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Abstract

Background: Detecting local correlations in expression between neighboring genes along the genome has proved
to be an effective strategy to identify possible causes of transcriptional deregulation in cancer. It has been successfully
used to illustrate the role of mechanisms such as copy number variation (CNV) or epigenetic alterations as factors that
may significantly alter expression in large chromosomal regions (gene silencing or gene activation).

Results: The identification of correlated regions requires segmenting the gene expression correlation matrix into
regions of homogeneously correlated genes and assessing whether the observed local correlation is significantly
higher than the background chromosomal correlation. A unified statistical framework is proposed to achieve these
two tasks, where optimal segmentation is efficiently performed using dynamic programming algorithm, and
detection of highly correlated regions is then achieved using an exact test procedure. We also propose a simple and
efficient procedure to correct the expression signal for mechanisms already known to impact expression correlation.
The performance and robustness of the proposed procedure, called SegCorr, are evaluated on simulated data. The
procedure is illustrated on cancer data, where the signal is corrected for correlations caused by copy number
variation. It permitted the detection of regions with high correlations linked to epigenetic marks like DNA methylation.

Conclusions: SegCorr is a novel method that performs correlation matrix segmentation and applies a test procedure
in order to detect highly correlated regions in gene expression.
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Background
In the last decade, the study of local co-expression of
neighboring genes along the chromosome has become
a question of major importance in cancer biology [6].
The development of “Omics” technologies have permitted
the identification of several mechanisms inducing local
gene regulation, that may be due to a common transcrip-
tion factor [11] or common epigenetic marks [14, 34].
Copy number variation due to polymorphism or to
genomic instability in cancer is also a possible cause
for observing a correlation between neighboring genes
[1], as their expressions are likely to be affected by the
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same copy number variation (CNV). It has further been
observed that local regulations may occur in specific
nuclear domains, as the nuclear region is an environment
which may favor or not transcription [4].
Investigating the impact of a specific source of regu-

lation (TF, CNV, epigenetic modifications such as DNA
methylation and histone modifications) on the expression
has now become a common practice for which statistical
tools are readily available. However, only a few methods
have been proposed to focus on the direct analysis of gene
expression correlation along the chromosomes. The direct
analysis of correlations may have different purposes:

(i) one can aim at detecting all potential chromosomal
domains of co-expression, then investigating to
which extend known causal mechanisms are
responsible for the observed co-expression patterns,
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(ii) one can aim at detecting chromosomal domains of
co-expression where correlations are not caused by
already known sources of regulation, in order to
identify new potential mechanisms impacting
transcription.

Addressing problems (i) and (ii) is crucial to fully
understand transcriptional deregulation and/or to model
gene regulation. We first consider problem (i) and pro-
vide a precise definition of our purpose: one aims at
identifying correlated regions, i.e. blocks of neighbor-
ing genes, the expression of which displays correlations
across patient samples that are significantly higher than
expected. Indeed, it has been observed that background
correlation between adjacent genes along the genome
does exist. This background correlation should not be
confounded with the co-expression that can be locally
observed due to the aforementioned mechanisms. Con-
sequently, we do not consider here methods that only
account for this background correlation in the statisti-
cal modeling (for instance to improve the detection of
differentially expressed genes), such as [24], [40] or [30].
Also note that we focus on methods that detect corre-
lated regions on the basis of expression data solely. This
excludes strategies that look for clusters of adjacent genes
based on correlations between gene expression and a
given phenotype or response, such as Rendersome [24],
DIGMAP [41] or REEF [10].
Several approaches have been proposed to tackle prob-

lem (i). CluGene [13] uses a clusteringmethod accounting
for the chromosomal organization of the genes, while
G-NEST [20] and TCM [28] rely on sliding windows pro-
cedures. The principle of the latter approach is to compute
correlation scores for genes falling within the window,
then to detect local peaks of high correlation scores.While
these procedures have been successfully applied to can-
cer data, all tackle the detection of correlated region using
heuristics. As such, they suffer from classical limitations
associated with these techniques, including local opti-
mum (for clustering algorithms) or detection instability
according to the choice of the window size (for sliding
windows).
It is now well known that the problem of finding regions

in a spatially ordered signal can be cast as a segmenta-
tion problem, for which standard statistical models exist,
along with efficient algorithms to find the globally optimal
solution [3]. According to our definition, the detection of
correlated regions boils down to the block-diagonal seg-
mentation of the correlation matrix between gene expres-
sions. Such an approach has been proposed in image
processing [22], finance [18] and bioinformatics for CNV
analysis [42], but to the best of our knowledge it has never
been considered for the detection of correlated expression
regions.

