
SOFTWARE Open Access

NucDiff: in-depth characterization and
annotation of differences between two sets
of DNA sequences
Ksenia Khelik1, Karin Lagesen1,2, Geir Kjetil Sandve1, Torbjørn Rognes1,3 and Alexander Johan Nederbragt1,4*

Abstract

Background: Comparing sets of sequences is a situation frequently encountered in bioinformatics, examples being
comparing an assembly to a reference genome, or two genomes to each other. The purpose of the comparison
is usually to find where the two sets differ, e.g. to find where a subsequence is repeated or deleted, or where
insertions have been introduced. Such comparisons can be done using whole-genome alignments. Several tools for
making such alignments exist, but none of them 1) provides detailed information about the types and locations of
all differences between the two sets of sequences, 2) enables visualisation of alignment results at different levels of
detail, and 3) carefully takes genomic repeats into consideration.

Results: We here present NucDiff, a tool aimed at locating and categorizing differences between two sets of
closely related DNA sequences. NucDiff is able to deal with very fragmented genomes, repeated sequences, and
various local differences and structural rearrangements. NucDiff determines differences by a rigorous analysis of
alignment results obtained by the NUCmer, delta-filter and show-snps programs in the MUMmer sequence
alignment package. All differences found are categorized according to a carefully defined classification scheme
covering all possible differences between two sequences. Information about the differences is made available as
GFF3 files, thus enabling visualisation using genome browsers as well as usage of the results as a component in an
analysis pipeline. NucDiff was tested with varying parameters for the alignment step and compared with existing
alternatives, called QUAST and dnadiff.

Conclusions: We have developed a whole genome alignment difference classification scheme together with the
program NucDiff for finding such differences. The proposed classification scheme is comprehensive and can be
used by other tools. NucDiff performs comparably to QUAST and dnadiff but gives much more detailed results that
can easily be visualized. NucDiff is freely available on https://github.com/uio-cels/NucDiff under the MPL license.

Keywords: Whole-genome alignment, Comparative analysis, Whole-genome assembly, Annotation of differences

Background
Advances in whole genome sequencing strategies and
assembly approaches have brought on a need for
methods for comparing sets of sequences to each other.
Common questions asked are how assemblies of the
same read set obtained with different assembly programs
differ from each other, or how genomes from different

strains of the same bacterial species differ from each
other. Whole genome alignment (WGA) methods are
often used for performing such analyses and have long
been studied in bioinformatics. WGA “is, in general, the
prediction of homologous pairs of positions between
two or more sequences” [1]. WGA is mainly used for
identifying conserved sequences between genomes, e.g.
genes, regulatory regions, non-coding RNA sequences,
and other functional elements [2, 3], thus aiding, for
instance, genome (functional) annotation, detecting large
scale evolutionary changes between genomes, and
phylogenetic inference [1, 2]. This field has been under
continuous development since the 1970s, and many

* Correspondence: lex.nederbragt@ibv.uio.no
1Biomedical Informatics Research Group, Department of Informatics,
University of Oslo, PO Box 1080, 0316 Oslo, Norway
4Centre for Ecological and Evolutionary Synthesis, Department of Biosciences,
University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Khelik et al. BMC Bioinformatics (2017) 18:338
DOI 10.1186/s12859-017-1748-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1748-z&domain=pdf
https://github.com/uio-cels/NucDiff
mailto:lex.nederbragt@ibv.uio.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

methods and tools for WGA have been created. Reviews
of existing methods and tools can be found in [1, 4, 5].
For the purpose of detecting differences between

sequence sets, tools that can be used to perform WGA
analysis should come with certain features. First, they
should be able to deal with very fragmented genomes,
structural rearrangements, genome sequence duplica-
tions, and various differences that are often related to
repeated regions. Second, the comparative analysis re-
sults should provide information about the types of
differences and their locations. This information should
be stored in ways suitable for further analysis. Such com-
parison information may, for example, be used for scaf-
folding purposes, for reference-assisted genome assembly,
assembly error detection, and comparison of different
assemblies. Third, they should enable visualisations of
alignment results at different levels of detail. Global scale
visualisation can be used for examining duplications,
structural rearrangements, and uncovered regions, while
local scale visualisation can provide information about
small differences, such as substitutions, insertions and
deletions (collectively called ‘indels’).
Three different tools are available today that partially

satisfy these criteria: MAUVE [6], QUAST [7] and dna-
diff [8]. MAUVE performs multiple genome alignment,
identifies conserved genomic regions, rearrangements
and inversions in these regions, and the exact sequence
breakpoints of such rearrangements across multiple ge-
nomes as well as nucleotide substitutions and small
indels [6]. It also enables analysis of results through
interactive visualisation and stores information in separ-
ate files. However, only information about small differ-
ences (substitutions, indels) is easily accessible without
running accessory programs.
QUAST is a tool for quality assessment of genome

assemblies, which outputs different metrics on assembly
quality in the presence of a reference genome. It gives
information about the locations of structural and long
local differences, specifying the types of structural differ-
ences only. QUAST enables visualisation in an accom-
panying genome browser called Icarus. However, QUAST
lacks visualisation of small local differences, only provid-
ing summary statistics for them.
Dnadiff is a wrapper for the NUCmer alignment pro-

gram from MUMmer [9] that quantifies the differences
and provides alignment statistics and other high-level
metrics [8]. Similar to QUAST, dnadiff can be used for
quality assessment of assemblies and comparison of
genomes, but it does not provide any visualization of the
detected differences.
Here we present the tool NucDiff, which uses the

NUCmer, delta-filter and show-snps programs from
MUMmer for sequence comparison. NUCmer aligns se-
quences and outputs information about aligned sequence

regions. Rigorous analysis of the relative positions of these
regions enables detection of various types of differences,
including rearrangements and inversions, and in some
cases also to ascertain their connection with repeated re-
gions. NucDiff identifies the differences between two sets
of closely related sequences and classifies the differences
into several subtypes. The precise locations of all differ-
ences using coordinates systems with respect to both in-
put sequences are output as GFF3 (Generic Feature
Format version 3, [10]) files. These precise locations en-
ables both visualisation and further analysis. The informa-
tion provided by NucDiff can thus significantly help clarify
how two sets of sequences differ.

