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Abstract

Background: In structure-based drug design, binding affinity prediction remains as a challenging goal for current
scoring functions. Development of target-biased scoring functions provides a new possibility for tackling this
problem, but this approach is also associated with certain technical difficulties. We previously reported the
Knowledge-Guided Scoring (KGS) method as an alternative approach (BMC Bioinformatics, 2010, 11, 193–208).
The key idea is to compute the binding affinity of a given protein-ligand complex based on the known binding
data of an appropriate reference complex, so the error in binding affinity prediction can be reduced effectively.

Results: In this study, we have developed an upgraded version, i.e. KGS2, by employing 3D protein-ligand interaction
fingerprints in reference selection. KGS2 was evaluated in combination with four scoring functions (X-Score, ChemPLP,
ASP, and GoldScore) on five drug targets (HIV-1 protease, carbonic anhydrase 2, beta-secretase 1, beta-trypsin,
and checkpoint kinase 1). In the in situ scoring test, considerable improvements were observed in most cases after
application of KGS2. Besides, the performance of KGS2 was always better than KGS in all cases. In the more challenging
molecular docking test, application of KGS2 also led to improved structure-activity relationship in some cases.

Conclusions: KGS2 can be applied as a convenient “add-on” to current scoring functions without the need to
re-engineer them, and its application is not limited to certain target proteins as customized scoring functions.
As an interpolation method, its accuracy in principle can be improved further with the increasing knowledge of
protein-ligand complex structures and binding affinity data. We expect that KGS2 will become a practical tool for
enhancing the performance of current scoring functions in binding affinity prediction. The KGS2 software is available
upon contacting the authors.
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Background
Molecular docking has been an extremely powerful
technique in structure-based drug design since the
1980s [1–4]. The primary goal of molecular docking is
to predict the binding pose of a given ligand molecule to
a molecular target, usually a protein or a nucleic acid. It
provides a useful guide especially when experimental
means, such as X-ray crystal diffraction or NMR
spectroscopy, cannot supply the desired answer in a
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timely manner. To achieve this goal, molecular docking
methods sample possible binding poses of the ligand
molecule and often rely on a group of computational
models called scoring functions [5–9] to rank them to
select the preferred one. Based on the knowledge of the
ligand binding pose, scoring functions are also employed
to predict ligand binding affinity. As a useful expansion,
large compound libraries can be screened computation-
ally by using molecular docking methods to identify
promising candidates that fit to a given target. Such
“virtual screening” approaches are adopted nowadays by
researchers in academia as well as pharmaceutical
industry [10–12].
A number of evaluations of current docking/scoring

methods [13–20] have suggested that they can provide
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reasonable predictions of ligand binding modes, but
their performance is often disappointing in predicting
ligand binding affinities. It is not totally surprising be-
cause protein-ligand binding is associated with sophisti-
cated energetic factors. Accurate prediction of binding
free energy remains as a major challenge even for high-
level computational methods [21, 22]. If the scoring
functions used in molecular docking could be improved
in this aspect, molecular docking will certainly become
more useful.
Most scoring functions are developed as all-purpose

models, which are presumably applicable to all types of
target protein. However, it is well-known that their per-
formance varies significantly on different target proteins.
Development of target-biased scoring function (or
customized scoring function) has been proposed as a
possible approach for improving the performance of
current scoring functions [23]. A number of studies
along this path have been reported in recent years.
The most straightforward way to obtain a customized
scoring function is to re-calibrate an all-purpose scoring
function on a specific class of protein-ligand complexes
[24–27]. For example, Pfeffer et al. developed DrugScore-
RNA [24], which shares the same theoretical framework
as DrugScore [28] but was derived from 670 nucleic acid-
ligand and nucleic acid-protein complex structures. Antes
et al. applied a parameter optimization method called
POEM to re-calibrate two scoring functions (FlexX and
ScreenScore) on complexes formed by kinases and
ATPases [25]. Xue et al. developed the Kinase-PMF
scoring function for evaluating the binding of ATP-
competitive kinase inhibitors with a large set of kinase
complexes [27]. Other methods for obtaining a custom-
ized scoring function (or scoring scheme) have also been
reported. For example, Teramoto et al. reported super-
vised scoring models through feature selection to improve
enrichment factors in virtual screening [29–31]. Avram
et al. described a consensus scoring scheme, namely
PLSDA-DOCET, which is geared towards five target pro-
teins [32]. Their scoring scheme combines energy terms
retrieved from several scoring functions in the FRED soft-
ware, which produced promising results in virtual screen-
ing trials on an external test set [33].
In spite of the appealing prospects provided by cus-

tomized scoring functions, they are associated with cer-
tain technical inconvenience in practice. An obvious
limitation is that a new customized scoring function is
needed whenever a new target protein is under consider-
ation. It has been estimated that the human genome
contains several thousands of druggable targets, which
can be classified into at least several dozens of
categories. It will need great efforts to develop custom-
ized scoring functions to tackle each of them. Moreover,
re-calibration of an existing scoring function or
formulation of a new model needs some special
expertise, which is beyond the capability of most com-
mon end users. That is perhaps why customized scoring
functions are not widely available yet.
We have been seeking an alternative solution for com-

mon end users to enhance the performance of current
scoring functions in binding affinity prediction without
getting into the trouble of formulating customized
scoring functions. Our solution is what we call the
Knowledge-Guided Scoring (KGS) method. A prototype
of this method was published previously in this journal
[34]. Briefly, to compute the binding affinity of a query
protein-ligand complex, an appropriate reference com-
plex with known binding data needs to be defined first
(see Fig. 1 for a conceptual illustration), which is re-
quired to resemble the query complex. Then, a standard
scoring function is used to compute both the query and
the reference. The binding score computed for the query
is adjusted with the known binding data of the reference.
In this way, certain structural or energetic factors on
these two complexes may cancel out, so the final ad-
justed binding score is expected be closer to the true
value. We demonstrated that application of KGS indeed
produced more accurate binding scores than scoring
functions alone on several target proteins [34]. In the
technical aspect, KGS can be applied in combination with
any scoring function, and no re-engineering on the partner
scoring function is needed. Thus, it represents a more flex-
ible option in practice than customized scoring functions.
As a notable new trend in the field of structure-based

drug design, structural interaction fingerprints have
emerged as a new approach for evaluating protein-ligand
interactions [35]. An pioneering work was conducted by
Deng et al. [36]. The key idea was to encode the 3D struc-
tural information of a protein-ligand complex into a 1D
binary string (i.e. the fingerprints) recording the typical in-
teractions between the ligand molecule and a set of pocket
residues. Later, such fingerprints were extended in various
ways to encode more specific information of protein-
ligand interactions at the atomic level [37–44]. More re-
cently, some researchers developed interaction finger-
prints in 3D forms, which were based on ligand binding
modes, target protein structures, or protein-ligand com-
plex structures [45–50]. A major application of those
interaction fingerprints is to re-rank ligand docking poses
based on their similarity to the known binding modes of
relevant reference molecules. Indeed, interaction finger-
prints often outperformed standard scoring functions in
terms of identifying correct ligand binding modes and
recovering active compounds in virtual screening trials
conducted on a range of target proteins. Moreover,
interaction fingerprints are also used to compare protein
binding pockets, evaluate the structural diversity of the
ligands generated by automated methods, and so on.