While problem (i) can be addressed on the basis of
only expression data, problem (ii) requires the additional
measurement of the signal one needs to account for. For
example, consider that one seeks for locally expressed
co-regulation events that are not due to copy number
variations but due to other causes such as epigenetic
mechanisms. The strategy we adopt here consists in first
correcting the expression data for potential cancer CNV
contribution, then in applying the procedure described to
solve problem (i) on the corrected signal. The corrected
signal is obtained by regressing the initial expression sig-
nal on the CNV signal. Although quite simple, the strategy
turns out to be efficient in practice. An alternative strat-
egy would be to jointly model both the expression and the
signals to correct for, and then propose within this frame-
work a correction. Such a strategy would necessitate to
adapt the modeling to the specific combination of signals
one has at hand. In comparison, the regression procedure
proposed here can be applied to any kind and any number
of signals one needs to correct for.
The outline of the present article is the following. In

Section ‘Correlation matrix segmentation’ (Methods) we
propose a parametric statistical framework for the prob-
lem of correlated region identification. Finding regions
of co-regulated genes can then be achieved by maxi-
mum likelihood inference (to find the boundaries of each
region along with their correlation levels). Moreover, we
propose a procedure to correct for known sources of cor-
relation. An exact test procedure to assess the significance
of the correlation with respect to background correlation
is proposed in Section ‘Assessing correlation significance’
(Methods). We introduce a simple procedure to correct
expression data beforehand for some known (and quan-
tified) sources of correlation. Because the background
correlation level is a priori unknown, an estimator of this
quantity is also proposed. The performance of the result-
ing procedure, called SegCorr hereafter, is illustrated in
Section ‘Simulation study’ (Results) on simulated data,
along with a comparison with the TCM algorithm pro-
posed in [28]. Finally, a case study on cancer data is pre-
sented in Section ‘Bladder cancer data’ (Results), in which
we identify some regions with high correlation between
gene expression and the local DNA methylation level.

Methods
Correlation matrix segmentation
Statistical model
We consider the following expression matrix:

Y =

⎡
⎢⎢⎢⎣

Y11 · · · Y1p
Y21 · · · Y2p
...

. . .
...

Yn1 · · · Ynp

⎤
⎥⎥⎥⎦
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where Yij stands for the expression of gene j (j = 1, . . . , p)
observed in patient i (i = 1, . . . , n). The i-th row of this
matrix is denoted Yi and corresponds to the expression
vector of all genes in patient i. In order to detect regions of
correlated expression, we consider the following statistical
model. Profiles {Yi}1≤i≤n are supposed to be i.i.d, nor-
malized (centered and standardized), following a Gaussian
distribution with block-diagonal correlation matrix G:

G =
⎡
⎣

�1
�k

�K

⎤
⎦ with �k =

⎡
⎢⎣

1 · · · ρk
...

. . .
...

ρk · · · 1

⎤
⎥⎦ .

(1)

The model states that genes are spread into K contigu-
ous regions, with respective lengths pk (k = 1, . . . ,K ,∑

1≤k≤K pk = p), the length of a region being the num-
ber of genes it contains. Genes belonging to different
regions are supposed to be independent, whereas genes
belonging to a same region are supposed to share the
same pairwise correlation coefficient ρk . This amounts to
assume that some specific effect (e.g. methylation) affects
the expression of all genes belonging to the region. More
specifically, let Uk denote the vector of the region effect
(accross patients). For all genes j from region k, the model
can be written as Yij = Uik + Eij. The error terms Eij
are all independent and independent from Uik such that
V(Uik)/V(Yij) = ρk , where V(U) stands for the variance
of U.
While different technologies (microarrays, RNA-seq)

may provide different types of signal (continuous, counts),
an appropriate transformation may be applied to make
the Gaussian assumption reasonable. For example, in the
context of segmentation, [7] showed that Gaussian seg-
mentation applied to log(1 + x)-transformed RNA-seq
data performs as well as negative binomial segmentation
applied to the raw data.

Accounting for known sources of regulation
As mentioned in the Introduction, a second task (ii) can
be to detect correlated regions which are not due to an
already known mechanism. To this aim, one may first cor-
rect the expression signal using the following regression
model :

Yij = β0 + β1xij + εij, (2)

where xij stands for the covariate observed in patient i for
gene j. For instance, in the illustration of Section ‘CNV-de-
pendent regions’, xij is the copy number associated to
patient i at location of gene j. The corrected signal is then
Ỹij = Yij − β̂0 − β̂1xij. Note that β̂0 and β̂1 can be obtained
as ordinary least-square estimates. Indeed, it suffices to
assume that (εij) are independent among patients (but not

among genes) to get the standard linear regression esti-
mates (see [2], Chapter 8). Once the correction has been
made, the model described in Section ‘Statistical model’
can be applied to the corrected signal Ỹij.
Note that the correction procedure could be based

on more sophisticated modellings of the relationship
between gene expression and mechanisms such as CNV
or methylation, e.g. the ones proposed in [19, 23, 38]. The
difference between the observation and the prediction
obtained from one such model (i.e. the residuals) could
then be used as the corrected signal.
Lastly, the proposed correction procedure can be

adapted straightforwardly to handle count data such as
provided by RNAseq technologies. Indeed, Model (2) can
be rephrased in the generalized linear model framework
and Pearson residuals can be used as Ỹij (see e.g. [12]
for a general introduction or [15] for the specific case of
negative binomial regression).