Implementation
NucDiff determines the various types of differences be-
tween two sets of sequences, usually referred to as a
reference genome and a query, by parsing alignment re-
sults produced by the NUCmer, delta-filter and show-
snps programs from the MUMmer sequence alignment
package [9]. NUCmer performs DNA sequence align-
ment, while delta-filter filters the alignment results ac-
cording to specified criteria. With the settings used by
NucDiff by default, delta-filter also selects the longest
consistent alignments for the query sequences. NUCmer
alignment results contain information about fragments
of sequences that match, which we here refer to as query
and reference fragments. NUCmer output contains the
exact coordinates of all fragments in relation to their
source sequences, directions of query fragments relative
to corresponding reference fragments, and percent
similarity of the alignment. The show-snps results
contain information about all inserted, deleted and
substituted bases in the query fragments compared to
the corresponding reference fragments.
If we represent the output fragments as blocks on the

query and reference sequences, then a possible NUCmer
alignment result may look as illustrated in Fig. 1.
During the alignment process, NUCmer searches for

maximal exact matches of a given minimum length, then

Fig. 1 NUCmer alignment. A,...,F represent query fragments, while
A*,.., F* represent reference fragments. A*-A, …, F*-F are matches
according to NUCmer

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 2 of 14

clusters these matches to form larger inexact alignment
regions, and finally extends alignments outwards from
each of the matches to join the clusters into a single high
scoring pairwise alignment [11]. If the query sequences con-
tain long (by default, more than 200 bp) insertions, deletions,
substitutions, or any structural rearrangements, the align-
ment will be broken and subsequently consist of separate
fragments with the ends coinciding with the locations of
these differences. NucDiff classifies the alignment fragments
by analysing the placement of all pairs of neighbouring query
fragments (A-B, B-C, etc. in Fig. 1), their placement on the
reference sequences (A*-B*, B*-C*, etc. in Fig. 1), and their
orientations (5′ to 3′, or 3′ to 5′). The obtained differences
together with the differences from show-snps form the set of
all differences between query and reference sequences.
The NucDiff workflow is shown in Fig. 2. An over-

view of all types of differences that NucDiff is able to
detect is presented in the Types of differences section.
A description of the steps involved in their detection
is given in the Stepwise detection of differences section.

Types of differences
We classify all types of differences into 3 main groups:
global, local and structural (Fig. 3). These differences are
here denoted as changes in the query when compared to
the reference.

Global differences
Global differences affect the whole query sequence. This
group consists of only one type, called unaligned sequence.

� unaligned sequence - a query sequence that has no
matches of length equal to or longer than a given
number of bases (65 by default) with the reference
genome.

Local differences
Local differences involve various types of insertions,
deletions and substitutions. NucDiff distinguishes between
six types of insertions (the insertion subgroup in Fig. 3):

Fig. 2 NucDiff workflow. The top blue boxes correspond to the NucDiff steps described in the Stepwise detection of differences section.
The white boxes under each step represent the main actions performed during this step. The lower pink boxes give information about types
of differences that are detected at each step

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 3 of 14

� simple insertion - an insertion of bases in the query
sequence that were not present anywhere on the
reference genome.

� duplication - an insertion in the query sequence of an
extra copy of some reference sequence not adjacent to
this region, creating an interspersed repeat, or
increasing the copy number of an interspersed repeat

� tandem duplication - an insertion of an extra copy
of some reference sequence region adjacent to this
region in the query sequence

� inserted gap - an insertion of unknown bases (N’s)
in the query sequence in a region which is
continuous (without a gap) in the reference, or
which results in an elongation of a region of
unknown bases in the reference.

� unaligned beginning - unaligned bases in the
beginning of a query sequence

� unaligned end - unaligned bases at the end of
query sequence

There are several types of deletions (the deletion
subgroup in Fig. 3):

� simple deletion - a deletion of some bases, present
in the reference sequence, from a query sequence

� collapsed repeat - a deletion of one copy of an
interspersed repeat from the reference sequence in a
query sequence

� collapsed tandem repeat - a deletion of one or more
tandem repeat units from the reference sequence in
a query sequence

And, last, there are two types of substitutions (the
substitution subgroup in Fig. 3):

� substitution - a substitution of some reference
sequence region with another sequence of the exact
same length not present anywhere in the reference
genome (note that this sequence is not categorised
as unaligned sequence because it is within a
fragment that overlaps between query and
reference). SNPs can be considered as a subcategory
of substitutions.

� gap - a substitution where a reference subsequence
is replaced by an unknown sequence (N’s) of the

Fig. 3 Classification of the types of differences. Group names are given in coloured boxes with capitalised names and the specific types are given
in white boxes and with lowercase names

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 4 of 14

same length. If the query has an enlarged gap, it will
be classified as a combination of a gap and an
inserted gap, while a shortened gap is classified as a
gap and a simple deletion.

Structural differences
NucDiff detects several structural differences. These can
be grouped into intra- and inter-chromosomal differences,
and some of these contain groups of types:

� translocation - a group of different types of
inter-chromosomal structural rearrangements which
occur when two regions located on different reference
sequences are placed nearby in the same query
sequence. The detailed description of all translocation
types is given in the Structural difference detection
between aligned fragments section.

� relocation - a group of different types of intra-
chromosomal structural rearrangements which
occur when two regions located in different parts of
the same reference sequence are placed nearby in
the same query sequence. The detailed description
of all relocation types is given in the Structural
difference detection between aligned fragments section.

� reshuffling - an intra-chromosomal structural
rearrangement which occurs when several
neighbouring reference sequence regions are placed
in a different order in a query sequence.

� inversion - an intra-chromosomal structural
rearrangement which occurs when a query sequence
region is the reverse complement of a reference
sequence region.

The translocation type belongs to the inter-chromosomal
subgroup, while relocation, reshuffling and inversion types
belong to the intra-chromosomal subgroup (see Fig. 3).
Examples of structural differences are given in Fig. 4.

Stepwise detection of differences
The steps in this section refer to Fig. 2.

Global difference detection
NucDiff starts the detection of differences by finding
unaligned sequence differences. NUCmer does not output
any information about sequences without mapped subse-
quences longer or equal to a predefined length. Therefore,
to find unaligned sequences, NucDiff looks for query
sequences with names not mentioned in the NUCmer

Fig. 4 Examples of structural differences. a Simple translocation. b Translocation with insertion/with inserted gap/with insertion and inserted gap.
c Translocation with overlap. d Simple relocation. e Translocation with insertion/with inserted gap/with insertion and inserted gap. f Relocation
with overlap. g Reshuffling. h Inversion

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 5 of 14

output. By default, all query sequences shorter than 65 bp will
be treated as unaligned sequences. This threshold may be
changed using the NUCmer minimum cluster length option.

Local difference detection inside aligned fragments
Four types of simple differences may be detected inside the
query fragments: simple insertion, simple deletion, simple
substitution and gap. The lengths of the differences of these
types are limited by how far NUCmer will attempt to extend
poorly scoring regions before giving up and are up to 200
bases by default (this threshold may be changed using the
NUCmer minimum length of a maximal exact match param-
eter). Information about the positions of all local differences,
except gaps, is found in the show-snps output file. NucDiff
parses this file to find simple insertions, simple deletions, and
substitutions. To find gaps, NucDiff searches for N’s in the
query fragment sequences and outputs their locations.