Fig. 1 Illustration of the basic idea of the Knowledge-Guided Scoring (KGS) method. The sea represents the hypothetical “protein-ligand
interaction space”. A given query complex (Q) is a small island somewhere in the sea. Binding affinity prediction by current scoring functions, most of
which are additive models, is to sail from the origin of this space (at the lower-left corner) to the destination (Q). By the KGS method, if a reference
complex (R) resembling the query complex can be found first, one can sail from the R island to the Q island for instead, which is assumed to be a less
difficult journey
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Inspired by the concept of protein-ligand interaction
fingerprints, we have re-composed the algorithm used
by KGS in reference selection. The new implementation
will be referred to as KGS2 in this article. In the original
KGS method, the reference complex is selected by com-
paring target-based pharmacophore features deduced in-
side the binding pocket; whereas in KGS2, the reference
complex is selected by comparing 3D protein-ligand
interaction fingerprints. We have tested KGS2 in com-
bination with four popular scoring functions. In situ
scoring tests were conducted on experimental complex
structures formed by five target proteins. Application of
KGS2 indeed produced more accurate binding scores
than scoring functions alone in most cases. Besides,
KGS2 always outperformed the original KGS method.
Molecular docking tests were conducted on four
additional data sets, each of which consisted of some
congeneric ligand molecules for one target protein.
Application of KGS2 also led to somewhat improved re-
sults. We demonstrate in this study that the perform-
ance of current scoring functions in binding affinity
prediction can be enhanced by KGS2 with the aid of 3D
protein-ligand interaction fingerprints.
Methods
The overall strategy
Our KGS2 method follows the same approach as the ori-
ginal KGS [34]. The binding affinity of a query protein-
ligand complex (Q) is computed by a scoring function
(SF) as:

Q̂bind ¼ bþ k � Qscore;SF ð1Þ
Here, Qscore , SF is the binding score of Q computed by

SF. Introduction of parameter k and b is necessary for
correlating the binding scores computed by SF to experi-
mental binding data because binding scores are often in
an arbitrary unit or their values may not be in a range
comparable to experimental binding data. Similarly, the
binding affinity of an appropriate reference complex (R)
computed by SF is:

R̂ bind ¼ bþ k � Rscore;SF ð2Þ
By subtracting Eq. 2 from Eq. 1, one has:

Q̂bind ¼ R̂ bind þ k � Qscore;SF−Rscore;SF
� � ð3Þ

Replacing the predicted binding affinity of the refer-
ence complex (R̂ bind) in Eq. 3 with its known experimen-
tal value (Rexp), one gets:

Q̂bind ¼ Rexp þ k � Qscore;SF−Rscore;SF
� � ð4Þ

Equation 4 indicates how KGS2 computes the binding
affinity of a given protein-ligand complex using the
known binding affinity of a reference complex. Here, k is
an adjustable parameter associated with scoring function
SF. This parameter can be derived through a standard
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linear regression between the binding scores computed
by SF and the experimental binding data of a set of
protein-ligand complexes, where the slope of the regres-
sion line gives this parameter. In this study, the PDBbind
“refined set” (version 2014) was employed as the training
set to derive the required k parameter for each scoring
function. This data set consists of 3446 protein-ligand
complexes with known 3D structures and binding con-
stants, which are selected by a set of quality control
filters from the entire PDBbind database [16].
By KGS2, the reference complex for a given query com-

plex is determined by searching among a reference library,
i.e. an external data set of protein-ligand complexes with
known 3D structures and binding data. The complex in
this library sharing the highest 3D similarity to the query
complex will be selected as the reference and used in Eq. 4.
During this process, each complex structure is analyzed to
derive a set of 3D protein-ligand interaction fingerprints. A
number of dispersed “interaction patterns” are elucidated
from the interaction fingerprints, which are intended to
cover the key factors in protein-ligand interaction. The
similarity between any two complexes is then assessed by
detecting the maximal mapping between their interaction
patterns. The algorithms used in this process are explained
in the following sections.

Extraction of protein-ligand interaction units
The basic elements in our 3D fingerprints are “interaction
units”. An interaction unit is composed of four atoms,
including three covalently linked atoms on the protein
molecule and one atom on the ligand molecule (Fig. 2).
Our concept of interaction unit was inspired by the work
Fig. 2 Illustration of an interaction unit between the side chain of an Arg resi
by Kinoshita et al. [51], who analyzed a larger number of
protein-ligand complex structures to derive the spatial dis-
tribution of ligand atoms around fragments on protein
molecules. In each interaction unit, the distance between
the ligand atom and the nearest protein atom should be
shorter than the sum of their van der Waals radii plus a
margin of 1 Å. This is to ensure that each interaction unit
under consideration is involved in direct protein-ligand
contact. Each interaction unit is represented by a string
including the standard PDB names of the three protein
atoms plus the residue name (e.g. “Asp: O − C − Cα”) and
the SYBYL Mol2 atom type of the ligand atom (e.g.
“O.2”). For the sake of convenience, the three atoms on
the protein side in each interaction unit will be referred to
as the “protein fragment” in this article. An interaction
unit is characterized by its components as well as geom-
etry. Geometry of an interaction unit is represented by the
relative coordinates of the ligand atom in a local Cartesian
coordinate system defined by the protein fragment. In this
coordinate system, the origin locates at the protein atom
in the middle, the xy plane is defined by the three protein
atoms, and the direction of the z axis points toward the
same side as the ligand atom (Fig. 2).
The PDBbind “general set” (version 2014) [52], which

provides the experimental binding data as well as proc-
essed structural files of 10,605 diverse protein-ligand
complexes in PDB, was employed to extract the inter-
action units observed on protein-ligand binding inter-
faces. The contacting atom pairs between the protein
and the ligand in each complex structure were exam-
ined, and then all possible interaction units containing
these contacting atom pairs were recorded. A total of
due and a phosphate group on the ligand molecule (PDB entry 1LOQ)
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6,762,383 interaction units were extracted from those
complex structures. In terms of components, these inter-
action units belonged to 9570 different types.

Detection of protein-ligand interaction patterns
In our method, “interaction patterns” refer to the inter-
action units with a higher level of statistical preference,
which are presumed to be the key factors in protein-
ligand interaction. In order to detect such interaction
patterns, the interaction units recorded at the previous
step were analyzed. First, if a certain type of interaction
unit had an occurrence below 100, it was ignored due to
lack of significance. Then, the geometry of each
remaining type of interaction unit was examined by
using an algorithm based on the Gaussian Mixture
Model (GMM) [53]. The same algorithm was employed
by Rantannen et al. to investigate the spatial distribu-
tions of protein atoms around some pre-defined ligand
fragments [54] as well as in Kinoshita’s study [51]. A
probability density function p(x) was used to describe
the event when a ligand atom at position x in the local
coordinate system interacts with a protein fragment:

p xð Þ ¼
XK

k¼1
πkNðxjμk ;ΣkÞ ð5Þ

Here, p(x) is computed as the sum of a number of
Gaussian components. Nðxjμk ;ΣkÞ is a Gaussian distri-
bution with a peak at μk and a covariance matrix of Σk .
πk is a weight factor for this Gaussian component. The
parameters μk ;Σk and πk were all derived by maximizing
the likelihood of the data point x in the distribution
given by GMM through a variational Bayesian analysis.
The maximal number of Gaussian components in each
GMM, i.e. K, was set to 15 by default. Then, K was re-
duced during a learning process where parameter πk was
adjusted to zero for unnecessary Gaussian components.
Then, each remaining Gaussian component, if it had an
Fig. 3 Illustration of how the 3D interaction fingerprints used in structural
ligand molecule. b Only the pocket residues carrying an interaction pattern
nodes, where one node is placed on the alpha-carbon of the residue and
occurrence over 100 and its weight factor πk ≥ 0.01, was
recorded as a significant interaction pattern.
In plain words, the above process derived the preferred

positions of the ligand atom relative to the protein frag-
ment in each type of interaction unit. Each of them rep-
resents a preferred geometry of this type of interaction
unit. For the 9570 different types of interaction units re-
corded at the previous step, a total of 16,272 interaction
patterns were detected.
Then, the key protein-ligand interactions in a given

complex structure can be represented by a set of inter-
action patterns (Fig. 3). For this purpose, the ligand
binding pocket on the target protein was defined first to
include all amino acid residues within 4.5 Å from the
ligand molecule. Next, all interaction units formed be-
tween pocket residues and the ligand molecule were ex-
tracted (Fig. 3a). Each interaction unit was examined to
see if it matched to any of the 16,272 recorded inter-
action patterns. The Mahalanobis distance [55] between
a given interaction unit (x) and a Gaussian component
of an interaction pattern of the same type (g) was com-
puted as [53]:

D x; gð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−μg

� �T
Σ−1
g x−μg
� �r

ð6Þ

If D(x, g) was smaller than 2.5, it was considered as a
match between x and g. Here, an interaction unit x could
be assigned to more than one Gaussian component. This
process was repeated until all extracted interaction units
had been examined. The outcome was a complete set of
protein-ligand interaction patterns observed in the given
complex structure (Fig. 3b).
Here, a technical issue is that interaction patterns can-

not be used directly to compare two complex structures.
It is because each complex is typically composed of
comparison are generated. a The original binding pocket and the
are kept. c Each interaction pattern is then degraded into a pair of

the other on the ligand atom relevant to this interaction pattern
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more than a dozen of interaction patterns (each of which
has four atoms), which is too sophisticated for designing
an efficient mapping algorithm based on atomic coordi-
nates. Some simplifications are thus necessary here. In
our method, an interaction pattern is degraded into a
pair of nodes: One node locates on the ligand atom,
which records the type of the ligand atom (e.g. “O.2”);
while the other locates on the backbone Cα atom of the
residue containing the protein fragment, which records
the type of the residue (e.g. “Arg”). In this way, the
complete set of interaction patterns is now simplified
into a set of nodes in space (Fig. 3c). The pocket resi-
dues that do not contribute any interaction pattern are
not included in this set of nodes.

