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Abstract

Background: Functional annotation of bacterial genomes is an obligatory and crucially important step of
information processing from the genome sequences into cellular mechanisms. However, there is a lack of
computational methods to evaluate the quality of functional assignments.

Results: We developed a genome-scale model that assigns Bayesian probability to each gene utilizing a known
property of functional similarity between neighboring genes in bacteria.

Conclusions: Our model clearly distinguished true annotation from random annotation with Bayesian annotation
probability >0.95. Our model will provide a useful guide to quantitatively evaluate functional annotation methods
and to detect gene sets with reliable annotations.
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Background
During recent years, technological advances have en-
abled the rapid and affordable sequencing of organisms
from all kingdoms of life. In 2011 the volume of the
NCBI Sequence Read Archive crossed a remarkable size
of 100 TB [1], and more than 22,000 complete or nearly
complete genomes are available for bacterial organisms
with the number increasing by >1000 each month [2, 3].
Functional annotation of bacterial genomes is an obliga-
tory and crucially important step of information process-
ing from the genome sequences toward insights into
cellular mechanisms, putative ecological roles, or pre-
dictive models of a given organism or microbial commu-
nity. Numerous software packages, databases, platforms,
and score filters involve computational pipelines that
assign functions to the genes [4]. However, the sequence
information is only as good and useful as the functional
annotation when it has functional annotation attached
to it. The function of genes is central for all biological
insights, including interpretation and design of experi-
ments and comparative genomic analysis, as well as the

input data for metabolic and regulatory models [5, 6]. The
manual curation or experimental verification [7] is un-
likely to be feasible when >1000 genomes are added each
month. Accordingly, there is a greater urgency to have
computational tools for genome annotation validation [8].
In the literature, “annotation quality” sometimes refers

to the precision of finding an exact start site for the
genes in the genome [8, 9]. When the location of a gene
is determined incorrectly, it follows that functional an-
notation will more likely be incorrect as well. Therefore,
the gene finding problem is an important part of the
process for genome annotation. In this work, we aim to
address annotation consistency at the level where genes
are found and annotated by standard protein function
annotation, Gene Ontology (GO) terms, organized in a
hierarchical fashion [10]. The benefits of function anno-
tation by GO are a systematic control vocabulary that
enables cross-comparison over different genomes and a
higher percentage of genes in the genome that can be
annotated because of different levels of information of
GO hierarchy.
In an approach described by Skunca et al. [11], the

authors measured the annotation quality of individual
GO terms using experimental verifications and estimated
the annotation quality of the database UniProt-GOA
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over time. This approach dealt with relatively small data-
sets composed of model organisms because it was
dependent on experimental verifications. Alternatively, the
occurrence of annotation terms was used in a recent com-
putational study [12], which indicated that the manually
curated annotations have more natural lexical properties
than automatically generated ones, but this method was a
bulk analysis within the annotation database and it does
not describe the annotation quality of any particular gen-
ome. In other studies, authors have used multiple tools
and performed manual analysis of the problematic anno-
tations [13, 14]. These are reliable approaches, but they
are clearly not scalable to dozens of genomes.
Our approach to the validation of gene annotation uti-

lized a well-known and fundamental property of the
bacterial genomes: functionally coordinated genes tend
to be physically closer on a chromosome than the aver-
age gene [15–17]. However, this property was rarely
used by others except in a semiquantitative way [18],
which used the property to find functional annotations
especially for difficult cases of hypothetical proteins. The
novel idea of our work (described in Methods in detail)

is illustrated in Fig. 1. In this study, a gene neighborhood
is defined as three left and right genes of a given gene
along the chromosome. We developed an analytical ap-
proach to measure gene function similarity (GFS) for each
neighboring pair of genes, applied Bayesian statistics to
integrate gene neighborhood information of annotation,
and then finally, computed the probability of annotation
confidence (PAC) for each gene that has at least one GFS
score available within its neighborhood, given that func-
tional assignment with very few and well-controlled em-
pirical assumptions is correct. Our method provides
genome annotation assessment through the annotation
evaluation of all individual genes in the genome.