Local difference detection between aligned fragments
NucDiff starts with examining the reason for alignment
fragmentation by looking at fragmentation caused by
local differences. First, it filters nested fragments in the
query and reference sequences. A query nested fragment
occurs when two (nearly) identical reference sequence
regions have been merged together into one fragment in
the query sequence. A reference nested fragment occurs
when one reference sequence region is duplicated in the
query sequence. Nested fragments provide important
information about duplications and collapsed repeats.
However, they can cause rather complicated interactions
between aligned fragments, which can be difficult to
resolve programmatically. Thus, the nested fragments
are discarded, and all duplications and collapsed repeats
are detected as simple insertions and deletions at later
stages of the analysis. Then, NucDiff identifies bases in
both ends of the query sequences that were not mapped
to the reference sequences. Such bases will be output as
unaligned beginning and unaligned end differences.
NucDiff next searches for pairs of neighbouring frag-

ments that were not joined together by NUCmer during
the alignment process due to the presence of simple
differences, rather than structural differences. Such pairs
of fragments should satisfy the following criteria:

� The pair of query fragments as well as the
corresponding pair of reference fragments may
overlap, be adjacent to each other, or be separated
by an inserted region not mapped anywhere on the
reference genome.

� The two query fragments should have the same
direction. Their two corresponding reference
fragments should also have the same direction,
but it may be opposite to the direction of the
query fragments.

� If the query fragments have the same direction as
their corresponding reference fragments, then the
reference fragments should be placed in the same
order as the query fragments ([Additional file 1:
Figure S1a]).

� If the query fragments have the reverse direction
of their corresponding reference fragments, then
the reference fragments should be in reverse
order ([Additional file 1: Figure S1a]).

� The distance between corresponding reference
fragments should not be more than a user-defined
distance, by default 10,000 bases.

If all these criteria are fulfilled, NucDiff deter-
mines the differences based on the placement of
the query and reference fragments relative to each
other. Examples of all possible placement cases and the
corresponding differences are shown in [Additional file 1:
Table S1].
After detecting differences between the current pair of

neighbouring fragments, NucDiff merges the pair of ref-
erence fragments as well as the pair of query fragments
together, creating new continuous reference and query
fragments, and then searches for the next pair.

Structural difference detection between aligned fragments
Fragments not merged during the previous step were
kept separate by NUCmer due to structural rear-
rangements between the query and reference se-
quences. First, NucDiff searches for translocations,
which is one type of inter-chromosomal differences,
by searching for a pair of neighbouring query frag-
ments that correspond to fragments located on differ-
ent reference sequences. We distinguish between 5
types of translocations depending on the placement of
the query fragments relative to each other (see also
examples in Fig. 4a-c):

� simple translocation - a translocation where two
query fragments are placed adjacent to each other.

� translocation with insertion - a translocation where
two query fragments have a stretch of bases (not
N’s) inserted between them, not mapped anywhere
on the reference genome. The inserted region is
treated as a simple insertion difference.

� translocation with inserted gap - a translocation
where two query fragments have a stretch of
unknown bases (N’s) inserted between them.
The inserted region is treated as an inserted
gap difference.

� translocation with insertion and inserted gap - a
translocation where two query fragments have a
stretch of bases (A, C, G, T or N’s) inserted between
them, not mapped anywhere on the reference

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 6 of 14

genome. The inserted region is treated as both a
simple insertion and an inserted gap.

� translocation with overlap - a translocation with a
partial overlap between the two query fragments.

In the next step, NucDiff searches for relocations,
which is one type of intra-chromosomal differences, by
looking for pairs of neighbouring query fragments that
were mapped to fragments located on the same refer-
ence sequence (e.g. the same chromosome) but sepa-
rated from each other by at least 10,000 bases, by
default. In addition, these fragments should not belong
to the group of query fragments placed nearby each
other (with the distance between each pair less than
10,000 bases) on the reference sequence in the wrong
order, as that would be considered as a reshuffling (see
further down). If these two conditions are fulfilled, then
there is a relocation. There are 5 types of relocations
(see also examples in Fig. 4d-f):

� simple relocation - a relocation where two query
fragments are placed adjacent to each other.

� relocation with insertion - a relocation where two
query fragments have a stretch of bases (not N’s)
inserted between them, not mapped anywhere on
the reference genome. The inserted region is treated
as a simple insertion difference.

� relocation with inserted gap - a relocation where
two query fragments have a stretch of unknown
bases (N’s) inserted between them. The inserted
region is treated as an inserted gap difference.

� relocation with insertion and inserted gap - a
relocation where two query fragments have a stretch
of bases (both ATGC’s and N’s) inserted between
them, not mapped anywhere on the reference
genome. The inserted region is treated as both a
simple insertion and an inserted gap.

� relocation with overlap - a relocation with a partial
overlap between the two query fragments.

For circular genomes, there is one special case that
causes alignment fragmentation: when the start of the
query sequence does not coincide with the start of the
reference sequence ([Additional file 1: Figure S2]). It
satisfies all the criteria for relocations but is not treated
as a difference, although it is included in the output.
In the case of translocations and relocations, the query

and the corresponding reference fragments may be
placed in any direction and order relative to each other.
The translocated fragment may contain none, two or
more relocated fragments inside. Before the detection of
the types of relocations and translocations, NucDiff
searches for the pairs of relocated or translocated query
fragments that have an overlap between corresponding

reference fragments. If such a pair is found, NucDiff
truncates the rightmost fragment, so the overlap disap-
pears. In this case information about the repeated nature
of the insertion events will be lost.
Third, NucDiff searches for a group of nearby query

fragments whose corresponding reference fragments are
located on the same reference sequence (chromosome)
but in a different order. The distance between two
neighbouring reference fragments should not be more
than 10,000 bases. If a group satisfying these conditions
is found, then there is a reshuffling difference in the
query. There may be simple insertion and simple dele-
tion differences between reshuffled fragments. To find
them, NucDiff first truncates fragments so that all over-
laps between query or reference fragments are removed.
It then searches for unmapped bases between neigh-
bouring query fragments to find simple insertions and
then searches for unmapped bases between neighbour-
ing reference fragments to find simple deletions.
Finally, NucDiff searches for the last type of intra-

chromosomal structural difference, inversions. If a query
sequence has several mapped fragments and one or
more of them, but not all, have directions opposite to
the directions of the corresponding reference fragments,
then such fragments are inversions. Some examples of
possible alignments of query sequences in cases with
reshuffling and inversion are shown in Fig. 4g-h.
Reshufflings and inversions may be present inside

translocated and relocated fragments. During reshuffling
detection, the directions of reshuffled fragments are not
taken into account. Their directions are checked during
the inversion detection step. Simple insertions and
simple deletions found during this step may be con-
nected to repeated regions, but this connection will not
be detected.

