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Abstract

Background: Bioinformatic tools for the enrichment of ‘omics’ datasets facilitate interpretation and understanding
of data. To date few are suitable for metabolomics datasets. The main objective of this work is to give a critical
overview, for the first time, of the performance of these tools. To that aim, datasets from metabolomic repositories
were selected and enriched data were created. Both types of data were analysed with these tools and outputs
were thoroughly examined.

Results: An exploratory multivariate analysis of the most used tools for the enrichment of metabolite sets, based
on a non-metric multidimensional scaling (NMDS) of Jaccard's distances, was performed and mirrored their
diversity. Codes (identifiers) of the metabolites of the datasets were searched in different metabolite databases
(HMDB, KEGG, PubChem, ChEBI, BioCyc/HumanCyc, LipidMAPS, ChemSpider, METLIN and Recon?2). The databases
that presented more identifiers of the metabolites of the dataset were PubChem, followed by METLIN and ChEBI.
However, these databases had duplicated entries and might present false positives. The performance of
over-representation analysis (ORA) tools, including BioCyc/HumanCyc, ConsensusPathDB, IMPalLA, MBRole,
MetaboAnalyst, Metabox, MetExplore, MPEA, PathVisio and Reactome and the mapping tool KEGGREST, was
examined. Results were mostly consistent among tools and between real and enriched data despite the variability
of the tools. Nevertheless, a few controversial results such as differences in the total number of metabolites were
also found. Disease-based enrichment analyses were also assessed, but they were not found to be accurate
probably due to the fact that metabolite disease sets are not up-to-date and the difficulty of predicting diseases
from a list of metabolites.

Conclusions: We have extensively reviewed the state-of-the-art of the available range of tools for metabolomic
datasets, the completeness of metabolite databases, the performance of ORA methods and disease-based analyses.
Despite the variability of the tools, they provided consistent results independent of their analytic approach. However,
more work on the completeness of metabolite and pathway databases is required, which strongly affects the accuracy
of enrichment analyses. Improvements will be translated into more accurate and global insights of the metabolome.
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Background

Enrichment techniques for ‘omics’ data are key tools for
understanding complex biological systems. These tools
reduce the complexity of the data, improve interpret-
ation and understanding of biological systems, and help
to generate hypotheses. Although the number of tools
for ‘omics’ is rapidly growing, suitable tools for metabo-
lomics are still scarce. Most of the available tools for
metabolomics data have been previously developed for
other ‘omics’ technologies. These tools have been
described in detail elsewhere [1-6].

Enrichment tools denote any analytic technique that
benefits from molecular pathway or network information
to gain insight into a biological system [4]. The most
widely used methodology for performing such analysis is
termed functional enrichment or over-representation ana-
lysis (ORA) [7]. This analysis looks for keywords or de-
scriptors of the set of molecules of interest (e.g. those
over-expressed) with respect to a background reference
set (e.g. the whole genome/transcriptome/proteome/me-
tabolome or the set of molecules detected by the technol-
ogy employed) [1]. Classical enrichment analyses employ
Fisher’s exact test, but many other enrichment methods
have derived from it, e.g. hypergeometric, Kolmogorov—
Smirnov or Wilcoxon statistical tests [6, 7].

To the best of our knowledge studies evaluating the per-
formance of enrichment tools for metabolite sets do not
exist yet. The aim of the present work will be to dissect, for
the first time, these techniques. First of all, we have carried
out an exploratory multivariate analysis of the state-of-the-
art of bioinformatic tools for metabolomics sets to visualize
their diversity. Then, we have examined the completeness
of metabolite databases, the performance of ORA methods
and accuracy of disease-based analyses. For these purposes,
we have used datasets from metabolomic repositories,
whose results have been already published in peer-
reviewed journals. In addition, we have enriched selected
metabolic pathways and then compared the outputs of
these tools when using real datasets or enriched data. Thus
the present study provides a global insight of the current
status of bioinformatic tools for the analysis and interpret-
ation of metabolite sets from metabolomic studies.
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Methods

Datasets

The list of metabolites used in this work refers to five
datasets from metabolomics studies in humans, already
published in peer-reviewed journals, whose raw data,
study information and the list of identified metabolites
are available in MetabolomeXchange [8], an online por-
tal of metabolomics repositories including MetaboLights
[9], Metabolomics Workbench [10] and Metabolomic
Repository Bordeaux. A brief summary of the datasets
is shown in Table 1. These datasets correspond to the
following publications: 1) Lanza et al. [11]; 2) Fiehn et
al. [12]; 3) Kaluarachchi et al. [13]; 4) Hart et al. [14];
and 5) Zhu et al. [15]. P- and adjusted p-values were
obtained from the original papers [11-15] and only me-
tabolites with an adjusted p-value <0.05 were used for
tools comparison. The list of metabolites is shown as
(Additional file 1: Table S1).

Search of metabolite identifiers

Bioinformatic tools for enrichment analysis require the
metabolite name or code (identifier) from a metabolite
database. Although Kyoto Encyclopaedia of Genes and
Genomes (KEGG Compound) identifiers [16] are the
most commonly used in metabolomics [3, 17], some
tools prefer other database identifiers such as PubChem
[18], BioCyc/HumanCyc (hereinafter only referred as
HumanCyc) [19] or Chemical Entities of Biological
Interest (ChEBI) [20].