Results
Probability of annotation confidence
We applied our methodology to Escherichia coli and
Clostridium thermocellum to calculate the PAC for NCBI
annotation (assumed to be a well annotation) and com-
pared it with “random” annotation. For each gene with an
annotation in E. coli, the random annotation was gener-
ated by assigning a random annotation selected from 8

Fig. 1 Gene neighborhood and gene function similarity. a Gene neighborhood. b Gene function similarity. a In this study, we looked at three
genes in the upstream and downstream directions for neighboring genes of a given gene G. For a gene G, the neighboring gene at +2 is from
an opposite strand upstream and genes colored in red are organized onto the same operon with the gene G. The functional relationship with
neighboring genes within the neighborhood of [−3, 3] is integrated into the formula to calculate PAC where strand and operon information can
be integrated into the Eq. (4) (described in Methods). b For a pair of two GO terms, function similarity (GOsim) measures how much detailed
functional information (low-level GO terms on a GO graph) is shared. All dotted ovals represent GO terms assigned to genes where the +2 gene
does not have a GO term assigned to it, such that GOsim(G+2, G) is not available. All ovals over the dotted ovals represent predecessor GO terms
of assigned GO terms to genes excluding root GO terms on a GO graph. The ovals lined in black mean that corresponding GO terms do not
occur, and the ovals lined in blue mean that corresponding GO terms occur in a set of predecessor GO terms of a given gene G
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million bacterial and archael proteins from UniProtKB/
Swiss and UniProtKB/TreEMBL [19] and the NCBI Refer-
ence Sequence databases [20]. Note that the random an-
notation may happen to be correct or partially correct by
chance. Figure 2a shows histograms of PAC values (which
are Bayesian annotation probabilities described in
Methods) for E. coli and Fig. 2b for C. thermocellum for
NCBI annotations and simulated random annotations. For
the study in Fig. 2, the simplest model was considered
where the independence of function similarities within the
gene neighborhood was assumed and information for
the operon and strand was not integrated. Note that
conditional probabilities derived from each genome
were applied to the genome, respectively, for the PAC

calculations in Fig. 2. The total number of genes con-
sidered in Fig. 2a was 3117 (of 4147 genes), among
which 1021 genes had a probability range from 0.95 to
1.00. The distribution of probabilities of the random
annotations showed only 49 genes in the probability
bin [0.95, 1]. The NCBI annotations with lower PAC
values may come from an insufficient number of
detectable function similarities with genes in the
neighborhood that were derived from the uncovered
knowledge of GO annotation and graph structure. We
proposed to use a fraction of genes in the probability
bin [0.95, 1] as the annotation quality score (AQS)
showing distinct differences between NCBI annotation
and random annotation. Hence, the NCBI annotation