Datasets
We created ten simulated reference and query DNA
sequences. The genomes were constructed from random
DNA sequences, and different types of controlled
genome modifications were subsequently applied to
these sequences (e.g. relocation of different fragments,
or deletions, or duplications of fragments). The detailed
description of implemented genome modifications can
be found in [Additional file 1: Table S2].
In addition, we used data produced for the GAGE-B

article [12] for the demonstrations of the comparison of
several assemblies. The assemblies from the ABySS [13],
CABOG [14], MaSuRCA [15], SGA [16], SOAPdenovo
[17] (shown as SOAP in the figures), SPAdes [18] and
Velvet [19] assemblers for Vibrio cholerae based on
HiSeq reads were used. These assemblies together
with the V. cholerae reference genome were down-
loaded from the GAGE-B website [20].

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 7 of 14

For the demonstration of the comparison of genomes from
different strains of the same species, 22 Escherichia coli K12
reference genomes were downloaded from the NCBI database
[21]. Their accession numbers can be found in [Additional file
1: Table S3]. In the sections with the demonstrations, we also
used annotations for the V. cholerae reference genome
and E. coli K12 MG1655. They were downloaded from
the NCBI database [22, 23], respectively.

Results
The NucDiff tool
We have created a tool, called NucDiff, which is pri-
marily aimed at locating and categorizing differences
between any two sets of closely related nucleotide se-
quences. It is able to handle very fragmented genomes
and various structural rearrangements. These features
make NucDiff suitable for comparing, for instance, dif-
ferent assemblies with each other, or an assembly with a
reference genome. NucDiff first runs the NUCmer,
delta-filter and show-snps programs from MUMmer and
parses the alignment results to detect differences. These
differences are subsequently categorized according to
a carefully defined classification scheme of all possible
differences between two sequences.
A unique feature of NucDiff is that it provides detailed

information about the exact genomic locations of the
differences in the form of four GFF3 files: two files with
information for small and medium local differences that
do not cause alignment fragmentation, two others for
structural differences and local differences that cause
alignment fragmentation. All locations of the differences
are output in query - and reference-based coordinates,
separately. Each GFF3 entry is additionally annotated
with the location of the difference in the opposite coord-
inate system as well. A detailed description of the format
of these GFF files can be found in the GitHub repository
of NucDiff. NucDiff also finds the coordinates of
mapped blocks (the query sequences split at the points
of translocation, relocation, inversions, and/or reshuf-
fling) and then stores them in the GFF3 files, one based
on query coordinates and another with reference-based
coordinates. Uploading these GFF3 files into a genome
browser such as the Integrated Genome Viewer (IGV)
[24, 25] enables visualisation of the differences as well as
the coverage of a reference genome by query sequences,
making it possible to see all uncovered reference bases
or if any reference regions are covered multiple times.
In addition, NucDiff generates a summary file con-

taining information about the number of differences
of each type. The detailed level of reporting enables
users to create their own custom summary from the
NucDiff output (e.g. taking into account the length of dif-
ferences, joining several types of differences together, and
so on) if desired.

Effect of different MUMmer parameters
The alignment results parsed by NucDiff depend on the
values of the input parameters for two MUMmer pro-
grams, NUCmer and delta-filter. NUCmer performs DNA
sequence alignment, while delta-filter filters the alignment
results according to specified criteria. Running these
programs with different input parameters may result in
alternative sets of matches, since the choice of parameters
affects the sensitivity of the detection of matching se-
quence fragments as well as the stringency of the subse-
quent filtering. To analyse the influence of the different
parameters on the alignment and on the subsequent
NucDiff results, we compared the results of running
NucDiff on the simulated genomes described in the
Datasets section with different NUCmer and delta-filter
input parameters values. The specific values for each test
can be found in [Additional file 1: Table S4]. We also ran
one test to enable comparison of QUAST and NucDiff as
described in Comparison with QUAST section, since
QUAST uses the same underlying tools as NucDiff.
The locations and types of simulated differences were

compared with the results obtained from NucDiff, and
the number of correctly detected differences was calcu-
lated for each test (see [Additional file 1] for details).
The results with the total average number of correctly
detected expected differences for each type are pre-
sented in Table 1. The detailed results for each imple-
mented modification case (see in [Additional file 1:
Table S2]) and for each parameter configuration set can
be found in [Additional file 2].
We did not expect NucDiff to be able to detect all

simulated differences of most types. This is confirmed in
the results presented in Table 1, where NucDiff misses
many differences of several types, no matter what par-
ameter settings were used. A small deviation from the
simulated results was expected since the fixed 30 bp
limit for lengths of duplications in reference and query
sequences and relocated blocks is much lower than the
variable NUCmer and delta-filter thresholds. Another
reason for the result deviation is that some difference
locations were shifted a few bp due to accidental base
similarity at the region borders. In such cases, the differ-
ences were considered wrongly resolved in spite of cor-
rectly detected types. These reasons are applicable to all
difference types with the observed deviation to a greater
or lesser extent. All other reasons are related to the
chosen NUCmer and delta-filter parameter settings and
NucDiff limitations and are discussed below.
The detailed results from [Additional file 2] indicate that

increasing the alignment extension distance (−b parameter)
led to the loss of information about repeat related local dif-
ferences and inverted, relocated and substituted fragments.
With a greater -b parameter value, NUCmer more success-
fully expands low scoring regions. It enables detection of

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 8 of 14

more differences inside fragments and a reduction of the
number of aligned fragments. However, at the same time, it
does not allow tracking of possible locations of query
regions involved in differences in the reference sequences.
This leads to loss of information about the repeated,
inverted and substituted nature of the regions. Changing
the maximal exact match length (−l parameter) did not
influence significantly on the obtained results within the
considered simulations. Increasing the parameter value for
minimum alignment identity (−i parameter) (see columns
l65 and QUAST-like in Table 1) led to an increased number
of wrongly discarded valid mapped short fragments as well
as query sequences containing even a small number of
short and medium length differences.
Increasing the values for the minimum cluster length

(−c parameter) increases the number of discarded correct
query sequences and discarded valid mapped fragments.
This leads to 1) the undesirable loss of information about
the inverted, relocated and translocated nature of some
fragments and 2) the misrepresentation of correct query
sequences as being unaligned.
Additional result deviations can be explained by the

specifics and limitations of the approach implemented
in NucDiff independent on the parameter values used.