Inference of correlated regions
Parameter inference in Model (1) amounts to estimating
the number of regions K, the region boundaries 0 = τ0 <

τ1 < · · · < τK = p, and the correlation parameters
ρ1, . . ., ρK within each of these regions. Here, we con-
sider a maximum penalized likelihood approach. First, we
show that for a given K the optimal region boundaries
and correlation coefficients can be efficiently obtained
using dynamic programming. The number of regions can
then be selected using a penalized likelihood criterion. For
a fixed K, the estimation problem can be formulated as
follows:

arg max
τ1<···<τK−1

max
ρ1,...,ρK

L (3)

where the log-likelihood L is − (
n log |G| + tr

[
YG−1

(Y )�
])

/2. Here, thanks to the block diagonal structure of
the correlation matrix in Model (1), the log-likelihood can
be rewritten as

− 2L =
∑
k

{
n log |�k| + tr

[
Y (k)�−1

k (Y (k))�
]}

(4)

= −2
∑
k

L(τk−1 + 1, τk) = −2
∑
k

Lk

where Y (k) stands for the set of expression from Y cor-
responding to genes included in the k-th region, and
Lk = L(τk−1 + 1, τk) is the log-likelihood correspond-
ing to region k, i.e. corresponding to measurements of
genes from τk−1 + 1 to τk . While log-likelihood (4) is
derived in a Gaussian setting, it can be used for count data,
as the Pearson residuals mentioned in Section ‘Account-
ing for known sources of regulation’ have an approximate
Gaussian distribution.



Delatola et al. BMC Bioinformatics  (2017) 18:333 Page 4 of 15

Thanks to the additivity of the likelihood over the
regions, the optimization problem (3) boils down to

arg max
τ1<···<τK−1

∑
k

max
ρk

Lk . (5)

Inference when K is fixed We first show that for a
given region k with known boundaries, explicit expres-
sions can be obtained for both the ML estimator ρ̂k and
the likelihood Lk at the optimum:

Lemma 1 For a region k with fixed boundaries [ τk−1 +
1, τk], the maximum of Lk with respect to ρk is reached for

ρ̂k =
∑τk

j=τk−1+1
∑τk

�=τk−1+1 Ĝj� − pk
p2k − pk

where Ĝj� := n−1 ∑n
i=1 YijYi�. Furthermore, the maximal

value of Lk is given by:

− 2L̂k =n
[
pk+(pk−1) log (1−ρ̂k)+log (1+(pk−1)ρ̂k)

]
.

The proof is given in Additional file 1. The expression of
Problem (5) is now

arg max
τ1<···<τK−1

∑
k

L̂k

which is additive with respect to the L̂k terms that can be
straightforwardly computed thanks to Lemma 1. Conse-
quently, optimization can be performed via Dynamic Pro-
gramming (DP, [17], [25]). The optimal boundaries, and
correlation estimators can be obtained at computational
costO(Kp2).
Lasso-type approaches have been proposed to tackle

segmentation problems in a faster way (see e.g. [36]). First,
note that such methods rely on a relaxation of the origi-
nal problem, so that the result may be different from the
exact solution of problem (3). Furthermore, in the con-
text of matrix segmentation, such approaches have been
proposed ([5, 21]), which do not allow to capture the
longitudinal structure (i.e. blocks of neighboring genes).

Model selection To choose the number of regions, we
adopt the model selection strategy proposed in [17]. For
each 1 ≤ K ≤ Kmax, we define the maximal log-likelihood
for K regions as

LK = max
τ1<···<τK−1

∑
k

L̂(τk−1 + 1, τk) .

Furthermore, the normalized log-likelihood is defined
as

L̃K = LKmax − LK
LKmax − L1

(K̃max − K̃1) + 1,

where K̃j = 5 × j + 2 × j log (p/j) is the penalty function.
[17] suggests to estimate the number of regions K̂ as the

value of K such that L̃K displays the largest slope change.
Namely, we take

K̂ = argmin
K

{
(̃LK − L̃K+1) − (̃LK+1 − L̃K+2) > S

}
,

(6)

where the value of threshold S is predefined. Through-
out the paper, we used S = 0.7 as suggested in [17].
The robustness of the results with respect to other val-
ues for threshold S is investigated in Section ‘Simulation
study’. This global approach (dynamic programming and
model selection) has been applied with success for CNV
detection (see [25] and [16] for a comparative study).