Fig. 2 Distributions of PAC values of NCBI and random annotations for (a) E. coli and (b) C. thermocellum. a Using conditional probabilities
derived from a given genome and observed gene function similarities, we calculated PAC values for NCBI annotation (assumed to be correct)
and random annotation (assumed to be incorrect) for the E. coli strain K-12 substrain MG1655. The probability bin [0.95, 1] has 1021 genes for
NCBI annotation and 49 genes for random annotation of 3117 genes applicable to PAC calculation. b We applied the same methodology to C.
thermocellum. The probability bin [0.95, 1] contains 403 genes for NCBI annotation and 25 genes for random annotation among 1617 genes
applicable to PAC calculation
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of E. coli has an AQS of 0.33 (= 1021/3117) and the
random annotation of E. coli has an AQS of 0.016
(= 49/3117). The analogous distributions to C. ther-
mocellum were plotted in Fig. 2b, and the AQS for
C. thermocellum NCBI annotation amounted to 0.24,
whereas its random annotation had a similar score
to E. coli, 0.015. We used C. thermocellum as an ex-
ample of a genome that is evolutionarily distant from
E. coli and most certainly is more difficult to annotate as
comprehensively as E. coli. The C. thermocellum annota-
tion contained a large number of hypothetical genes
(~31% of the genome), as well as genes with annotations
not fitted into GO classification (~16%). As a result of
those adverse factors, only 1617 genes were applicable to
a PAC calculation, such that it is reasonable for the AQS
for C. thermocellum to be lower than the one for E. coli,
but the difference is not overwhelmingly huge. Figure 3
provides another important assessment for checking the
developed methodology. Figure 3a and b accumulated all
collected annotations (correct plus incorrect annotation)
for each probability bin. The x-axis represents the
right-end PAC value (Bayesian annotation probability)
for a bin and the y-axis represents the fraction of
true annotations among annotations collected for the
bin. On both plots, our model showed a slight over-
estimation (points over diagonal) and underestimation
(points under diagonal) of the sensitivity. However,
the probability bin [0.95, 1] showed sensitivity fairly
close to the diagonal. Furthermore, both diagonal
plots looked almost identical, suggesting the robust
properties of the developed methodology even though
the annotation of C. thermocellum showed sparse
functional annotation compared to E. coli.

Operon structure inclusion into the PAC
So far, we have shown results generated from the sim-
plest model, which used gene function similarities within
the gene neighborhood that are assumed to be inde-
pendent of each other, and clearly distinguished a good
quality of annotation from random annotation with the
PAC. Yet, a simple integration of the operon structure,
which would introduce a separate uncertainty factor in
the analysis, could be done by a hybrid system that uses
operon-derived conditional probabilities for the genes
that are certainly in the same operons and another set of
probabilities for the genes that are not. However, in this
study, we explored operon structure into PAC by count-
ing only the neighboring genes that are deemed to be on
the same operon with a given gene in the formula (4) in
Methods. For E. coli, inclusion of the operon structure
showed rather dramatic changes in the distribution of
PAC values in Fig. 4. First, the number of genes with
assigned probabilities was reduced significantly because
pairs of genes on the same operon were only considered
when calculating gene function similarity. The probabil-
ities were assigned only to 1816 genes of 3117 genes in
the “no-operon” model. However, there were still 916
genes found in the highly reliable category [0.95, 1] com-
pared to 1021 for the no-operon model (50% of genes
for the operon model versus 33% of genes for the no-
operon model in the bin [0.95, 1]). The distribution of
PAC values in Fig. 4 was much cleaner in a sense that a
lower number of genes with PAC values <0.95 were
found but still showed a similar shift. However, the dis-
tribution for the random annotations had a peak around
0 probability. Summarizing the statement above, Fig. 5
represents the normalized number of genes with PAC

Fig. 3 Diagonal plots of fractions of correct annotations for (a) E. coli and (b) C. thermocellum. The x-axis represents the right-end PAC value for a
given bin, and the y-axis represents a fraction of correct annotations (NCBI annotations) among all annotations (correct and incorrect) collected
for the bin. The points over and under the diagonal indicate overestimation and underestimation of fractions of correct annotations, respectively.
In general, we observed points fairly close to the diagonal with both plots
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values by the total number of genes applicable to PAC
calculation for the no-operon and operon models, re-
spectively. Both plots clearly showed that inclusion of
the operon structure into our model contributes to a
better distinction between NCBI annotation and random
annotation.

