior knowledge in the design of a
biomarker detection algorithm may lead to more robust
results.
Due to the necessity of developing user-friendly tools

that enable the researchers to analyze metagenomic data,
RegLRSD is implemented as a standalone executable soft-
ware package and is made available at https://sites.google.
com/a/tamu.edu/mustafa/software/reglrsd.
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