Selection of the reference complex
By KGS2, the best reference complex for a query com-
plex is the one in the reference library sharing a max-
imal subset of interaction patterns with the query
complex. As mentioned above, each interaction pattern
can be simplified into a single node. Our algorithm for
finding the maximal common subset between two sets
of nodes is illustrated in Fig. 4 with a simplified example.
At the first step, all matched pairs of nodes between two
sets (P and Q) are detected. Here, two matched nodes
must have the same residue type or ligand atom type. A
hypothetical graph G is generated using each matched
pair of nodes as a new node. Two nodes, e.g. A-D and
B-C, are connected with an edge if the A-C distance in
set P is close enough to the B-D distance in set Q (Fig. 4a).
Two distances, e.g. d1 and d2, are considered to be close
enough if d1 < k·d2 (when d1 > d2) or d2 < k·d1 (when
d1 < d2), where k is an adjustable parameter with a default
Fig. 4 How the interaction fingerprints of two complexes (P and Q) are co
defined. Each element in this maximal clique is a matched pair of nodes. b
dashed circles) are superimposed. If the two nodes in a matched pair are cl
(those in solid circles). Overlapped node pairs are used in the computation
value of 1.1. Then, the Born-Kerbosch algorithm for clique
detection [56] is applied to identify the maximal clique in
graph G. At the second step, sets P and Q are superim-
posed by considering only the nodes in the maximal
clique. Then, a matched node pair is considered to be geo-
metrically “overlapped” if the distance between them is
shorter than 1 Å. Among all possible solutions of super-
imposition, only the one with the maximal number of
overlapped node pairs is retained (Fig. 4b).
In KGS2, a minimum of five pairs of overlapped nodes

are required to define complex P as a possible reference
complex for the query complex Q. Above this threshold,
the similarity index (SI) between P and Q is calculated
by the classical Tanimoto coefficient [57]:

SIpq ¼ Npq

Np þ Nq−Npq
ð7Þ

Here, Np and Nq are the numbers of nodes in the
interaction fingerprints of P and Q, respectively; Npq is
the maximal number of overlapped nodes between P
and Q. In order to search for the reference complex for
a query complex, each complex in the chosen reference
library is analyzed with the algorithms described through
section “Extraction of protein-ligand interaction units”
to “Detection of protein-ligand interaction patterns”, and
its similarity to the query complex is assessed using Eq. 7.
Here, one can also set a minimal similarity index required
in reference selection, i.e. the similarity index between
each candidate reference complex and the query complex
must be higher than this cutoff value. Then, the final ref-
erence complex is selected as the one sharing the highest
similarity index to the query complex.
mpared. a First, the maximal clique between node sets P and Q is
Then, the matched node pairs in the maximal clique (in solid or
ose enough (d < 1 Å), they are considered as geometrically overlapped
of the similarity index between P and Q
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Preparation of the reference library
The reference library used by KGS2 is an assembly of
known protein-ligand complex structures. Importantly,
the experimental binding data of each complex should
be available, which will provide the reference binding
data (Rexp) required in Eq. 4. In this study, the PDBbind
“general set” (version 2014) [52] was employed by us as
the default reference library in all test cases. This data
set includes 10,605 complexes formed between diverse
proteins and small-molecule ligands, each of which has
known 3D structure from PDB and experimental bind-
ing data (Kd, Ki, or IC50) curated from literature. This
data set is the largest one of this type in public domain
and thus is a good choice for our purpose. Each complex
structure was processed using methods described in our
previous work [16, 17], where the protein molecule was
saved in a PDB format file and the ligand molecule was
saved in a Mol2 or SDF format file. KGS2 read in each
complex structure, analyzed all of the protein-ligand
interaction units, and then output the selected inter-
action patterns into a special data file. It took KGS2
roughly 8 s to analyze one complex structure and re-
trieve the interaction patterns by a single-CPU job. It
took a whole day to process the entire PDBbind general
set (10,605 complexes). Nevertheless, this process needs
to be conducted only once for a chosen library, and thus
it is not a problem at all.
In fact, the computation time needed by KGS2 is con-

sumed mainly on comparing the given query complex with
each complex in the reference library. The computation
time needed for this job is roughly proportional to the
binding interface on the query complex. At average, it took
KGS2 around 6 min to screen the pre-processed PDBbind
general set (i.e. ~30 complexes per second) by a single-
CPU job. Note that this process can be easily accelerated
through parallel jobs. Moreover, in reality one probably will
not use a comprehensive, non-discriminatory reference
library as the PDBbind general set. A more practical ap-
proach is to use a smaller, focused reference library, which
is composed of, for example, complexes formed by the
same protein molecule as the query complex. Application
of KGS2 in that way will not require a significant amount
of computation time. Thus, KGS2 can work with fast scor-
ing functions nicely.
The computation time of KGS2 reported above was

obtained by conducting a single-CPU job in a “clean”
environment on a Dell Precision T5610 desktop work-
station (dual Intel Xeon E5–2609 v2 CPU @ 2.50GHz,
Intel C602 chipset, 16 GB DDR3 memory) running the
64-bit RedHat 6.4 Linux operation system.

Variations of the standard model
The standard model of KGS2 is described through sec-
tion “The overall strategy”–“Selection of the reference
complex” above. In order to make a comparison, three
variations were also considered in our study. As the
standard model, these variations all relied on Eq. 4 to
compute the binding affinity of a query complex.
Variation Model 1: This variation differed from the

standard model in how the adjustable parameter k in Eq.
4 was derived. In the standard model, the parameter k
for each scoring function under consideration was de-
rived through a regression analysis on the entire
PDBbind refined set (3446 complexes in total). Note that
there were overlaps between the refined set and the five
data sets used in our in situ scoring test. In order to in-
vestigate if such overlapping complexes could introduce
bias into the final results produced by KGS2, all k pa-
rameters used in this variation model were derived on
the remaining 2859 complexes in the refined set after
excluding the complexes overlapping with the five test
sets. All other aspects of this variation model were the
same as the standard model.
Variation Model 2: This variation differed from the

standard model in the algorithm used for reference se-
lection. It was designed to investigate if the 3D inter-
action fingerprints used in KGS2 was indeed superior to
an algorithm that did not rely on 3D structural informa-
tion. To compute a given query complex with this vari-
ation, the first step was to detect among the entire
reference library the complexes formed by the same pro-
tein as the query complex. For this purpose, the query
complex was compared to each complex in the reference
library in terms of protein sequence similarity. If the
similarity was above 95%, the two complexes were con-
sidered to be formed by the same protein. Here, The
similarity between two protein sequences was computed
with the CD-hit software released by PDB [58]. At the
second step, 2D structure of the ligand in the query
complex was compared to the ligands in those com-
plexes detected at the previous step. The similarity be-
tween two ligands was computed with the ECFP
fingerprints by using the CANVAS module in the Schrö-
dinger software (version 9.3.5, Schrödinger Inc.). The
final selected reference complex was the one that shared
the highest 2D ligand similarity with the query complex.
Variation Model 3: This variation also differed from the