Experiments with gene shuffling
To investigate how our model for annotation validation
responds to the increased number of incorrect annota-
tions, we generated annotations with “almost correct
functional predictions” through “disturbances by gene
shuffling” with NCBI annotation of E. coli. In each ex-
periment, we randomly selected Nr pairs of genes with

annotations by GO terms and exchanged annotations of
the selected pairs where annotations were only used
once for shuffling. The shuffling procedure was repeated
100 times for each Nr. Figure 6 represents distributions
of PAC values of the shuffled annotations where each
column shows the average number of genes within a
probability bin over 100 repeats and the error bars show
1 standard deviation (SD). Figure 6a was constructed for
Nr = 100, such that 200 genes likely had the wrong an-
notations. We did not make any additional check on the
shuffling process to determine whether it is possible that
the shuffling process would swap close or even identical
annotations. The SD was small for all probability bins.
For example, the average and SD for the probability bin

Fig. 4 Operon structure inclusion into annotation probability with E. coli. The predicted operon information of E. coli was integrated in PAC
values by considering genes on the same operons for NCBI and random annotation

Fig. 5 Comparison of no-operon and operon models with E. coli. The y-axis represents the normalized number of genes within a probability bin
by the total number of genes applicable for PAC calculation (a) without and (b) with operon structure inclusion
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[0.95, 1] were 950.5 and 11.6, respectively, which it is
about 6 SD away from the value observed for canonical
annotation (1021 genes). In Fig. 6b, we observed that our
model remains very sensitive to the annotation disturb-
ance of only 20 genes (Nr = 10) for the E. coli genome
composed of >4000 genes. We had 1013.9 on average with
4.4 SD in the bin [0.95, 1], which is still ~2 SD away from
the undisturbed annotation (1021 genes). In Fig. 6c, the
average (black dot), SD (vertical line), and maximum and
minimum (white dot) number of genes for the probability
bin [0.95, 1.00] were presented for Nr = 10, 25, 50, 100,
200, and up to 1000 (shown on the x-axis). Overall, a
linear dependency between the number of shuffling, Nr,
and a decrease in the (average) number of the genes with
highly reliable annotations was observed.

Discussion
Here we discuss possible enhancements and further devel-
opments with potential gains in the model performance:

(1) one could explore distance to define neighboring genes
as a parameter. For example, one can use basepairs of
physical distance along the chromosome as a threshold to
define gene neighbors instead of 3 genes upstream and
downstream, which is currently used. (2) We treated all
genes equally in the current experiments, but in reality
the annotations of some genes would be absolutely cer-
tain. It would not be difficult to include into our system as
another category of genes, “annotation anchors”, and then
compute a separate set of conditional probabilities of gene
function similarities for such genes. (3) We appended an-
other gene neighborhood structure, “strand information”,
into the Bayesian formula with E. coli for which we
derived conditional probabilities for a set of genes on the
same strand and another set of genes not on the same
strand. In the Additional file 1: Figure S1 represents PAC
distributions calculated from strand-integrated conditional
probabilities for NCBI and random annotations, which
showed a slightly better performance than those obtained