Assessing correlation significance
It has been observed [9, 28, 32, 34] that background
correlations may exist between adjacent genes along the
genome, i.e. one expects the correlation level in any region
to be positive. As a consequence, one has to check whether
a given region exhibits a correlation level that is signif-
icantly higher than the background correlation level ρ0,
that is observed by default.

Test procedure Once the correlation matrix segmenta-
tion is performed, it is possible to identify regions with
high correlation levels by testing H0 : ρk = ρ0 vs H1 :
ρk > ρ0. This can be done using the following test statistic
for region k:

Tk =
n∑
i

(
Y (k)
i• − Y (k)••

)2

where Y (k)
i• = p−1

k
∑τk

j=τk−1+1 Yij and Y (k)•• = n−1 ∑n
i=1

Y (k)
i• . Assuming Model (1) is true, test statistic Tk has

distribution

Tk ∼ λ(pk , ρk)χ2
n−1 where λ(pk , ρk) = (1 + (pk − 1)ρk)

pk
.

Here χ2
n−1 stands for the chi-square distribution with

n− 1 degrees of freedom. The proof is given in Additional
file 1. We emphasize that this test is exact and does not
rely on any resampling strategy.
Consequently, the p-value associated to region k is

given by

P

(
λ(pk , ρ0)Z > Tobs

k

)
, where Z ∼ χ2

n−1.

Statistical power We now study the ability of the pro-
posed test to detect a region with width p0 where the
correlation ρ is higher than in the background. The
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probability to detect such a region depends on both p0 and
ρ and is given by

Po(n, p0, ρ) = Pr{T > λ(p0, ρ0)qn−1,1−α}
= Pr

{
Z >

λ(p0, ρ0)
λ(p0, ρ)

qn−1,1−α

}

where Z ∼ χ2
n−1 and qn−1,1−α is the 1− α quantile for the

χ2
n−1 distribution. Figure 1 (Top) displays the evolution of

power for different values of p0 and ρ. Here ρ0 and n are
fixed at 0.15 and 100, respectively. The nominal levels of
α are 5, 0.5 and 0.05%. These levels correspond to real-
istic thresholds, once multiple testing corrections such as
Bonferroni or FDR are performed. One can observe that
even for small values of ρ, the power is high whatever
the nominal level as long as the number of genes in the
considered region is equal to or higher than 5. Figure 1
also shows that the procedure will probably fail to find
regions of size 3, if the correlation is not 0.7 or higher (to
obtain a power of 0.8). On the same graph (Bottom), one
observes that a sample of size 50 is sufficient to efficiently
detect regions of size 5, as long as the correlation is higher
than 0.6. Larger samples will be required if one wants to
efficiently detect regions with smaller correlation levels.

Background correlation estimation The test procedure
requires the knowledge of parameter ρ0 that is unknown
in practice. However, it can be estimated using

ρ̂0 = |median
i>1

(corr(Y j−1,Y j))| (7)

where Y j stands for the vector of expression of gene j
for the n patients. Under the assumption that most pairs
of adjacent genes display a ρ0 correlation, i.e. only a few
number of regions with moderate sizes exhibit a high level
of correlation, ρ̂0 is a robust estimator of the background
correlation. The behavior of estimator (7) is investigated
in Section ‘Simulation study’.

Results
Simulation study
In this section, we first study the quality of the pro-
posed estimator of ρ0. Then we study the ability of
SegCorr to detect correlated regions and compare its per-
formance with this of TCM algorithm. The robustness of
the method with respect to the choice of the model selec-
tion threshold S will be investigated in Section ‘Study of
themodel selection threshold S’ on real data, since very lit-
tle difference were observed on the simulated data (results

Fig. 1 Theoretical Power. Top: Power curves as a function of ρ , for a fixed cohort size n = 100 and varying region width p0 = 3, 5, 10, 20. Bottom:
Same graphs for a region of fixed width p0 = 5 but varying cohort sizes n = 10, 50, 200, 1000. In all graphs ρ0 is fixed at 0.15. The nominal level α of
the test is set to 5% (left), 0.5% (center), 0.05% (right)
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not shown). We also study the robustness of our proce-
dure to a scheme where the within-region correlation is
variable.