First, due to some simplifications during the NucDiff
structural difference detection step, NucDiff does not
allow detection of both relocations/translocations and
duplications at the same time in cases when simple re-
locations/translocations are followed by duplications
(see [Additional file 1: Table S2], relocation case 2 and
translocation case 1). In such cases, the differences are
detected either as a combination of a simple reloca-
tion/translocation and a simple insertion or as a
combination of a simple insertion and a duplication
depending on the length of a relocated or translocated
fragment.
Second, another problem with duplication detection

occurs in situations when reference fragments are dupli-
cated and inserted into query sequences somewhere far
away from their original locations (see [Additional file 1:
Table S2], insertions, case 2). The duplications are detected
by NUCmer but are filtered out by the delta-filter program
as being aligned fragments with smaller length*identity
weighted LIS [longest increasing subset]. This option is set
by the -q parameter and is always used in NucDiff. As a re-
sult, NucDiff detects such duplications as simple insertions.
Third, in cases with a combination of a gap and an

inserted gap, the order of the gap and the inserted gap

Table 1 Average number of correctly detected simulated differences by NucDiff with different parameter settings and QUAST

Difference Truth Default c30 c120 l10 l65 b80 b350 QUAST-like QUAST

insertion 1650 1634 1634 1634 1634 1634 1632 1634 1634 858

deletion 1719 1678 1678 1678 1677 1678 1679 1676 1674 465

duplication 251 136 122 150 136 136 137 124 136 196

tandem_duplication 60 57 57 57 57 57 60 54 57 57

collapsed_repeat 58 53 53 53 53 53 54 51 53 53

collapsed_tandem_repeat 59 55 55 55 55 55 56 53 55 55

relocation 217 127 142 108 127 127 136 112 127 130

relocation-insertion 13 13 13 13 13 13 13 13 13 13

relocation-insertion_ATGC 13 13 13 13 13 13 13 13 13 13

relocation-inserted_gap 13 13 13 13 13 13 13 13 13 13

relocation-overlap 13 13 13 13 13 13 13 13 13 12

translocation 111 50 57 43 50 50 50 50 50 62

translocation-insertion 13 12 12 12 12 12 12 12 12 13

translocation-insertion_ATGC 13 13 13 13 13 13 13 13 13 13

translocation-inserted_gap 13 13 13 13 13 13 13 13 13 13

translocation-overlap 13 13 13 13 13 13 13 13 13 11

inversion 534 530 530 528 529 530 531 526 530 528

reshuffling 2585 2585 2585 2585 2585 2585 2585 2585 2585 2536

substitution 115 81 81 81 80 81 89 68 81 84

gap 49 46 46 46 46 46 48 46 45 34

inserted_gap 21 21 21 21 21 21 21 21 20 16

mapped_seq 13 10 11 6 10 10 10 10 10 10

unaligned_sequence 13 13 13 13 13 13 13 13 13 13

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 9 of 14

varies depending on whether a subsequence of N’s caused
alignment fragmentation or not. Since in the simulated re-
sults a gap is always followed by an inserted gap, the num-
ber of correctly detected gaps was slightly lower than the
expected number for all parameter settings. However, this
behavior influences only the numbers in Table 1 but not
the quality of the obtained results.

Comparison with QUAST
Both NucDiff and QUAST use the NUCmer package in
their pipeline. However, QUAST only provides information
about the locations of regions where the reference se-
quences were split during the alignment process and speci-
fies the general reasons for the alignment fragmentations
(e.g. local misassembly, relocation and so on). As with
NucDiff, we calculated the number of correctly detected
simulated differences. Since QUAST only separates the dif-
ferences into broad categories, it is not possible to make
direct one-to-one comparisons. We therefore grouped the
simulated differences into types as described in [Additional
file 1: Table S5]. A simulated difference is considered cor-
rectly detected if it overlaps with a QUAST difference that
belongs to the same general category. In cases with repeat
related types, a difference is considered correctly detected
when one of the repeated fragments involved in the simu-
lated difference overlaps with the QUAST difference. The
obtained average total number for each type of difference is
shown in Table 1. The detailed results for each simulated
case (see in [Additional file 1: Table S2]) can be found in
the [Additional file 2].
As expected, the results presented in Table 1 show

that QUAST, as well as NucDiff, was not able to detect
all simulated differences in most groups. The small devi-
ation of QUAST results in all problematic groups can
also be explained by the introduced 30 bp limit for
lengths of duplications in reference and query sequences
and relocated blocks and shifted locations of some dif-
ferences. However, there are some additional reasons
specific to QUAST.
First, QUAST does not output any information about

the locations of small differences obtained after parsing
the results given by the show-snps package, only pro-
viding information about their total number. This is
reflected in a large deviation between the numbers of
simulated and detected insertions, deletions, substitu-
tions, gaps, and inserted gaps. Second, QUAST is unable
to distinguish differences of several types at the identical
locations. For example, duplications and reshufflings
were not reported as stand-alone differences when they
were located together with relocations or translocations.
The same is also true for insertions and deletions when
they were introduced between inverted and reshuffled
blocks. Third, the comparison of the QUAST results
with the NucDiff results obtained with the QUAST-

like parameters settings suggests that QUAST has its
own internal length threshold for filtering mapped
fragments. This value is somewhat higher than the
NUCmer -c parameter value used. This led to a re-
duced number of correctly detected relocation and
translocation events.
During comparison of the QUAST results with the

NucDiff results obtained with the QUAST-like settings,
we noticed that QUAST was able to detect more dupli-
cation and translocation events. This can be explained
by less strict requirements for correspondence between
the simulated and obtained types for QUAST. For ex-
ample, in situations where NucDiff detected simple
translocations and duplications as translocation with
insertions and simple insertions, respectively (see trans-
location case 1 in [Aditional file 1: Table S2]), the differ-
ences were considered wrongly resolved by NucDiff and
correctly resolved by QUAST. The same problem is also
applicable to simple relocations. However, since fewer
relocations were detected by QUAST because of its
filtering approach, the significant divergence between
numbers is not apparent in Table 1.

Comparison with dnadiff
The NucDiff, dnadiff and QUAST tools provide a quan-
tification of the differences between two sets of ge-
nomes. In this section, we compare the numbers output
by these tools. Due to the way these tools report their
results, it is very difficult to make a fair comparison be-
tween them. All tools were run on the same simulated
genome described in Datasets section. NUCmer, whose
output was used by NucDiff and dnadiff, was run with
the QUAST-like parameter settings (see [Additional file
1: Table S4]). Since dnadiff only provides the number of
differences and not their locations, we cannot know for
sure whether the differences are actually in the same
places as reported by the other tools. To perform the
comparison, we created a set of categories suitable for
comparison and grouped the differences reported into
these categories (see [Additional file 1: Table S6] for
grouping). The results are presented in Table 2.
The results showed that the obtained counts for NucDiff

and dnadiff are largely similar, while QUAST has a ten-
dency to detect fewer differences than NucDiff and dnadiff
in almost all categories. A large deviation between the re-
sults from QUAST and the other tools was observed in
the nonTandem and Relocations groups. In both cases, it
can be explained by how the comparison is performed
and not necessarily by the performance of the tool.