standard model in the algorithm used for reference selec-
tion. It was designed to investigate if the 3D interaction
fingerprints used in KGS2 was superior to an algorithm
that was based only on the 3D protein structural informa-
tion. With this variation, comparison of two complex
structures also utilized the interactions patterns identified
between the protein and the ligand (Fig. 3c). However,
only the nodes associated with pocket residues were con-
sidered in comparison; while the nodes associated with
ligand atoms were ignored. All other aspects of this vari-
ation model were the same as the standard model.
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The first type of test: In situ scoring
KGS2 was first validated in so-called “in situ scoring”
test, where each scoring function was applied in combin-
ation with KGS2 to protein-ligand complexes with
known 3D structure to compute their binding affinities.
In addition, the three variation models as well as the ori-
ginal KGS method were also tested in order to make a
comparison. Performance of each combined scoring
scheme was assessed by the correlation between the
computed binding scores and the experimental binding
data of those complexes. Five well-established drug tar-
gets, including HIV-1 protease, carbonic anhydrase 2
(CA-2), beta-secretase 1 (BACE-1), beta-trypsin, and
checkpoint kinase 1 (CHK-1), were selected as the test
cases. All five proteins are established drug targets. A
significant number of complexes formed by each of
them are available, which is essential for achieving statis-
tical significance in subsequent analysis. The complexes
formed by these target proteins in the PDBbind general
set (version 2014) were retrieved, including 304 HIV-1
protease complexes, 230 CA-2 complexes, 223 BACE-1
complexes, 196 trypsin complexes, and 61 CHK-1 com-
plexes, respectively (see the Additional file 1: Table S1
and Figure S1). In addition to experimental binding data,
processed structural files for all complexes (i.e. protein
molecules in the PDB format and ligand molecules in
the SYBYL Mol2 and SDF format) were also obtained
from the PDBbind database. The methods for processing
those complex structures have been described in our
previous publication [17].
Four scoring functions were considered in this test, in-

cluding three scoring functions implemented in the
popular GOLD software (version 5.2, Cambridge Crys-
tallographic Data Center), i.e. ChemPLP [59], ASP [60],
and GoldScore [61], and a standalone scoring function
X-Score (version 1.3) [62]. Among them, ChemPLP and
X-Score are empirical scoring functions, ASP is based
on knowledge-based statistical potentials, while GoldScore
is essentially a force field-based model. Moreover, they are
the relatively successful ones in each category according
to the results obtained on some benchmarks [15, 17].
Technically, it is also convenient to apply these scoring
functions because they all directly accept the processed
structural files provided by PDBbind as inputs.
Then, all four scoring functions were applied to the

five test sets. For each test set, the binding scores of all
member complexes were computed first by applying
those scoring functions alone. Next, the default refer-
ence library used by KGS2 (i.e. the PDBbind general set)
was searched to select the reference complex for each
complex in the test set. Because all five test sets under
our consideration were also selected from the PDBbind
general set, the reference complex selected in each case
was examined to ensure that it was not identical to the
query complex (otherwise one would obtain 100% accur-
ate “predictions”). If a qualified reference complex was
found, adjusted binding scores for all four scoring func-
tions were computed with Eq. 4 based on the known
binding data of the reference complex. If not, the binding
scores were computed with Eq. 1. In either case, the com-
puted binding scores were given as binding constants in
logarithm (i.e. logKa). Finally, the Pearson correlation coef-
ficient (Rp) between the experimental binding data and
the computed binding scores for the entire test set was
calculated for each scoring function. The standard devi-
ation (SD) in fitting the computed binding scores to the
experimental binding data was used as a quantitative indi-
cator of accuracy in subsequent analysis. SD was chosen
instead of Rp for this purpose because SD is a quantity in-
dependent of sample size.

The second type of test: molecular docking
Our second type of test attempted to reflect the reality
in structure-based drug design more closely. The aim
was to model the structure-activity relationship of a
congeneric set of ligand molecules through molecular
docking and scoring. To select the appropriate test
sets, we focused on the target proteins already con-
sidered in the in situ scoring test. One data set for
HIV-1 protease, CA-2, BACE-I, and CHK-1, respect-
ively, were selected among the “validation sets” from
BindingDB (http://www.bindingdb.org/validation_sets/)
[63]. Trypsin was excluded here because there was no
validation set of trypsin inhibitors in the current release of
BindingDB (as by April, 2016). In order to select the data
sets employed in our study, each data set must contain at
least 10 ligand molecules with experimental binding data,
and the binding affinity range must be larger than 10 folds.
Besides, each data set was required to be retrieved from a
relatively recent study (e.g. published in the last 10 years).
The basic information of the four selected data sets is
summarized in Table 1.
As a useful feature of the validation sets from

BindingDB, the crystal complex structure of at least one
ligand molecule in each data set is available from PDB.
In our study, this particular complex structure was used
as the template for deriving the binding modes of all lig-
and molecules in the same data set. For each ligand mol-
ecule, the GOLD software (version 5.2, Cambridge
Crystallographic Data Center) was employed to generate
up to 100 ligand binding poses. The protein structure
was kept fixed during this process. The binding pocket
was defined by using the native ligand molecule in the
crystal complex structure with an envelop of 10 Å. The
“200% searching efficiency” parameter set was applied
during the sampling process, where the ChemPLP scor-
ing function in GOLD was chosen for ranking the gener-
ated ligand binding poses. In order to obtain results in

http://www.bindingdb.org/validation_sets


Table 1 Basic information of the four test sets used in the molecular docking test

Target protein Number of ligands Binding affinity range (nM) PDB ID of the template
complex structure

References given by BindingDB

HIV-1 protease 12 0.0045–5.3 2HB3 J Med Chem, 2006, 49:5252–61; J Med
Chem, 2009, 52:7689–705

Carbonic anhydrase 2 15 20–330 3MYQ Bioorg Med Chem, 2010, 18:7357–64;
Eur J Med Chem, 2012, 51:259–70.

Beta-secretase 1 14 3–380 2VJ7 Bioorg Med Chem Lett, 2008, 18:1022–6;
Bioorg Med Chem Lett, 2009, 19:3664–8

Checkpoint kinase 1 15 5–50,000 3U9N ACS Med Chem Lett, 2012, 3:123–128.
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consistence with the other ligands in the same data set,
binding poses of the ligand in the template complex struc-
ture were also generated through the same procedure.
The same four scoring functions (ChemPLP, ASP, Gold-

Score, and X-Score) were tested in combination with
KGS2 in this test. To predict the binding affinity of a lig-
and molecule, each scoring function was applied alone first
to rank all binding poses of this ligand by binding scores
computed with Eq. 1. The binding score of the top-ranked
binding pose was recorded as the binding affinity predicted
by this scoring function. Next, this scoring function was
applied in combination with KGS2 to re-rank all ligand
binding poses by the adjusted binding scores computed
with Eq. 4. Here, the reference library used by KGS2 was
also the PDBbind general set (version 2014). The similarity
cutoff for selecting the reference complex was set to 0.10.
This low cutoff was adopted in order to increase the
chance of finding a reference. In case that a reference
could not be found for the given complex, the binding
score was computed with Eq. 1 for instead. After all bind-
ing poses were re-processed in this way, the binding score
of the top-ranked binding pose was recorded as the bind-
ing affinity predicted by KGS2. After all ligand molecules
in a test set were computed through the above process,
the correlation between the experimental and the pre-
dicted binding data (including the original binding scores
produced by each scoring function alone and the adjusted
binding scores produced by applying KGS2) was analyzed.
The one achieving a higher correlation with the experi-
mental binding data was considered to be more accurate.
Our results obtained in the in situ scoring test indi-

cated that the performance of the three variation models
and the original KGS method was generally inferior to
the standard model of KGS2 (see Performance of three
variation models in the in situ scoring test). Thus, those
models were not considered further in this test.