Fig. 6 Gene shuffling experiments with E. coli. a Shuffle for Nr = 100. b Shuffle for Nr = 10. c Shuffle summary. a and b The distributions of PAC
values were plotted for the shuffled assignments with E. coli. In each experiment, the Nr pairs of genes with annotations by GO terms were
randomly selected and gene annotations in each pair were exchanged. For each Nr, the experiment was repeated 100 times, and the plots
represent the average number of genes with the SD observed for each probability bin. c The average (black dot), SD (vertical lines), and maximum
and minimum (white dot) number of genes were presented for the probability bin [0.95, 1.00] for Nr = 10, 25, 50, 100, 200, and up to 1000
(shown on the x-axis)
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from the model without strand information, in a sense
that 1042 genes were found in the bin [0.95, 1] for NCBI
annotation, whereas 42 genes for random annotation were
found in the bin [0.95, 1]. (4) For all results shown, we
extracted the conditional probabilities from Eq. (4) in
Methods (likelihood in Bayes’ rule) derived from a given
genome. However, C. thermocellum was not annotated by
functional terms as much as E. coli comprehensively,
which led to a much lower number of gene pairs with
functional annotations, that might not produce enough
data to estimate conditional probabilities (likelihood in
Bayes’ formula) for probabilistic modeling. To further
evaluate robustness toward conditional probabilities, we
applied conditional probabilities derived from E. coli to
calculate the PAC of genes in C. thermocellum for NCBI
annotation and random annotation. We observed distri-
butions of the PAC values obtained with conditional prob-
abilities derived from E. coli similar to those obtained with
conditional probabilities derived from C. thermocellum in
Additional file 1: Figure S2. In the future, we plan to
specifically explore this question for a large number of
bacterial genomes, yet the result with C. thermocellum
was very encouraging, even though it is evolutionarily
rather distant from E. coli. (5) We explored the COG
database [21] to annotate genes by functional terms and
generated PAC values. Ignoring a poorly characterized
functional category, the COG functional terms are orga-
nized into three hierarchical levels where the first level
consists of three functional classes (Information Storage
and Processing, Cellular Processes and Signaling, Metab-
olism), the finer sub-functional classes (23 functional clas-
ses at the second level), and COG terms at the third level.
Note that some COG terms belong to more than one
functional class. To generate random COG annotation for
each protein with an assigned COG term, we assigned a
COG term for a protein randomly chosen within the gen-
ome to the given protein. The conditional probability of
an observation profile given correct and incorrect annota-
tion was calculated for each functional category at the first
level where gene COG function similarity takes two
values: 0 if two genes share a COG term, and 1 otherwise.
In Additional file 1: Figure S3, which represents PAC dis-
tributions for NCBI annotation and random annotation
with E. coli, we obtained an AQS of 0.17 (419/2498 where
2498 proteins were applicable to PAC calculation) for
NCBI annotations and an AQS of 0.04 (95/2498) for
random annotations that COG annotation showed a
less obvious distinction between NCBI and random
annotation than GO annotation in the probability bin
[0.95, 1]. In the future, we will explore other functional
annotation databases including KEGG Orthology [22] and
PFAM [23] and compare corresponding PAC distributions
for genome annotation validation. (6) So far, we discussed
experiments under the “independent” Bayesian model. For

example, we approximated the conditional probability of
GFSs in the neighborhood as a product of conditional
probabilities of individual GFSs within the gene neighbor-
hood. To investigate the influence of the assumption of
independence on the AQS, we formulated Bayesian anno-
tation probability under the dependent model, which is
described in detail in the Additional files 1 and 2. For the
dependent model, we assumed that observations made
downstream and upstream depend on only a given gene,
and an observation Oi depends on an observation Oi+1 in
the downstream and Oi-1 in the upstream. The distribu-
tions of PAC values under the dependent model for E. coli
are presented in Additional file 1: Figure S4. Under the
dependent model considered in this study, we did not ob-
serve any gain in terms of the AQS, which is probably due
to the assumption not fitting the biological expectation
and not enough data to reliably estimate dependency. The
main incentive to use it, in any case, is to avoid overesti-
mation and underestimation of PAC calculation, which
was not a problem as shown in Fig. 3.
Currently, we envision three possible application direc-

tions for the proposed genome-scale model. First, when
the different annotation pipelines annotate the same bac-
terial genomes, our model should be able to compute a
measure of consistency for each annotation pipeline; i.e.,
AQS, the fraction of the genes with a PAC value >0.95.
The workflow with a better score would likely have more
correct assignments because our genome-scale probabilis-
tic model sensitively captures the small difference in anno-
tations as shown in the Experiments with gene shuffling
section. For example, we compared two C. thermocellum
genomes annotated at different times where one (called
old annotation) was annotated on Feb 14, 2007 at
GenBank, and the other genome downloaded from NCBI
on May 2013 (called new annotation) was used in this
study. The old annotation had 1658 proteins (of 3198 total
proteins) annotated with GO terms among which 1582
proteins were applicable to PAC calculation, which re-
sulted in 349 proteins in the bin [0.95, 1] leading to an
AQS of 0.22 (= 349/1582). The new annotation had 1671
proteins (of 3173 total proteins) annotated with GO terms
applicable to PAC calculation, which resulted in 403
proteins in the bin [0.95, 1] leading to an AQS of 0.24
(= 403/1671). The comparison of C. thermocellum ge-
nomes annotated at different times may support that
our model could be a quantitative tool for genome
annotation validation. Second, we plan to measure the
annotation consistency for many different bacteria
(possibly for 32,000 genomes stored by Land et al. [3]),
and such research should provide reasonable estimates
of which values are reliable for various branches of the
tree of life. Finally, individual PAC values should be
valuable for the evaluation of hypothetical protein an-
notation unless functional inference of hypothetical
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proteins does not exploit gene neighborhood information
as happened in other studies [17, 24].