Comparison of several assemblies of the same read set to
the same reference genome
We downloaded assemblies of the same V. cholerae read
set as described in the Datasets section, and compared

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 10 of 14

them to a V. cholerae reference using NucDiff with de-
fault parameter settings (see in [Additional file 1: Table
S4]). The number of detected differences is presented in
[Additional file 1: Figure S3]. The total number of scaf-
folds and differences is shown in Fig. 5. The resulting
GFF3 files with mapped blocks and differences (shown
with reference-based coordinates) were displayed using
the IGV genome browser, and an example of assembly
comparison is shown in [Additional file 1: Figure S4]. As
is evident, we were able not only to compare quantita-
tive metrics (i.e. the number of each type of difference,
the number of uncovered reference bases, etc.) but also
to analyse the placement of contigs/scaffolds and
differences relative to each other and the exact location
of the different types of detected differences.
Based on the obtained results, it is possible to con-

clude for the given examples that SGA gives the most
fragmented assembly compared with other assemblers,
while MaSuRCA gives the solution with the highest
number of errors (differences are considered as errors in
this case, since we are comparing to a good quality refer-
ence genome), mainly suffering from substitution errors
(2839 out of 3106 differences). SOAPdenovo has rather
high numbers of errors in all categories, confirming the
result from GAGE-B using QUAST, which states that
SOAPdenovo has “a larger number of errors than most
other methods” [12]. It is also possible to see the large
fragmentation in the SGA assembly and the large total
number of differences in the MaSuRCA assembly by visu-
alisation in IGV in [Additional file 1: Figure S4a and c].
According to GAGE-B results, MaSuRCA has pro-

duced the assembly with the best N50 size. However, in

our experience, MaSuRCA did not distinguish itself
when compared to other assemblers. All assemblers have
managed to resolve some regions where most of the
other assemblers failed to get continuous solutions. In
addition, we noticed that there are some differences that
were produced by all assemblers in the same places. For
example, we detected two deletions, one of length
1255 bp, overlapping with two open reading frames of a
transposase ([Additional file 1: Figure S5a]) and a second
of length 1367 bp, overlapping with two genes of un-
known function ([Additional file 1: Figure S5b]), and many
short insertions, deletions and substitutions through the
genome. We suspect that such errors may actually be true
variations between the sequenced genome and the refer-
ence genome rather than errors in the assemblies in many
cases. For example, in the case of the transposase, this
may have inserted itself in the strain sequenced for the
reference genome, while it was absent from the DNA of
the strain sequenced for GAGE-B.

Comparison of genomes from different strains of the
same species
With NucDiff, it is also possible to compare genomes of
different strains of the same species to show genomic
differences between them. We have compared the ge-
nomes of 21 different strains of E. coli K12 available in
the NCBI database to the E. coli K12 MG1655 as the
reference genome. We have calculated the total number
of differences of each type at every base of each query
reference. The result was saved in the bedGraph format
and uploaded into the IGV genome browser together
with the E. coli K12 MG1655 annotation (see Fig. 6).
The results show that the differences are not dis-

tributed randomly, they tend to be clustered in some

Table 2 Number of simulated differences (Truth) and
differences obtained by NucDiff, dnadiff and QUAST

Group Truth NucDiff dnadiff QUAST

nonTandem 3448 6717 7460 2814

Tandem 119 116 116 0

Substitutions 164 423 234 354

Relocations 2854 2802 2211 185

Translocations 163 137 137 117

Inversions 1068 1060 1060 1053

UnalignedSeq 13 21 16 21

In the nonTandem group, the values shown for the simulated differences
(Truth) and QUAST are the number of events, while in the other columns the
values are the sum of the number of bases involved in the differences for
short and medium local differences (found by the show-snps program) and
the number of events of long local differences (those causing alignment
fragmentation). In the Inversions group, the numbers of simulated inversions
and inversions found by NucDiff were multiplied by two to enable a fair
comparison, because QUAST and dnadiff report the number of fragment ends,
while NucDiff reports the number of fragments. In the Substitutions group,
the values shown are the number of bases, while in the other rows the
values are the number of events. The reshuffling differences are contained
in the nonTandem group for QUAST, but placed in the Relocations group
in all other cases

Fig. 5 Total number of scaffolds and differences. The differences
were found with the default NucDiff parameter settings for
each assembly

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 11 of 14

locations. For example, in 15 out of 21 genomes there is a
deletion of bases, starting from base 257,908 and ending
with base 258,674 in U00096.3 (a circle in Fig. 6). These
bases correspond to a mobile element with almost the
same starting coordinate and ending in position 258,675.

Discussion
In this paper, we have described a tool, called NucDiff,
which detects and describes the differences between any
two sets of closely related DNA sequences according to
our comprehensive classification scheme. The tool has
several properties that make it very useful for doing
comparative analysis of assemblies and reference ge-
nomes. 1) It is able to work with very fragmented gen-
ome assemblies and genomes with various structural
rearrangements. We have demonstrated this with the V.
cholerae assemblies and E. coli K12 reference genomes.

Moreover, NucDiff is in many cases able to detect
differences that are associated with repeated regions (for
example, in case of duplication, tandem duplication, col-
lapsed repeat and tandem collapsed repeat differences).
However, it is not able to detect such associations for
simple insertions and simple deletions found between
mapped blocks. 2) The tool gives information about the
locations and types of differences. This information is
stored in the widely used GFF3 format with both query-
based and reference-based coordinates, which can be used
with existing genome browsers for visualizing the differ-
ences. The NucDiff output also enables users to incorporate
the tool in a large variety of applications where detecting
differences is either the final goal or as a component in an
analysis pipeline. 3) The tool enables visualisation of align-
ment results, as a result of outputting differences in the
GFF3 format. We have shown two different applications of

Fig. 6 Comparison of 21 E. coli K12 genomes with E. coli K12 MG1655. The first entry corresponds to the E. coli K12 MG1655 annotation. All other
entries correspond to the difference types. Vertical bars show the number of genomes having a difference of the specified type at the current
position. Each difference type entry has its own scale and is adjusted depending on the maximum value presented in the displayed area. The
encircled area corresponds to the deletion of bases (257908–258,674 in U00096.3), which is present in 15 out of 21 genomes. These bases
correspond to a mobile element with coordinates 257,908–258,675. The current region of the reference chromosome, shown on the figure, was
reshuffled in 6 genomes and is represented as one solid thick line in the reshuffling entry in the figure