Results and discussion
KGS2 versus KGS
KGS2 is developed as an upgrade of the original KGS
method. Therefore, we compare the performance of
KGS2 and KGS first. The results produced by the X-
Score scoring function in combination with KGS2 and
KGS on the entire PDBbind refined set are illustrated in
Fig. 5. Here, the advantage of KGS2 over KGS can be
seen in two aspects. Firstly, there is a “critical point” for
X-Score + KGS to produce more accurate binding scores
than X-Score alone, i.e. when the similarity cutoff re-
quired in reference selection is above 0.35 (Fig. 5a). This
observation is consistent with what was observed on
smaller data sets in our previous study [34]. In the case of
KGS2, however, there is no such a critical point (Fig. 5b).
The binding scores produced by X-Score + KGS2 are al-
ways more accurate in a statistical sense than X-Score
alone as long as appropriate references are available. Even
at the lowest similarity cutoff applied to reference selection
(i.e. SI ≥ 0.10), the errors produced by X-Score + KGS2 are
smaller by 0.3 logKa units (corresponding to one-fold
difference in binding constant) than those produced
by X-Score alone. Moreover, X-Score + KGS2 achieves
this level of improvement (i.e. smaller errors by 0.3 logKa

units) for nearly 1800 complexes in this data set. In con-
trast, X-Score + KGS achieves the same level of improve-
ment for about 400 complexes. In this sense, KGS2 is
about four times more effective than KGS on this data set.
Secondly, one would expect KGS2 to produce a more

accurate prediction if the selected reference complex
resembles the query complex more closely. Indeed, one
can see that the advantage of X-Score + KGS2 over X-
Score alone becomes more obvious where higher simi-
larities are required in reference selection (Fig. 5b).
When the required similarity is very high, e.g. SI ≥ 0.90,
the errors produced by X-Score + KGS2 are smaller than
X-Score alone by almost one logKa unit (i.e. ten-fold in
binding constant). The same trend is also observed for
X-Score + KGS at higher levels of required similarity
(Fig. 5a). However, the number of complexes to which
KGS is applicable drops rapidly in such circumstances.
For example, after the required similarity is above 0.70,
KGS is applicable to less than two dozens of complexes;
while KGS2 is still applicable to nearly 800 complexes.
These observations suggest that KGS2 is generally

more effective and more robust than the original KGS
method, which should be attributed to the new algo-
rithm designed for reference selection. The original KGS
method generates a target-based pharmacophore model



Fig. 5 Comparison of the performance of KGS2 and KGS on the
PDBbind refined set (version 2014). a The results given by X-Score + KGS;
b The results given by X-Score + KGS2. In both figures, the x-axis
indicates the similarity cutoff required in reference selection; The y-axis
indicates the standard deviation (in logKa units) in fitting the computed
binding scores to the experimental binding data on a particular subset
of complexes. The number near each data point indicates the size of
each subset, i.e. the number of complexes for which a reference
complex can be found at this level of similarity cutoff. Results produced
by X-Score alone are indicated by red round data points. Results
produced by X-Score + KGS or X-Score + KGS2 are indicated by black
triangular data points. Application of KGS or KGS2 produces more
accurate results than the scoring function alone when the black line is
below the red line
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inside binding pocket and then relies on it for selecting
the reference complex. Although KGS indeed produced
improved results in some test cases [34], we realized
later that too much protein-ligand interaction informa-
tion was actually lost during deduction of a target-based
pharmacophore model. A pharmacophore model carries
rather limited information because it consists of only a
small number of features in several categories (e.g.
hydrogen bond donor, hydrogen bond acceptor, positive/
negative charge center, and hydrophobic core). More-
over, structural information at the ligand side is com-
pletely ignored by KGS. Therefore, we turned to 3D
protein-ligand interaction fingerprints for instead to de-
velop KGS2. In literature, protein-ligand interaction fin-
gerprints can be generated with various algorithms,
ranging from 1D, 2D to 3D descriptors [35–50]. Our 3D
interaction fingerprints are based on the “interaction
patterns” derived through a statistical analysis of a large
set of protein-ligand complex structures. One set of
interaction fingerprints usually contains a much larger
number of elements (around 30 interaction patterns on
average, no upper limit) than a target-based pharmaco-
phore model used in KGS (around 8 features on average,
up to 15). Besides, such interaction fingerprints combine
20 residue types and 25 ligand atom types, which carry
more detailed information than a simple pharmacophore
model. Thus, KGS2 is in theory a better method than
KGS for encoding protein-ligand interactions.
Here, we provide one example to illustrate the advan-

tage of KGS2 over KGS in selecting a more appropriate
reference complex. PDB entry 2ZX7, a complex formed
by α-L-fucosidase and a small-molecule inhibitor, was
chosen as the query complex (Fig. 6a). The inhibition
constant (Ki) of this inhibitor was reported to be 32.2
pM (−logKi = 10.49) [64]. The binding score given by X-
Score for this complex was 6.34 in logKa units, which
deviated from the true value significantly. The reference
complex selected by KGS2 was PDB entry 2ZX8
(Ki = 231.4 pM; −logKi = 9.64) [64]. This complex is also
a complex formed by α-L-fucosidase, and the ligand
molecule in it is a close analog to that in the query
complex (Fig. 6b). On the other hand, the reference
complex selected by KGS was PDB entry 4B5W
(Ki = 0.47 mM; −logKi = 3.33) [65]. This complex is formed
by a different protein, i.e. 4-hydroxy-2-oxo -heptane-1,7-
dioate aldolase, and the ligand molecule therein basically
has nothing in common with the one in the query complex
(Fig. 6c). Apparently, the reference complex selected by
KGS2 resembled the query complex better. The adjusted
binding score given by X-Score + KGS2 was 9.24; whereas
the score given by X-Score + KGS was 4.98. In this case, a
significant improvement was achieved by KGS2, where the
absolute error was reduced from 4.15 to 1.25 logKa units.
In contrast, the binding score was adjusted to the wrong
direction by KGS, where the absolute error was increased
from 4.15 to 5.51 logKa units.

Performance of the standard model of KGS2 in the in situ
scoring test
Besides X-Score, the other three selected scoring func-
tions (ChemPLP, ASP, and GoldScore) were also applied
to compute the entire PDBbind refined set. The statis-
tical results between the experimental binding data and
the binding scores computed by all four scoring func-
tions are summarized in Table 2. The purpose here was
to obtain the parameter k needed in Eq. 4 for each



Fig. 6 One example illustrating the different reference complexes selected by KGS2 and KGS. a Binding pocket on the query complex, a complex
formed by α-L-fucosidase and an small-molecule inhibitor (PDB entry 2ZX7); (b) Binding pocket on the reference complex selected by KGS2,
which is also a complex formed by α-L-fucosidase (PDB entry 2ZX8); (c) Binding pocket on the reference complex selected by KGS, which is a
complex formed by 4-hydroxy-2-oxo-heptane-1,7-dioate aldolase (PDB entry 4B5W)
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scoring function. The statistical results produced by
those four scoring functions on the five test sets (i.e.
complexes of HIV-1 protease, CA-2, BACE-1, trypsin,
and CHK-1) are also summarized in Table 2. One can
see that all four scoring functions demonstrated case-
dependent performance, ranging from the very poor per-
formance (R ≈ 0) on HIV-1 protease complexes to the
more acceptable performance (R = 0.50 ~ 0.70) on
BACE-1, trypsin, and CHK-1 complexes.
The statistical results produced by KGS2 in combin-

ation with all four scoring functions on the HIV-1 prote-
ase test set are shown in Fig. 7. First of all, one can see
Table 2 Statistical results of the four selected scoring functions in th

Data sets X-Score ChemPLP

Ra SDb kc R SD

The PDBbind refined set
(N = 3446)

0.55 1.68 0.94 0.39 1.85

The PDBbind refined set
(N = 2859)d

0.52 1.65 0.97 0.41 1.76

HIV-1 protease
(N = 303)

0.08 1.71 — 0.01 1.73

Carbonic anhydrase 2
(N = 230)

0.35 1.45 — 0.40 1.43

Beta-secretase 1
(N = 223)

0.73 1.07 — 0.65 1.18

Beta-Trypsin
(N = 196)

0.75 1.34 — 0.55 1.52

Checkpoint kinase 1
(N = 61)