Conclusions
Sequencing technologies continue to develop rapidly,
and the list of genes with assigned functions is the main
product of the sequencing efforts, as it is used to further
research. However, there is a lack of methods to evaluate
the quality of the obtained functional assignments. We
developed a genome-scale probabilistic model that quan-
titatively measures annotation consistency relying on the
well-established property of bacterial genomes; i.e., genes
lying in physical adjacency on a chromosome tend to be
associated functionally. To our knowledge, this is the
first tool that provides both a quality value for the whole
set of genes as well as probability of the annotation con-
fidence for individual genes in the set. We have tested
our method by simulating large and small “disturbances”
of the functional assignments, and the method proved to
be sensitive for both cases. The range of potential appli-
cations is wide including evaluation and comparison of
standard annotation methods for functional assignment.
This will lead to more biological insights and more pre-
cise cellular models as both use functional assignments
as input information.

Methods
Data
In this study, the genome-scale probabilistic model was first
applied to assess the annotation of two genomes: E. coli str.
K-12 substrain MG1655 (NC_000913.faa) and C. thermo-
cellum ATCC 27405 (NC_009012.faa) downloaded from
NCBI. The background comparison by random annotation
of a genome was performed by randomly picking a protein
annotated by functional terms from the protein sequence
database. The protein sequence database for random as-
signments was downloaded from the UniProtKB/Swiss,
UniProtKB/TreEMBL [19], and NCBI Reference Sequence
[20] databases, which included 8 million bacterial and
archeal proteins. The most current version of the same
dataset is at least five times as large, but this factor is not
important for our particular study.

GO for functional annotation
To quantitatively assess the annotations, we translated
annotations using a controlled vocabulary system, the
GO project [10]. The approach to use GO for an evalu-
ation of gene function similarities has been used previ-
ously [11, 25], but to our knowledge it has not been
used for comprehensive evaluation of genome annota-
tion quality. The GO project describes the ontology of
defined GO terms representing gene product properties
structured as a directed acyclic graph. The directed
graph can be retrieved from “gene_ontology.1_2.obo.txt”

[26] which contains GO terms annotated by both the
experimental and computational evidence codes. The
directed GO graph covers biological process, molecular
function, and cellular component, which are mutually
exclusive domains each represented by the root GO
terms separately. The directed relationships between GO
terms represent either “is-a”, “part of”, or “regulates”
where child terms are more specialized and parent terms
are less specialized. Some GO terms may have more
than one parent term unlike a hierarchy. In this work,
we considered directed edges, which represent only the
“is-a” subclass relationship. The UniProt Gene Ontology
Annotation (UniProt-GOA) database provides high-
quality GO annotations to proteins through the UniProt
Knowledgebase. To annotate NCBI annotations by GO
terms, we first assigned NCBI GI numbers to the Uni-
protKB identifier using “idmapping.dat” [26], and then
assigned a UniprotKB identifier into GO terms using
“gene_association.goa_uniprot” [27]. Note that the map-
ping between NCBI GI numbers and UniprotKB identi-
fiers is not one-to-one, and some NCBI GI numbers are
not mapped into a UniprotKB identifier.