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 12 of 14

visualisation to further inspect the results. First, by upload-
ing the files with locations of differences and mapped
blocks for all compared assemblies at once into a genome
browser. This approach enables comparison of all differ-
ences at any level of detail across all datasets to look for
patterns. Second, by uploading the files with the summa-
rized counts of all difference types in all query genomes for
each reference sequence base. This visualisation gives a bet-
ter overview of the comparison analysis results when the
number of compared genomes is high, revealing common
and distinct patterns in the structures of genome se-
quences. However, such an approach leads to the loss of
some information about differences (e.g. which query ge-
nome(s) have the specific differences and the difference lo-
cations in these genome(s)).
The benchmarking results showed that the NucDiff

output depends on the NUCmer and delta-filter parame-
ters values. The values mainly influence the types of dif-
ferences and not the total number, revealing or hiding
information about the repeated, inverted, substituted, or
relocated nature of the short- and medium-sized differ-
ences. The locations of regions containing differences re-
main the same in most cases. As for NucDiff result
quality, we have noticed systematic loss of information
about the repeated nature of some differences in specific
cases. This was due to the limitations of the approach
implemented in NucDiff.
Together with NUCmer, MUMmer provides another

alignment program called PROmer. Unlike NUCmer,
PROmer can be used for highly divergent sequences that
show little DNA sequence conservation. Since both tools
output the alignments results in the same format, it is
possible to run NucDiff with PROmer output file as an
input parameter, thus enabling detection of differences
between two highly divergent sequences.
There are similarities between NucDiff and QUAST, a

software tool for comparing assemblies to reference ge-
nomes. Both use NUCmer as a part of their analysis
pipeline to align the input sequences. However, QUAST
assesses genome quality mainly based on contiguity and
gene complement completeness, producing various re-
ports, plots and tables. QUAST will output quality metrics
(e.g. number of misassemblies, indels and so on) only
when a reference genome is available. In this case, it
reports information about similar reference and query se-
quences, unmapped query sequences, and the locations of
the regions where the reference and query sequences were
split during the alignment process, giving general explana-
tions for the fragmentation. It does not output the loca-
tions of small indels and substitutions obtained after
parsing results given by the show-snps package. It pro-
vides only the raw show-snps output and summary statis-
tics for these types of differences. Our experiments
showed that QUAST tends to count several differences

located at the same position as one difference. Comparing
to QUAST, our tool is also able to give more detailed in-
formation about the locations of all differences as well as a
more detailed classification of them. In addition, NucDiff
allows the users to upload the results to different genome
browsers, while QUAST output can be directly visualised
only in its own genome browser, Icarus, that does not
handle uploading of additional tracks.
We have also compared NucDiff with dnadiff. Both

tools parse the NUCmer output and produce detailed
information about the differences between two sets of se-
quences. Their results are very similar, but, in contrast to
NucDiff, dnadiff does not allow visualization of differences
and is not able to quantify them at the same level of detail.
Our results from analyses of different real assemblies

have revealed a complication related to assembly com-
parison. It is not always enough to only use the quality
and contiguity summary metrics when choosing the
“best” assembly. The ability to visualize results and
manually inspect the regions where the differences are
located may dramatically influence this choice.

Conclusions
We present the tool NucDiff for the comparison of two sets
of closely related sequences. NucDiff outputs information
about the types and locations of the differences between
the sequences. Special attention has been paid to detection
of differences involving repeated regions. All differences are
categorized according to a proposed detailed classification
scheme. The output from NucDiff enables the user to visu-
alise the results using a genome browser, and we demon-
strate two different applications of such visualisations. The
ability to 1) give detailed information about the differences,
2) handle small local differences as well as structural rear-
rangements, and 3) visualise the comparison results makes
NucDiff convenient for whole-genome sequence compari-
son or as an intermediate step in an analysis pipeline.

Additional files

Additional file 1: Figure S1. Reference fragments placement order
depending on query fragment orientations during detection of local
differences. Figure S2. Circular genome alignment alternatives. Figure S3.
Number of differences in each category obtained by NucDiff with the
default parameter settings for all assemblers. Figure S4. Comparison of
multiple assemblies against one reference using NucDiff. Figure S5.
Examples of detection of long deletions located in all assemblies at the
same place in the reference sequence. Table S1. Alignment fragmentation
cases caused by simple differences. Table S2. Genome modifications
implemented during the simulation process. Table S3. List of E. coli
genomes used in the Comparison of genomes from different strains of the
same species section. Table S4. Parameter values used for each parameter
settings. Table S5. Correspondence between the QUAST difference types
and the simulated difference types. Table S6. Correspondence between the
QUAST, dnadiff and NucDiff difference types and the expected difference
types. (PDF 989 kb)

Additional file 2: Detailed results for Table 1. (TXT 472 kb)

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 13 of 14

dx.doi.org/10.1186/s12859-017-1748-z
dx.doi.org/10.1186/s12859-017-1748-z

Abbreviation
WGA: Whole-genome alignment

Acknowledgements
The authors wish to thank the Centre for Ecological and Evolutionary
Synthesis (CEES) for access to the computational infrastructure (‘cod’ servers)
that enabled the bioinformatics analysis for this project.

Funding
KK was funded by the Computational Life Science initiative (CLSi) at the
University of Oslo. The funding body played no role in the design or
conclusions of this study.

Availability of data and materials

� Project name: NucDiff
� Project home page: https://github.com/uio-cels/NucDiff
� Operating system(s): Unix-like system such as Ubuntu Linux and

MacOS X.
� Programming language: Python
� Other requirements: Python 2.7, MUMmer 3.23
� License: Mozilla Public License (MPL), version 2.0
� Any restrictions to use by non-academics: No
� Additional data: the used genomes and annotations are available

through the links given in [20–23]

Authors’ contributions
KK designed and implemented NucDiff. AJN and KK developed the proposed
classification of the differences. TR, AJN, GKS, and KL suggested the demonstration
examples and other experiments performed. KK performed all the experiments.
KK, TR and AJN wrote the manuscript. KL and GKS revised the manuscript.
All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Biomedical Informatics Research Group, Department of Informatics,
University of Oslo, PO Box 1080, 0316 Oslo, Norway. 2Norwegian Veterinary
Institute, PO Box 750 Sentrum, 0106 Oslo, Norway. 3Department of
Microbiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen,
0424 Oslo, Norway. 4Centre for Ecological and Evolutionary Synthesis,
Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316
Oslo, Norway.

Received: 23 September 2016 Accepted: 4 July 2017

References
1. Dewey CN. Whole-genome alignment. Methods Mol Biol. 2012;855:237–57.

doi:10.1007/978-1-61779-582-4_8.
2. Engels R, Yu T, Burge C, Mesirov JP, DeCaprio D, Galagan JE. Combo:

a whole genome comparative browser. Bioinformatics. 2006;22(14):1782–3.
doi:10.1093/bioinformatics/btl193.