0.63 1.23 — 0.75 1.25

aPearson correlation coefficient between the experimental binding constants and th
bStandard deviation in regression (in logKa units)
cSlope of the regression line, which a parameter required in Eq. 4 for KGS2 to comp
dThis set of results were particularly derived for Variation Model 1 (see the descript
that application of KGS2 resulted in more accurate bind-
ing scores for all four scoring functions. Average errors
were reduced by 0.2 ~ 0.3 logKa units even at the lowest
similarity required in reference selection (i.e. SI ≥ 0.10).
The improvement achieved by KGS2 is even more
obvious at higher levels of required similarity, reaching
up to 0.5 ~ 0.6 logKa units. It should be noted that in
Fig. 7 (as well as Figs. 8, 9, 10 and 11), the several data
points at the far right end should be ignored because the
sample size in those cases is too small for deriving any
statistically meaningful conclusion. We also tested the
original KGS in combination with the four scoring
e in situ scoring test

ASP GoldScore

k R SD k R SD k

0.025 0.35 1.88 0.043 0.19 1.97 0.008

0.027 0.34 1.81 0.040 0.17 1.90 0.007

— −0.09 1.77 — −0.01 1.67 —

— 0.45 1.39 — 0.37 1.45 —

— 0.70 1.15 — 0.58 1.29 —

— 0.61 1.50 — 0.43 1.63 —

— 0.81 1.28 — 0.55 1.43 —

e binding scores produced by a scoring function

ute adjusted binding scores
ions in Preparation of the reference library)



Fig. 7 Results produced by four scoring functions, including (a) X-Score; b ChemPLP; c ASP; and (d) GoldScore, in combination with KGS2 on the
HIV-1 protease test set. All annotations in this figure are similar to those used in Fig. 5. Results produced by these scoring functions in combination
with KGS are given in the Additional file 1: Figure S2
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functions on this test set. The results are given in
Additional file 1: Figure S2. An observation common to
all four scoring functions is that KGS started to produce
more accurate binding scores only when the similarity
cutoff required in reference selection was above 0.40. In
contrast, there was no such critical point for KGS2 on
this test set. If the adjusted binding scores are required
to be at least 0.3 logKa units (corresponding to one-fold
difference in binding constant) more accurate than those
produced by standard scoring functions, KGS made it
for only 29 complexes; while KGS2 made it for 232 com-
plexes, accounting for 77% of the entire test set.
The statistical results produced by the four scoring

functions in combination with KGS2 on the other four
test sets (CA-2, BACE-1, beta-trypsin, and CHK-1) are
shown in Figs. 8, 9, 10 and 11, respectively. Similar to
the case of HIV-1 protease, the performance of KGS2 on
BACE-1 (Fig. 9) and beta-trypsin (Fig. 10) was also very
promising. Basically, KGS2 produced more accurate
binding scores in combination with all four scoring
functions regardless the similarity cutoff required in
reference selection. The improvement became more
obvious with higher similarity cutoffs required in
reference selection. On these two test sets, application of
KGS2 reduced the average error in computed binding
scores below 1.0 logKa units for a large fraction of
the test set (60% ~ 100% depending on the partner
scoring function).
On the contrary, KGS2 was not successful on the

CA-2 test set. Application of KGS2 in this case produced
essentially comparable results as standard scoring
functions, i.e. no obvious improvements were observed
(Fig. 8). On the CHK-1 test set, KGS2 was modestly suc-
cessful (Fig. 11). One can see that there was a “critical
point” for KGS2 to be effective, i.e. the similarity cutoff
required in reference selection needed to be above



Fig. 8 Performance of four scoring functions, including (a) X-Score; b ChemPLP; c ASP; and (d) GoldScore, in combination with KGS2 on the
carbonic anhydrase 2 test set. All annotations in this figure are similar to those used in Fig. 5. Results produced by these scoring functions in
combination with KGS are given in the Additional file 1: Figure S3
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0.30 ~ 0.40. Above this cutoff, KGS2 produced more ac-
curate binding scores for over half of this test set no mat-
ter which scoring function it worked with. According to
Eq. 7, assuming that the size of interaction fingerprints P
and Q is equal and half of their elements are in common,
the similarity index between them is 0.33. This gives one a
rough idea of how closely the reference complex should
resemble the query complex (i.e. half of the protein-ligand
interaction patterns in two complexes are in common)
when KGS2 became effective in this case.
The statistical results produced by the original KGS

method in combination with the four scoring functions
on the CA-2, BACE-1, beta-trypsin, and CHK-1 test sets
are given in Additional file 1: Figure S3-S6). Basically,
KGS2 produced more accurate binding scores for a sig-
nificantly larger number of samples in each test set than
KGS, including the CA-2 and CHK-1 test sets where
KGS2 was not very successful. In conclusion, the results
obtained in our in situ scoring test again demonstrate
the superior performance of KGS2 over KGS.

Performance of three variation models in the in situ
scoring test
Besides the standard model of KGS2, three variation
models (see Variations of the standard model) were
also examined in the in situ scoring test on the same
five test sets. The purpose was to validate the
algorithms implemented in KGS2 by a head-to-head
comparison. Note that the similarity cutoff required in
reference selection may vary between 0.1 and 1.0 when
applying KGS2 as well as the three variations. For the
sake of convenience, the statistical results produced by
each model at the similarity cutoff of 0.35 are summa-
rized in Table 3.



Fig. 9 Performance of four scoring functions, including (a) X-Score; b ChemPLP; c ASP; and (d) GoldScore, in combination with KGS2 on the
beta-secretase 1 test set. All annotations in this figure are similar to those used in Fig. 5. Results produced by these four scoring functions in
combination with KGS are given in the Additional file 1: Figure S4
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As for Variation Model 1, the parameter k in Eq. 4 for
each scoring function was derived on the PDBbind re-
fined set after excluding the complexes that overlapped
with the five test sets (i.e. 3446–587 = 2859 complexes).
The statistical results of all four scoring functions pro-
duced thereby are given in the second line in Table 2.
One can see that in all four cases, the regression results
(including Rp, SD, and k) obtained on the tailored refined
set were very close to those obtained on the full refined
set. This is understandable since only a minor fraction of
the refined set (17%) was excluded here. Besides, be-
cause the refined set is a large, non-discriminatory mix-
ture of diverse protein-ligand complexes, removing the
complexes formed by any particular target protein will
not cause a significant change to the genotypes/chemo-
types included in this data set. The statistical results pro-
duced by Variation Model 1 on the five test sets are
given in Table 3, which are almost identical in every
aspect as those produced by the standard model of
KGS2. Given the fact that the k parameters are really
close in both models, this observation is not surprising.
Therefore, we conclude that if KGS2 is to be evaluated
on other target proteins, it is not necessary either to re-
move the relevant complexes from its default reference
library when deriving the parameter k in Eq. 4.
Variation Model 2 was designed to investigate if the 3D

interaction fingerprints used in KGS2 was really helpful. It
is generally assumed that small-molecule compounds
sharing similar 2D chemical structures tend to have simi-
lar properties or activities. Within the framework of
KGS2, it is also possible to select the reference complex
by simply comparing the 2D chemical structures of ligand
molecules. The statistical results produced by Variation
Model 2 at the similarity cutoff of 0.35 are given in Table
3; while the full results produced by Variation Model 2
can be found in the Additional file 1: Figure S7-S11. One



Fig. 10 Performance of four scoring functions, including (a) X-Score; b ChemPLP; c ASP; and (d) GoldScore, in combination with KGS2 on the
beta-trypsin test set. All annotations in this figure are similar to those used in Fig. 5. Results produced by these scoring functions in combination
with KGS are given in the Additional file 1: Figure S5
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can see that Variation Model 2 was most successful in the
case of trypsin and CA-2, where it reduced error consist-
ently by 0.3 ~ 0.7 logKa units among applicable samples.
Interestingly, Variation Model 2 was effective in the case
of CA-2; whereas KGS2 was not. Nevertheless, in the case
of BACE-1, the performance of Variation Model 2 varied
upon the similarity cutoff as well as the partner scoring
function, where no obvious trend was observed. In the
case of HIV-1 protease and CHK-1, Variation Model 2
failed badly, where it actually produced worse binding
scores than standard scoring functions. It is fair to con-
clude that the performance of the standard model of
KGS2 is more robust than Variation Model 2 on those test
sets. Thus, it proves that including 3D structural informa-
tion in the interaction fingerprints employed by KGS2 is
indeed helpful.
Variation Model 3 was designed to investigate if
including the structural information from the ligand side
in the interaction fingerprints employed by KGS2 was
really helpful. This is a valid question because some
forms of 3D interaction fingerprints are designed based
on protein structures only [45]. The results produced by
Variation Model 3 at the similarity cutoff of 0.35 are
given in Table 3; while the full results produced by
Variation Model 3 can be found in the Additional file 1:
Figure S12-S16. Generally speaking, Variation Model 3
was effective in the case of HIV-1 protease and trypsin,
where it yielded reduced errors of 0.1 ~ 0.4 logKa units
depending on the applied similarity cutoff as well as the
partner scoring function. However, it was not effective
on the other three test sets. Unlike Variation Model 2, it
did not produce worse binding scores in those cases.