Simulation design
Scenario 1 (Easy case): the regions are defined as in [16]:

each patient has one chromosome containing p =
500 genes and 4 regions with respective lengths pk =
5, 10, 20, 40. Three values are considered for ρ0 :
.08, .18, .28. These values are inspired by the distri-
bution (displayed in Fig. 2) of ρ0 from Scenario 2.
ρ0 = .28 is higher than observed in [34], making the
detection problem more difficult. ρ1 varies between
.3 and .9.

Scenario 2 (Realistic case – constant correlation on
H1 regions): each patient has 22 chromosomes. The
length of the chromosomes, the number of regions
within each chromosome and their respective sizes
are the same as in the results from [34]. ρ0 is spe-
cific to each chromosome and estimated on the same
dataset. ρ1 varies between .3 and .9.

Scenario 3 (Realistic case – variable correlation on H1
regions): the design is the same as in Scenario 2,
except that ρ0 is fixed to .18. Furthermore, for each

H1 region covariance matrix is drawn from a pk-
variate Wishart distribution Wpk (S, ν) where the
entries of the matrix S are one on the diagonal and
ρ1 = .5 elsewhere and ν is the number of degrees
of freedom. Small values of ν, result in a higher vari-
ance, making the detection more difficult. Because ν

has to be greater or equal to pk , we took ν = pk ×
2β , where β = (0.5, 1, 1.5, . . . , 5). So the variability
decreases as β increases.

For each scenario, samples of n = 50 and 100 patients
were considered and, for each combination (n, ρ0, ρ1) the
simulation was replicated 100 and 20 times, for the first
and the last two scenarios respectively.

Quality of the ρ0 estimator
For this study, we consider Scenario 2. Figure 3 illustrates
the estimation accuracy of ρ0 under different levels of
both H0 and H1 correlations on chromosome 5. Estima-
tor (7) yields over-estimated values of the true background
correlation level. One observes that the overestimation
does not depend on the correlation level in H1 regions,
thanks to the use of the median. Still, as expected, it is
linked to the proportion of pairs of adjacent genes withH1

Fig. 2 Simulation Design. Left: Length of H1 regions in the reference dataset. Right: Distribution of the background correlation ρ̂0 obtained from the
reference data according to the segmentation obtained in [34]
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Fig. 3 ρ0 estimator. Left: estimation of ρ0 for chromosome 5 under different levels of both H0 and H1 correlations (ρ0 = 0.08, 0.18 and 0.28). Dashed
lines indicate the true ρ0. Right: estimation of ρ0 for ρ0 = 0.18 and different levels of H1 correlations according to the fraction of H1 correlations (the
results are showed for five typical chromosomes only). Top: n = 50. Bottom:n = 100

correlations, as showed in Fig. 3. Importantly, while over-
estimation of ρ0 will result in a decrease of power, it will
not increase the false positive rate (FDR or FWER).

Performance evaluation
To assess the performance of SegCorr, the true positive
rate (TPR = sensitivity), false positive rate (FPR = 1−
specificity) and area under the ROC curve (AUC) were
considered. These criteria were first computed at the gene
level. However, as the goal is to identify correlated regions,
a definition of TPR and FPR at the region level was
adopted. We considered the intersection between the true
and the estimated segmentations and computed the num-
ber of true/false positive/negative regions. This amounts
at classifying each gene into one of four status (true/false
× positive/negative) and then to merge neighboring genes
sharing a same status into regions. The status of a region
is given by the status of its genes. Consequently, criteria
computed at the region level are more stringent as they
measure the precision of region boundary estimation.
Figure 4 (top) shows the AUC for Scenario 1 under

various configurations, with ρ1 fixed at 0.5. When ρ0
is between 0.08 and 0.18, most regions are correctly
detected. For ρ0 = 0.28 (a value higher than what is

observed on the reference dataset, see Fig. 2), the task
becomes difficult and the performance deteriorates.
For Scenario 2, the behavior of SegCorr was explored

under different ρ1. Obviously the task becomes easier
when ρ1 gets larger. Figure 4 shows that SegCorr performs
well when 0.5 ≤ ρ1 ≤ 0.9. When ρ1 ≤ 0.5, (remind
that the background correlation can be as high as 0.2,
see Fig. 2) although the performances remain good at the
gene level, the boundaries of the regions are detected less
accurately.