3. Choi JH, Cho HG, Kim S. GAME: a simple and efficient whole genome
alignment method using maximal exact match filtering. Comput Biol Chem.
2005;29(3):244–53. doi:10.1016/j.compbiolchem.2005.04.004.

4. Blanchette M. Computation and analysis of genomic multi-sequence
alignments. Annu Rev Genomics Hum Genet. 2007;8:193–213. doi:10.1146/
annurev.genom.8.080706.092300.

5. Belal NA, Heath LS. A theoretical model for whole genome alignment.
J Comput Biol J Comput Biol. 2011;18(5):705–28. doi:10.1089/cmb.2010.0101.

6. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of
conserved genomic sequence with rearrangements. Genome Res.
2004;14(7):1394–403. doi:10.1101/gr.2289704.

7. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29(8):1072–5. doi:10.1093/
bioinformatics/btt086.

8. dnadiff. https://github.com/marbl/MUMmer3/blob/master/docs/dnadiff.
README. Accessed 8 July 2017.

9. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. Versatile and open software for comparing large genomes.
Genome Biol. 2004;5(2):R12. doi:10.1186/gb-2004-5-2-r12.

10. Stein L. GFF3 format specification. 2013. https://github.com/The-Sequence-
Ontology/Specifications/blob/master/gff3.md. Accessed 8 July 2017.

11. The MUMmer manual. http://mummer.sourceforge.net/manual/.
Accessed 8 July 2017.

12. Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ, Salzberg SL.
GAGE-B: an evaluation of genome assemblers for bacterial organisms.
Bioinformatics. 2013;29(14):1718–25. doi:10.1093/bioinformatics/btt273.

13. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS:
a parallel assembler for short read sequence data. Genome Res. 2009;19(6):
1117–23. doi:10.1101/gr.089532.108.

14. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J,
Li K, Mobarry C, Sutton G. Aggressive assembly of pyrosequencing reads with
mates. Bioinformatics. 2008;24(24):2818–24. doi:10.1093/bioinformatics/btn548.

15. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The
MaSuRCA genome assembler. Bioinformatics. 2013;29(21):2669–77.
doi:10.1093/bioinformatics/btt476.

16. Simpson JT, Durbin R. Efficient de novo assembly of large genomes using
compressed data structures. Genome Res. 2012;22(3):549–56. doi:10.1101/gr.
126953.111.

17. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J,
Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM,
Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J.
SOAPdenovo2: an empirically improved memory-efficient short-read de novo
assembler. Gigascience. 2012 Dec 27;1(1):18. doi:10.1186/2047-217X-1-181
comment on PubPeer (by: Comment from PubMed Commons).

18. Bankevich A1, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G,
Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing. J Comput Biol. 2012 May;19(5):455–77.
doi:10.1089/cmb.2012.0021.

19. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 2008;18(5):821–9. doi:10.1101/gr.074492.107.

20. The GAGE-B website. http://ccb.jhu.edu/gage_b/. Accessed 8 July 2017.
21. The NCBI database: E. coli K12 references. http://www.ncbi.nlm.nih.gov/

genome/genomes/167. Accessed 8 July 2017.
22. The NCBI database: V. cholerae annotation. ftp://ftp.ncbi.nlm.nih.gov/

genomes/refseq/bacteria/Vibrio_cholerae/reference/GCF_000006745.1_
ASM674v1/. Accessed 8 July 2017.

23. The NCBI database: E. coli K12 MG1655 annotation. ftp://ftp.ncbi.nlm.nih.
gov/genomes/refseq/bacteria/Escherichia_coli/all_assembly_versions/GCF_
000005845.2_ASM584v2/. Accessed 8 July 2017.

24. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G,
Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.
doi:10.1038/nbt.1754.

25. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV):
high-performance genomics data visualization and exploration. Brief Bioinform.
2013;14(2):178–92. doi:10.1093/bib/bbs017.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Khelik et al. BMC Bioinformatics (2017) 18:338 Page 14 of 14

https://github.com/uio-cels/NucDiff
http://dx.doi.org/10.1007/978-1-61779-582-4_8
http://dx.doi.org/10.1093/bioinformatics/btl193
http://dx.doi.org/10.1016/j.compbiolchem.2005.04.004
http://dx.doi.org/10.1146/annurev.genom.8.080706.092300
http://dx.doi.org/10.1146/annurev.genom.8.080706.092300
http://dx.doi.org/10.1089/cmb.2010.0101
http://dx.doi.org/10.1101/gr.2289704
http://dx.doi.org/10.1093/bioinformatics/btt086
http://dx.doi.org/10.1093/bioinformatics/btt086
https://github.com/marbl/MUMmer3/blob/master/docs/dnadiff.README
https://github.com/marbl/MUMmer3/blob/master/docs/dnadiff.README
http://dx.doi.org/10.1186/gb-2004-5-2-r12
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
http://mummer.sourceforge.net/manual
http://dx.doi.org/10.1093/bioinformatics/btt273
http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.1093/bioinformatics/btn548
http://dx.doi.org/10.1093/bioinformatics/btt476
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1186/2zz047-217X-1-18
http://dx.doi.org/10.1186/2zz047-217X-1-18
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1101/gr.074492.107
http://ccb.jhu.edu/gage_b
http://www.ncbi.nlm.nih.gov/genome/genomes/167
http://www.ncbi.nlm.nih.gov/genome/genomes/167
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Vibrio_cholerae/reference/GCF_000006745.1_ASM674v1
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Vibrio_cholerae/reference/GCF_000006745.1_ASM674v1
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Vibrio_cholerae/reference/GCF_000006745.1_ASM674v1
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Escherichia_coli/all_assembly_versions/GCF_000005845.2_ASM584v2/
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Escherichia_coli/all_assembly_versions/GCF_000005845.2_ASM584v2/
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Escherichia_coli/all_assembly_versions/GCF_000005845.2_ASM584v2/
http://dx.doi.org/10.1038/nbt.1754
http://dx.doi.org/10.1093/bib/bbs017

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Types of differences
	Global differences
	Local differences
	Structural differences

	Stepwise detection of differences
	Global difference detection
	Local difference detection inside aligned fragments
	Local difference detection between aligned fragments
	Structural difference detection between aligned fragments

	Datasets

	Results
	The NucDiff tool
	Effect of different MUMmer parameters
	Comparison with QUAST
	Comparison with dnadiff
	Comparison of several assemblies of the same read set to the same reference genome
	Comparison of genomes from different strains of the same species

	Discussion
	Conclusions
	Additional files
	Abbreviation
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