Fig. 11 Performance of four scoring functions, including (a) X-Score; b ChemPLP; c ASP; and (d) GoldScore, in combination with KGS2 on the
checkpoint kinase 1 test set. All annotations in this figure are similar to those used in Fig. 5. Results produced by these scoring functions in
combination with KGS are given in the Additional file 1: Figure S6
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Compared to the standard model, the overall performance
of Variation Model 3 is consistently inferior on each test
set. Thus, we conclude that the 3D interaction fingerprints
employed by KGS2 is more effective than the algorithm
that considers protein structures only.

Performance in the molecular docking tests
In our in situ scoring test, the binding affinity of a
protein-ligand complex was computed based on its ex-
perimentally resolved 3D structure. This is of course not
practical in reality because obtaining a complex struc-
ture is far more difficult than conducting a decent bind-
ing assay. Thus, the in situ scoring test in our study
actually serves as a proof-of-concept. Our second type
of test was designed to mimic the reality in structure-
based drug design more closely. Assuming that the bind-
ing affinity data of a set of ligand molecules have been
measured, now a molecular modeler chooses to employ
molecular docking to derive the binding modes of these
compounds and also attempt to compute their binding
affinities. Here, the purpose is to interpret the
structure-activity relationship of these compounds to
provide a guidance for further structural optimization.
The quality of such a workflow is typically judged by
how well the computed binding data explain experi-
mental observations.
The statistical results produced by four scoring func-

tions on the four selected test sets are summarized in
Table 4. First of all, one can see that the standard dock-
ing/scoring methods were not very successful in repro-
ducing the structure-activity relationships on these four
test sets. According to the classical theory of statistics
[66], a correlation coefficient R > 0.45 (i.e. R2 > 0.20) in-
dicates a statistically significant correlation for a data set
of 12 ~ 15 samples at the 90% confidence level. By this
standard, only one out of the total 16 trials (four scoring



Table 3 Statistical results produced by the standard model of KGS2 and three variations in the in situ scoring testa

Test set Partner scoring
function

Standard model of KGS2 Variation model 1 Variation model 2 Variation model 3

Average
reduced
errorb

Applicable
samples

Average
reduced
errorb

Applicable
samples

Average
reduced
errorb

Applicable
samples

Average
reduced
errorb

Applicable
samples

HIV-1 protease
(N = 303)

X-Score 0.41 227 0.41 227 −0.11 137 0.17 266

ChemPLP 0.45 227 0.46 227 −0.12 137 0.11 266

ASP 0.38 227 0.36 227 −0.22 137 0.08 266

GoldScore 0.26 227 0.25 227 −0.29 137 0.03 266

Carbonic anhydrase 2
(N = 230)

X-Score −0.05 189 −0.05 189 0.25 75 −0.04 203

ChemPLP −0.13 189 −0.13 189 0.25 75 0.00 203

ASP −0.10 189 −0.10 189 0.21 75 −0.02 203

GoldScore −0.10 189 −0.09 189 0.22 75 0.04 203

Beta-secretase 1
(N = 223)

X-Score 0.12 162 0.12 162 −0.09 9 −0.04 184

ChemPLP 0.13 162 0.13 162 −0.15 9 −0.07 184

ASP 0.14 162 0.14 162 −0.04 9 −0.07 184

GoldScore 0.29 162 0.30 162 0.45 9 0.03 184

Beta-Trypsin
(N = 196)

X-Score 0.33 157 0.33 157 0.37 66 0.05 164

ChemPLP 0.47 157 0.46 157 0.55 66 0.24 164

ASP 0.43 157 0.44 157 0.57 66 0.26 164

GoldScore 0.59 157 0.60 157 0.71 66 0.39 164

Checkpoint kinase 1
(N = 61)

X-Score 0.00 37 0.00 37 −0.67 3 −0.10 48

ChemPLP 0.00 37 0.00 37 −0.71 3 −0.00 48

ASP 0.05 37 0.04 37 −0.70 3 0.06 48

GoldScore −0.01 37 −0.01 37 −0.61 3 0.07 48
aThe similarity cutoff used in reference selection was 0.35 for all models listed in this table
bAverage reduced error (in logKa units) after application of KGS2, e.g. error by X-Score minus error by X-Score + KGS2. This value was computed among all
applicable samples at the given similarity cutoff
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functions × four test sets = 16 individual trials) achieved a
significant correlation, i.e. ChemPLP on the HIV-1 prote-
ase test set (R2 = 0.244). This result demonstrates again
that binding affinity prediction is still a very challenging
task for today’s standard docking/scoring methods.
As shown in Table 4, the performance of KGS2 here

was dependent on the target protein as well as the partner
Table 4 Performance of four scoring functions in combination with

Scoring scheme Squared correlation coefficient (R2) between e

HIV-1 protease
(N = 12)

Carbonic anhydr
(N = 15)

X-Score 0.000 0.194

X-Score + KGS2 0.012 0.195

ChemPLP 0.244 0.004

ChemPLP + KGS2 0.364 0.041

ASP 0.162 0.054

ASP + KGS2 0.168 0.123

GoldScore 0.086 0.086

GoldScore + KGS2 0.238 0.092
scoring function. In the case of HIV-1 protease, KGS2 led
to improved results with ChemPLP and GoldScore but
not the other two scoring functions. In the case of CA-2
and BACE-1, KGS2 had no obvious effect with all four
scoring functions. Relatively successful results were ob-
tained in the case of CHK-1, where KGS2 led to improved
results with all four scoring functions. If still taking
KGS2 in the molecular docking test

xperimental and computed binding data

ase 2 Beta-secretase 1
(N = 14)

Checkpoint kinase 1
(N = 15)

0.055 0.005

0.028 0.149

0.058 0.077

0.000 0.239

0.016 0.120

0.000 0.246

0.019 0.023

0.082 0.216
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R > 0.45 as the threshold, the total number of trials where
a significant correlation was achieved increased from one
to five after application of KGS2, including ChemPLP and
GoldScore on HIV-1 protease, ChemPLP, ASP, and
GoldScore on CHK-1.
Here, we further discuss the results produced by

ChemPLP + KGS2 on the test set of HIV-1 protease as an
example. Basic information of this data set as well as the
computed results given by ChemPLP and ChemPLP + KGS2
are given in Additional file 1: Table S2. In this case,
ChemPLP alone produced R2 = 0.244 (Fig. 12a). After ap-
plication of KGS2, all samples in this data set except two
outliers were lined up quite well, where the correlation
was improved to R2 = 0.364 (Fig. 12b). The reason is that
a different top-ranked binding pose for each ligand
molecule could be selected by KGS2. One example is
shown in Fig. 13, which illustrates the top-ranked binding
pose selected by ChemPLP alone and the one by
ChemPLP + KGS2. One can see that these two binding
poses differ from each other in the benzyl moiety and the
bicyclic hexahydro-2H-cyclopenta furan moiety; while the
rest parts of this ligand molecule basically overlap. The
overall RMSD value between these two binding poses is
only 0.42 Å. It is interesting to observe that the 3D
interaction fingerprints employed by KGS2 are able to
distinguish such subtle conformational difference. This
observation demonstrates why KGS2 may be used to re-
rank the binding poses generated by a conventional mo-
lecular docking method.
Generally speaking, KGS2 demonstrated only modest

success in this set of molecular docking tests. But this
can be attributed to an obvious reason: As indicated by
the very low R values, the standard docking/scoring
methods employed by us were not very successful in de-
riving the structure-activity relationships of those four
test sets at the first place. KGS2 is essentially a method
for making corrections to the outcomes of a standard
scoring function. If the scoring function itself produces
terrible results, KGS2 cannot magically solve the prob-
lem because the starting point given to it is too poor. In
our opinion, this is the primary limitation for applying
KGS2 in practice.
It needs to be mentioned, however, that the disap-

pointing performance of GOLD on those four test sets
does not imply that it will always fail in such a scenario.
In fact, numerous successful applications of GOLD have
been reported in literature. If the ligand binding poses
were prepared more carefully by fine-tuning the adjust-
able parameters used in GOLD or even employing mo-
lecular dynamics simulations, binding affinities of those
several sets of ligand molecules may be reproduced bet-
ter. In short, the molecular docking results in this set of
test were obtained in a straightforward, “pain free” man-
ner, which intended to mimic the routine jobs done by a
molecular modeler. Yet, application of KGS2 still led to
some encouraging improvements. We suggest that one
should apply KGS2 in combination with a capable compu-
tational method that can generate reliable ligand binding
modes, and in turn KGS2 will be more likely to produce
more accurate predictions of ligand binding affinity.