Comparisonwith the TCM algorithm
SegCorr was compared with the TCM algorithm intro-
duced by [28] for the detection of regional correlations.
The choice of the TCM as a competing method was based
on the availability of the code. Indeed, the code of Clu-
Gene [13] is not currently available and this of G-NEST
[20] relies on obsolete linux packages. Figure 5 displays the
AUC achieved by SegCorr and TCM under Scenario 2 for
ρ1 = 0.5. When ρ0 is large (ρ0 = 0.28), one observes that
the mean performance of both methods are comparable
with higher variability for SegCorr at the gene level and at
the region level for TCM. Since the aim is to detect regions
rather than genes, the SegCorr procedure seems more
appropriate. For small or medium values of background
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Fig. 4 AUC for Simulation Design 1 and 2. AUC at the gene level (red) and region level (blue). The higher the AUC the better. Top: Simulation design
1 with fixed ρ1 = .5 (x-axis: ρ0). Bottom: Simulation design 2 (x-axis: ρ1)

correlations (ρ0 = 0.08, 0.18) SegCorr achieves better
AUC than TCM at both the gene and the region levels. As
a conclusion, SegCorr appears to be a more consistent and
efficient procedure to detect correlated regions. Similar
performance between SegCorr and TCM can be observed
for other values of ρ1, results not included here.
Figure 6 illustrates the performance of SegCorr and

TCM under Scenario 3. As in the previous case, SegCorr
outperforms TCM both on the gene and region level.
We observe that the performance of both algorithms

remains unchanged between the different values of β .
Further investigations (results not shown) show that clas-
sification errors predominantly occur in small regions
with or without variability. The simulation shows that only
the mean correlation within the blocks matters and that
the proposed method is robust to intra-region variability
of correlations.
On an Intel i7-4790 CPU processor at 3.60GHz, the

CPU times is 74s for SegCorr and 61s for TCM for the
bladder cancer dataset. However, in practice TCM must
be executed many times in order to manually tune its
input parameters (such as the window size and the thresh-
old). On the contrary, SegCorr has to be run only once.

Bladder cancer data
In this section, we apply SegCorr on a bladder cancer
dataset described in Section ‘Data presentation’ below. It
is now well known that copy number variation (CNV)
impacts gene expression [29]. Here our goal is to detect
regions where the correlation is not due to CNV occur-
ing in cancer. Therefore we correct the expression signal
for CNV variation according to the strategy described in
Sections ‘Accounting for known sources of regulation’ and
‘Procedure for CNV correction’. The effect of this correc-
tion is investigated in Section ‘CNV-dependent regions’.
Lastly, Section ‘CNV-independent regions’ illustrates the
biological results obtained after correction for CNV.

Data presentation
The dataset consists of n = 403 bladder tumors. Gene
expression have been measured using RNA-seq. The
number of genes per chromosome ranges from 293 to
1695 (with average 702). Additionally CNV data have
been obtained with Affymetrix Genome wide SNP 6.0
arrays and methylation data with Illumina Human methy-
lation 450k arrays. All RNA-seq, SNP and methylation
data were dowloaded from the TCGA open-access HTTP
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Fig. 5 AUC for SegCorr and TCM (Scenario 2). AUC of the SegCorr (n = 50-red, n = 100-blue) and TCM (n = 50-grey, n = 100-green) algorithms for
Scenario 2 as a function of ρ0. Left: gene level. Right: region level

directory (https://portal.gdc.cancer.gov/projects/TCGA-
BLCA) and are level 3 data.

Study of themodel selection threshold S
For the model selection criterion, the threshold S (defined
in Section ‘Inference of correlated regions’, Eq. (6)) must
be tuned in such a way to avoid under/over-segmentation.
The smaller the value of S the higher the number of seg-
ments. As stated in Section ‘Model selection’, S was fixed
to 0.7 as advocated in [17]. Figure 7 shows the evolution
of the number and location of H1 regions detected by
SegCorr according to S on a typical chromosome (chro-
mosome 3). One can see that most of these H1 regions are
stable for values of S between 0.6 and 0.9. Still, the value of
Smay need to be adapted when applied to other data-type
or to another dataset. The choice of S can be parametrized
in the SegCorr R package, with default value 0.7.

Procedure for CNV correction
To correct the expression signal fromCNV, one first needs
to detect the CNV regions from the SNP array signal. To
this aim, we consider the segmentation method proposed
by [26] implemented in the R package cghseg. Denote
SNPit the SNP signal of patient i at position t, the model
writes

SNPit = μik + Eit if t ∈ Iik = [
tik−1 + 1, tik

]
. (8)

where the Eit are i.i.d centered Gaussian with variance
σ 2. The method estimates the number of regions, the
boundaries of the regions, denoted t̂ik and the signal mean
within each region k in patient i, denoted μ̂ik . This pro-
cedure may be adapted to count data such as provided
by DNAseq data, for which dedicated segmentation tools
exist (see e.g. [8]).
We then use the regression model (2) to make the

correction where xij is the mean μ̂ik obtained previ-
ously if the SNP position t corresponds to gene j of
the expression signal in patient i. The TCGA expression
data arise from RNAseq but are provided as read counts
or normalized read counts (RSEM). Then the dataset
was normalized using the log (x + 1) method as provided
in https://genome-cancer.ucsc.edu/. Finally, we directly
applied Model (2) to the normalized RNAseq data.
Still, as often in RNAseq, an important proportion of