Gene function similarity
We introduced GO similarity to compare quantitatively
functional annotations described by GO terms. To calcu-
late functional similarity between two GO terms (GO1,
GO2), we first identified a set of all predecessor GO terms
of GO1 (GO2) on the directed GO graph including GO1

(GO2) but excluding the root, denoted by S1 (S2), respect-
ively. Then, the similarity between two GO terms was
defined based on overlapping GO terms between sets S1
and S2 as follows:

GOsim
�
GO1;GO2Þ ¼ jS1∩S2j

S1∪S2j j ð1Þ

where |S1 ∩ S2| and |S1 ∪ S2| are the cardinalities of an
intersection and the union of S1 and S2, respectively.
The normalized GO similarity, which falls in the range
of 0 to 1, implicitly measures more than just the detailed
functions (low-level GO terms) that are shared. For
instance, in Fig. 1b, all dotted ovals represent GO terms
assigned to genes where the +2 gene does not have a
GO term assigned to it, such that GOsim(G+2, G) is not
available. All ovals over the dotted ovals represent pre-
decessor GO terms of assigned GO terms to genes ex-
cluding the root GO term on a directed GO graph. The
ovals lined in black mean that corresponding GO terms
do not occur, and the ovals lined in blue mean that corre-
sponding GO terms occur in a set of predecessor GO
terms of a gene G. Therefore, GO similarities between
neighboring genes and gene G are as follows: GOsim(G−3,
G) = 0, GOsim(G−2, G) = 1/6, GOsim(G−1, G) = 1,
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GOsim(G+1, G) = 0, GOsim(G+3, G) = 1/4. However,
genes can be annotated with more than one GO term
because proteins can have multiple functional roles. Let’s
say that gene G1 is annotated with A1 = {GOi |i = 1,..,M}
and gene G2 with A2 = {GOj |j = 1,..,N}, the GFS between
genes G1 and G2 is defined as the maximum among GO
similarities between two GO terms from different genes:

GFS
�
G1;G2Þ ¼ max1≤i≤M

1≤j≤N

GOsim
�
GOi;GOjÞ

ð2Þ

where GOi is from gene G1 and GOj is from gene G2.
The maximum of GO similarities takes into account
different numbers of GO terms assigned to different
proteins. We calculated the GFS associated with each
biological process, molecular function, and cellular com-
ponent separately.

Gene neighborhood structure
In this study, we explored three different gene neighbor-
hood structures: gene order on a chromosome, operon
structure, and strand information. The strand informa-
tion of genes was retrieved through the NCBI Entrez
Programming Utilities. For the predicted operon struc-
ture of E. coli, we used the Database of Prokaryotic
Operons [28]. For each gene G and each functional cat-
egory (biological process, molecular function, and cellu-
lar component) in a given genome, we calculated
GFS(G, Gi) between G and its neighbor gene Gi at ith
neighborhood, i = −3, −2, −1, +1, +2, +3, where the
minus and plus signs represent upstream and down-
stream neighborhoods (Fig. 1a).

Deriving PAC through Bayes’ rule
Here we derived the probability that annotation of a
gene G is correct in given observations {Oi| i = −3,…,+3}
with neighbor genes Gi, i = −3,…,+3 (called an observa-
tion profile), under the assumption that observations are
independent of each other within the gene neighbor-
hood. First, we calculated conditional probability (likeli-
hood in Bayes’ rule) that an observation Oi is observed
at the ith neighborhood given the correct annotation,
denoted by Pr(Oi|Ac), where Ac represents correct anno-
tation, for which NCBI annotation and corresponding
functional annotation by GO terms were all assumed to
be correct. Then, we calculated the probability that an
observation Oi is observed at the ith neighborhood given
the incorrect annotation, denoted by Pr(Oi|Ainc), where
Ainc represents incorrect annotation, for which we gen-
erated an annotation for each protein with assigned GO
terms by randomly drawing a protein with assigned GO
terms from the database of 8 million proteins, and then
assigning the GO terms of the randomly drawn protein

to the given protein. For each protein, we calculated
gene function similarity with gene neighbors using the
given gene’s random annotation, leading to Pr(Oi|Ainc).
If we formulate conditional probabilities using gene func-
tion similarity, then a random variable Oi takes GFSi,
where GFSi represents gene function similarity between
genes separated by (i - 1) genes on a chromosome. The
use of combinatorial information of gene neighborhood
structures can be easily integrated into the formula. Based
on Bayes’ rule along with the assumption of independence
of neighbor observations, the probability that an annota-
tion is correct given an observation profile is described as
follows:

Pr Ac; jOi; i ¼ −3;⋯;þ3ð Þ

¼ Pr Oi; i ¼ −3;⋯;þ3; jAcð Þ Pr Acð Þ
Pr Oi; i ¼ −3;⋯;þ3; jAcð ÞPr Acð Þ þ Pr Oi; i ¼ −3;⋯;þ3; jAincð Þ Pr Aincð Þ

¼

Yi¼þ3

i¼−3

Pr Oi; jAcð Þ Pr Acð Þ

Yi¼þ3

i¼−3

Pr Oi; jAcð ÞPr Acð Þ þ
Y
i¼−3

i¼þ3

Pr Oi; jAincð ÞPr Aincð Þ
;

ð3Þ
where Pr(Ac) and Pr(Ainc) are prior probabilities of cor-
rect and incorrect annotations respectively, which were
set to 0.5 in this study. By considering all three func-
tional categories concurrently, the Bayesian annotation
probability (called the PAC in this study) is described as
follows:

Pr AcjOBP
i ;OMF

i ;OCC
i ; i ¼ −3;⋯;þ3

� �

¼ Pr OBP
i ;OMF

i ;OCC
i ; i ¼ −3;⋯;þ3jAc

� �
Pr Acð Þ

Pr OBP
i ;OMF

i ;OCC
i ; i ¼ −3;⋯;þ3

� �

¼

Yi¼þ3

i¼−3

YCC
j¼BP

Pr Oj
ijAc

� �
Pr Acð Þ

Yi¼þ3

i¼−3

YCC
j¼BP

Pr Oj
ijAc

� �
Pr Acð Þ þ

Yi¼þ3

i¼−3

YCC
j¼BP

Pr Oj
ijAinc

� �
Pr Aincð Þ

ð4Þ
where BP indicates biological process; MF, molecular
function; and CC, cellular component. For example, if a
random variable Oi takes a two-dimensional vector of
gene function similarity and strand information for each
category, then Bayesian annotation probability in the for-
mula (1) is derived from an 18-dimensional observation
vector. In most cases, we do not have all neighbor genes
with assigned GO terms for all categories. The non-
existent information elements are silently ignored in the
formula (4) under the assumption that non-existent
information occurs equally in correct annotation and
incorrect annotation.

Filtering abundant GO terms
The GFS is affected by GO terms with an abundant
occurrence due to their general functional description;
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for example, GO:0016020, which describes a membrane
in a category of the cellular component. Therefore, the
GO terms with high frequency can cause random pairs
of genes that are not neighbors on a chromosome to
share functions, eventually yielding high Bayesian anno-
tation probability. In the Additional file 1; Figure S5 rep-
resents the frequency of GO terms in a percentage of
proteins with assigned GO terms in the protein se-
quence database. To avoid false causality with Bayesian
annotation probability, we filtered out GO terms whose
frequencies were >5%. For 10,000 random protein pairs
with assigned GO terms in the protein sequence data-
base, Additional file 1: Figure S6A represents histograms
of GFS values before filtering abundant GO terms and
Additional file 1: Figure S6B shows GFS values after fil-
tering abundant GO terms with a frequency > 5% in
each functional category. In the Additional file 1: Table
S1 lists GO terms that were filtered out with a functional
description and a 5% of frequency cutoff. All results
shown in our study were derived after filtering GO
terms with a 5% of frequency cutoff.

Additional files

Additional file 1: supplementary.doc. Supplementary Figures and
Tables. (DOC 947 kb)

Additional file 2: Cthermocellum_oldannotation.txt. The old annotation
of C. thermocellum. (TXT 364 kb)
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