Advantages and limitations of the KGS2 method
In this study, four selected scoring functions were
evaluated in in situ scoring and molecular docking tests.
Generally speaking, those scoring functions did not re-
produce known ligand binding affinities well in both sets
of tests (Tables 2 and 4). Besides, our results indicate
that their performance is largely case-dependent. Cus-
tomized scoring functions offer an appealing approach
to overcome this difficulty. However, development and
application of customized scoring functions are con-
fronted with certain technical inconvenience. Thus,
alternative approaches are also welcome by the end
users in this field.
Our KGS2 method is developed as a convenient “add-

on” to make current all-purpose scoring functions work
as customized scoring functions. An obvious technical
advantage of KGS2 is that in theory, it may be applied in
combination with any scoring function (or other types of
scoring methods). It is demonstrated in our study that
KGS2 indeed worked with different types of scoring
functions in a non-discriminatory manner to produce
more accurate binding scores. Besides, one does not
need to re-engineer a scoring function before applying
KGS2. The only important input required from the user
side is a “reference library”, i.e. a data set of protein-
ligand complexes with known 3D structures and experi-
mental binding data. Ideally, this reference library should
consist of a sufficient number of protein-ligand com-
plexes formed by the same target protein as the query.
Such a library may be compiled from public data
resources, such as the PDBbind database. Users in
pharmaceutical companies have the privilege to utilize
their internal data for this purpose. Use of an external
reference library is more flexible when one needs to deal
with different target proteins: Once a different target
protein is under consideration, one just needs to replace
the reference library. If one does not bother to switch
between different reference libraries, a comprehensive
reference library containing diverse protein-ligand com-
plexes may be employed as default.
Another advantage of KGS2 lies in the fact that KGS2

is essentially an interpolation method. More accurate
predictions can be made through interpolation if more
data points are known in the problem space. Knowledge
of protein-ligand complex structures and binding data is
being accumulated rapidly. For example, the total
number of protein-ligand complexes recorded in the



Fig. 12 Correlation between the experimental and computed binding data on the HIV-1 protease data set in the molecular docking test. a Given
by ChemPLP alone: R2 = 0.244; b Given by ChemPLP + KGS2: R2 = 0.364
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PDBbind database increases by 10% each year. Conse-
quently, larger and finer references libraries may be com-
plied for KGS2, which in turn is expected to produce
more accurate results based on them. Customized scoring
functions of course can utilize the increasing knowledge
of protein-ligand complex structures and binding data as
well, for example, by conducting parameterization on lar-
ger data sets. However, the accuracy of customized scoring
functions will not improve in a proportional manner with
the expansion of data sets. In contrast, an interpolation
method benefits from data expansion more directly.
The limitations of KGS2 also need to be mentioned
clearly. First, KGS2 will not be useful if an appropriate
reference complex cannot be found for the query com-
plex. It is usually not a problem for a well-established
target protein where abundant complex structures and
binding data have been accumulated. However, if one
deals with a rare or new target protein, it is possible that
KGS2 is not applicable at all. The second limitation is
that our definition of interaction units does not account
for some special components, such as structural water
molecules and metal ions located in the binding pocket.



Fig. 13 Superposition of the binding pose selected by ChemPLP alone (in cyan) and the binding pose selected by ChemPLP + KGS2 (in magenta) for
ligand BDBM13924 in the HIV-1 protease test set. The target protein in the complex is concealed in this figure
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Those components are important in some cases because
they bridge the interactions between protein and ligand. Ig-
noring such components certainly has a negative impact.
For example, KGS2 was not very successful in the case of
CA-2 in our in situ scoring test, where CA-2 is the only one
among the five selected target proteins that has a metal ion
inside its binding pocket. In addition, by our current algo-
rithm each interaction pattern makes an equal contribution
when two complex structures are compared (Equation 7).
But this is not always true. For example, a hydrogen bond
is presumably more critical than two contacting hydro-
phobic groups. Within the theoretical framework of
KGS2, there is still plenty of room for improvements.
Finally, the potential applications of KGS2 in

structure-based drug design should be discussed. As in-
dicated by its name, i.e. “Knowledge-Guided Scoring”,
KGS2 is designed primarily as a “scoring” method for
binding affinity prediction. As demonstrated in the sec-
ond set of tests conducted in this study (i.e. the molecu-
lar docking test), KGS2 can be used in combination with
standard docking/scoring protocols to interpret the
structure-activity relationship of a congeneric set of lead
compounds. The outcome of such effort provides a guid-
ance for further structural optimization of those com-
pounds, which is particularly useful when experimental
techniques cannot resolve the desired protein-ligand
complex structures in a timely manner. More rigorous
methods, such as the free energy perturbation (FEP)
method [67, 68] and the MM-GB/SA (or MM-PB/SA)
method [69, 70], are often employed for the same type
of task as well. But those sampling-based methods are
computationally more expensive. In contrast, our KGS2
method is designed to work with standard scoring
functions to provide the users quick feedbacks. Cur-
rently, we do not recommend the users to apply KGS2
to virtual screening jobs since it has not been tuned to-
ward this type of task yet.

Conclusions
Our KGS2 method can serve as a convenient “add-on” to
enhance the performance of current scoring functions in
binding affinity prediction without the need to re-engineer
them. As compared to the original KGS method, the major
improvement in KGS2 is the introduction of 3D protein-
ligand interaction fingerprints as the basis of comparing
complex structures. In this study, KGS2 was first validated
on a set of in situ scoring tests, where a non-discriminatory
set of protein-ligand complexes and five sets of complexes
formed by HIV-1 protease, CA-2, BACE-1, beta-trypsin,
and CHK-1, respectively. The results obtained in this test
indicated that KGS2 consistently outperformed KGS in all
cases. The performance of KGS2 was also more robust
than two variations (i.e. Variation Model 2 and Variation
Model 3) which employed different algorithms in reference
selection. Moreover, KGS2 produced more accurate bind-
ing scores in combination with all four different scoring
functions (ChemPLP, ASP, GoldScore, and X-Score) on four
out of five test sets. These results verify our assumption
that KGS2 in principle can work with any scoring function
and is applicable to various target proteins.
In this study, a more challenging set of molecular dock-

ing tests were also conducted on four sets of ligands of
HIV-1 protease, CA-2, BACE-1, and CHK-1, respectively.
The four scoring functions, if applied alone, achieved ra-
ther limited success on those data sets. Here, application
of KGS2 did not lead to an improvement as obviously as
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in the in situ scoring test. However, it did increase the
number of significant correlation from one to five out of a
total of 16 trials. As the in situ scoring test serves as a
proof-of-concept, this test demonstrates the possible
application of KGS2 in practice, i.e. interpreting the
structure-activity relationship of congeneric lead com-
pounds to guide further structural optimization. The po-
tential of KGS2 in other types of tasks, such as virtual
screening and de novo design, has yet to be explored.
Additional file

Additional file 1: Addtional tables (Table S1-S2) and figures
(Figure S1-S16) mentioned in the main text. (PDF 3600 kb)
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