zero is observed. Genes with null expression in all sam-
ples were removed. For the remaining zeros, we either
left them when fitting the regression model, or removed
them and then set the corresponding residual Ỹij to 0 (note
that, in the last option, these observations do not con-
tribute to the estimation of the between-gene correlation,

https://portal.gdc.cancer.gov/projects/TCGA-BLCA
https://portal.gdc.cancer.gov/projects/TCGA-BLCA
https://genome-cancer.ucsc.edu/
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Fig. 6 AUC for SegCorr and TCM (Scenario 3). AUC of the SegCorr (n = 50-red, n = 100-blue) and TCM (n = 50-grey, n = 100-green) algorithms for
Scenario 3 as a function of β . Left: gene level. Right: region level

as the mean of the residuals is 0 by construction). Both
options were found to provide similar results, so only the
ones obtained with the first option are displayed in the
following.
Since the SNP and expression signals are not aligned,

there might be either one, many or no SNP probes that
belong to the corresponding gene region. We then pro-
pose to define xij as follows : if one or many probes are
related to gene j, mean μ̂ik or the average of the different
means is considered respectively; if there is no probe, a
linear interpolation is performed.

CNV-dependent regions
We first investigate the effect of CNV correction
(described in Section ‘Procedure for CNV correction’)
by comparing the results obtained on the raw and cor-
rected signals. Figure 8 displays the number of significant
H1 regions as a function of the test level α for both the
raw and corrected signals. For small values of α (which
are typically used for testing significance), the number
of detected regions are quite similar. However, only one
third of the detected genes are common, meaning that the
regions detected with the two signals are quite different.

Furthermore, as the correction removes all effects due to
CNV, the estimated background correlation is lower in
the corrected signal than in the raw signal (mean decrease
across all chromosomes of .07). This makes the test we
propose more powerful and explains why, while CNV-due
regions are removed, the number of detected regions for a
given α remains about the same.
To illustrate this phenomenon more precisely, we con-

sidered a set of four regions in chromosomes 3, 8, 10 and
12 known to be associated with CNV in bladder cancer
[31, 35, 39]. These regions, given in Table 1, are detected
by SegCorr when applied to the raw expression data.
When considering the corrected signal, these regions are
not detected any more. For the region in chromosome
10, the background correlation was ρ̂0 = 0.221 and the
correlation within this region was ρ̂k = 0.405, resulting
in a highly significant p-value: 8.25e-06. After correction
we get ρ̂0 = 0.152 and ρ̂k = 0.134, which results in a
non-significant p-value: 0.623.
More generally, over the 119 regions solely detected

on the raw signal with p-value smaller than 5% (before
multiple testing correction), one third (44) get non signif-
icant when considering the corrected signal. This explains
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Fig. 7 Choice of S. Left: statistically significant regions in red obtained for different values of S. The vertical lines correspond to the ones obtained with
the default value of S we considered (S = 0.7). Right: number of statistically significant regions for different values of S. The dotted vertical red line
corresponds to S = 0.7

a substantial part of the difference between the regions
detected on raw and corrected signals. This also shows
that the proposed CNV correction strategy performs rea-
sonably well.

CNV-independent regions
General description When applied to the CNV-
corrected expression signal, SegCorr detected 588
significant regions (adjusted p-value ≤ 0.05) which
are distributed throughout the genome (an average of
25 regions per chromosome). Among these regions,
135 regions contained well known gene family clusters
such as the HOXA, HOXB, HOXD clusters, several KRT
clusters, the epidermal differentiation complex, and HLA
gene families clusters whose expression is known to be
co-regulated [33]. We next undertook a Gene Ontology
terms analysis with genes contained in the significant
regions and identified an enrichment of genes belonging
to the keratinization pathway (p-value 4.09E-19 and FDR
q-value 9.01E-16). The expression of this pathway is
strongly associated with a subgroup of bladder cancer
called basal-like bladder cancer [27].

Epigenetic regions Apart for CNV, DNA methyla-
tion is one of the possible explanations for expression
correlation. We first investigated whether the correlation
between gene expression and DNA methylation is higher
in significant regions when CNV correction is applied.
The mean correlation varies marginally when considering
the significant regions altogether. This suggests either that
methylation is not a systematic cause of expression cor-
relation or that the available signal is too noisy to detect
methylation effect.
Still SegCorr allowed us to detect regions where DNA

methylation is associated with expression correlation.
More specifically, we now present one such region where
the observed correlation is not due to CNV and can
be associated with an epigenetic mark. This region
located on chromosome 17 contains seven genes (HOXB2,
HOXB3, HOXB4, HOXB5, HOXB6, HOXB7, HOXB8: ρ̂k =
0.717, p-value = 7.94e-62). Three genes from this regions
have already been studied by [37] and has been referred to
as 17-7.
Figure 9 (top) shows a clear pattern detected in both

the expression data and the DNAmethylation data. When
classifying the patients into three groups, the right-most
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Fig. 8 Bladder Regions. Left: Number of statistically significant regions as a function of α (solid line: corrected signal, dotted line: raw signal). Right:
proportion of significant genes common in the two signal as a function of α

group displays an over-expression of the genes and a low
methylation signal. The methylation of the DNA is one of
several epigenetic mechanisms used by the cell to silence
the expression of a gene. The tumors that expressed the
HOXB gene family present an hypomethylation of the
DNA and the tumors which did not express these genes
have an hyper methylation of the DNA. This suggests
that this region is silenced by an epigenetic mechanism
associated with DNA methylation.

Discussion
The identification of co-regulated chromosomal regions
is important to fully understand the gene transcription

Table 1 Four examples of CNV-dependent regions

Chrom. Genes

3 TSEN2, MKRN2, RAF1

8 ZNF703, ERLIN2, PROSC, GPR124, BRF2, RAB11, FIP1,
ADRB3, EIF4EBP1, ASH2L, STAR, LSM1, BAG4, DDHD2,
PPAPDC1B, WHSC1L1, LETM2, FGFR1, TACC1, PLEKHA2,
HTRA4, TM2D2, ADAM9

10 ASB13, GDI2, ANKRD16, FBXO18

12 MDM1, RAP1B, NUP107, SLC35E3, MDM2, CPM, CPSF6,
LYZ, YEATS4, FRS2, CCT2, BEST3, RAB3IP, CNOT2

network and to identify new mechanisms of gene regu-
lation and their deregulations in pathological states such
as cancer. In this paper, we developed a method to
identify these regions and we applied it to cancer data.
The method relies on a formal definition of what corre-
lated regions are. It takes advantage of an efficient infer-
ence algorithm and a statistical testing procedure, which
are both exact. We also proposed a correction strategy
that allows one to investigate the possible causes of the
observed correlations.
Using this method, we could identify copy number

dependent and copy number independent correlated
regions of expression. Copy number dependent regions
correspond to genomic alterations; copy number inde-
pendent regions could be due to different mechanisms,
including epigenetic mechanism. We showed, for one
region, which is part of the HOXB complex, that there is
negative correlation between expression and DNAmethy-
lation. The detected regions should be further investi-
gated to better understand the underlying mechanism.
While the expression data used here were acquired using
the RNA-seq technology, any other technology, including
microarray technologies can be used as well.
In our analysis, we have assumed stretches of corre-

lated contiguous neighboring genes. This is obviously a
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Fig. 9 Heatmaps for Region with Epigenetic Mark. Expression (top) and methylation (bottom) data from Region 17-7. The tumors have been ordered
according to the average expression of the genes from region 17-7. The same ordering of the tumors (x-axis) was kept in the bottom plot

simplification. Within a correlated region, a gene (or a few
genes) could exhibit a weak or even a negative correla-
tion with the other genes. This could occur for different
reasons: the gene can be not expressed; alternatively, the
gene could be non affected by the regulation process that
impacts the other ones; finally, the gene could be impacted
in a opposite way compared with the other ones. Note
that genes that exhibit no expression or no variation in
the dataset can be detected and could be discarded before
applying the analysis. While this preprocessing was not
required in the present study, running the analysis without
removing non-expressed genes would lower the perfor-
mance of any method aimed at finding correlated (and
reasonably homogeneous) regions. Alternatively, account-
ing for a variable number of uncorrelated genes in cor-
related regions is an obvious follow-up of the present
work.
The proposed correction strategy could easily be gen-

eralized to more than one signal to correct for, as it does
not rely on a joint modeling of all types of data at hand.
Furthermore the segmentation used in the correction step

enables one to deal with signals with different probe
densities. Finally, this correction approach allowed us to
keep all tumors in the study, as opposed to [34] were
tumors with CNV in a given region were excluded when
analysing this region.
Also, prior information on genes or regions could

be accounted for in the segmentation step. Indeed, the
likelihood L̂(τ , τ ′) associated with a given region can
be reweighted or penalized, the dynamic programming
algorithm then applies with the same computational
complexity.

Conclusions
SegCorr is a novel statistical procedure build for the iden-
tification of adjacent co-expressed genes. Some of these
regions could be attributed to copy number variation
events. To this end, we propose a model to correct gene
expression for CNV. This method can be extended for
the correction of other data types. R package SegCorr is
available on the CRAN.
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