We analysed the current completeness of the following
metabolite libraries: Human Metabolome Database
(HMDB) [21], KEGG, PubChem, HumanCyc, ChEBI,
ChemSpider [22], the metabolic reconstruction Recon2
[23], METLIN [24] and Lipid Metabolites and Pathways
Strategy (LipidMAPS) [25].

The list of significant metabolites from [11-15] was
used to assess the completeness of these nine databases.
The identification of metabolites had been carried out
by original authors in all the datasets, and in some cases
KEGG and HMDB identifiers were already provided by
authors. Since the HMDB website provides links to
other metabolite databases, we started the search of the

Table 1 Main characteristics of the datasets used, extracted from the repository MetabolomeXchange

Dataset Repository Condition Metabolomic Significant metabolites Total metabolites Reference
reference of study platform in publication analysed by authors
1 ST000091 Type 1 diabetes LC(RP)-MS 8 44 [11]
2 ST000383 Type 2 diabetes GC-MS 27 106 [12]
and obesity
3 MTBLS364 Smokers NMR, LC(HILIC-/RP)-MS 81 - [13]
4 MTBLS424 Breast cancer NMR 22 25 [14]
5 ST000284 Colorectal cancer LC(RP)-MS 42 113 [15]

Abbreviations: GC gas chromatography, HILIC hydrophilic interaction liquid chromatography, LC liquid chromatography, MS mass spectrometry,

NMR nuclear magnetic resonance, RP reverse phase
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identifiers on this site and then we extended this search
to the LipidMAPS website and MetExplore [26] (for
Recon2 codes). All the identifiers were then double-
checked in the corresponding metabolite databases. If
more than one metabolite identifier was found (e.g. in
PubChem or ChEBI databases), we took all those identi-
fiers and checked in ConsensusPathDB [27] which ones
were recognized by the tool (not shown). When the
stereochemistry of the metabolite was not specified, the
most common chemical configuration was assumed. The
complete list of metabolite identifiers is shown in
Additional file 1: Table S1.

Generation of enriched data

Most of the bioinformatic tools for the enrichment of
metabolomics datasets accept a list of identifiers as out-
put, while a lower number require quantitative data, e.g.
concentration, fold change or peak intensity. Therefore
we decided to work with a list of metabolites (name or
identifier) from real datasets and enriched data to com-
pare these tools. Although this approach do not allow us
to assess some of the available tools, i.e. 3omics or PAP;j,
the use of simulated o synthetic data would have allowed
us to examine a lower number of tools.

For data enrichment, the dataset with the most metab-
olites was selected (colorectal cancer, ST000284). The
list of significant metabolites of this dataset (n =42, ob-
tained from [15]) was analysed with MetaboAnalyst [28],
using the option ‘pathway analysis’. MetaboAnalyst’s out-
put was examined and the three KEGG pathways that
presented the lowest false discovery rate (FDR), based
on the Benjamini-Hochberg procedure [29], were chosen
for pathway enrichment: 1) Alanine, aspartate and glu-
tamate metabolism; 2) Aminoacyl-tRNA biosynthesis,
and 3) Arginine and proline metabolism.

The R package KEGGREST (v.1.17.0) [30] was employed
to build an adjacency matrix [31] which linked the metab-
olites of the dataset (n=113) with their corresponding
KEGG pathways. One was assigned if the metabolite was
part of that particular pathway, or 0 if not. Then five me-
tabolites of each pathway were randomly sampled.
Enriched data are shown in Additional file 2: Table S2.

Statistical analysis

Similarity analysis

The most commonly used tools for metabolomics data
enrichment were chosen for similarity analysis. This se-
lection was formed by 3omics [32], BioCyc/HumanCyc
[19], ConsensusPathDB, IMPaLA [33], Ingenuity® Path-
way Analysis (IPA°, QIAGEN, Redwood City, CA),
KEGG [16], MassTRIX [34], MBRole [1], MetaboAna-
lyst, Metabox [35], MetaCore™ (Thomson Reuters Inc.,
Carlsbad, CA), MetaMapp [36], MetExplore, MetScape
[37], MPEA ([38], PaintOmics [39], PAPi [40], PathVisio
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[41], Reactome [42], Small Molecule Pathway Database
(SMPDB) [43], WikiPathways [44] and XCMS [45].

The main features of these tools were summarized on
a binary matrix (Yes/No responses) including whether
they 1) perform ORA, integration with other ‘omics’ or
other enrichment analyses; 2) visualization of pathways,
networks or other types of visualization; 3) use KEGG,
BioCyc, Reactome, Wikipathways, SMPDB or other
pathway databases; 4) are databases, programmable,
open-source or online tools (Additional file 3: Table S3).

The similarity analysis was performed with the R pack-
age vegan (v.2.4—4) [46]. First, the Yes/No responses
were transformed to 1 and 0, respectively. Then Jaccard’s
coefficients were calculated and a non-metric multidi-
mensional scaling (NMDS) was performed. This method
plots dissimilar objects far apart in the ordination space
and similar objects close to one another preserving
ordering relationships among them [47].

Over-representation analysis

The performance of the tools that perform ORA in meta-
bolomics datasets was assessed with the list of significant
metabolites of the colorectal cancer dataset (ST000284)
(n=42) [15] and of enriched data. The comparative ana-
lysis of ORA tools was performed on tools employing
KEGG, Reactome and HumanCyc as pathway database.
The selected tools were ConsensusPathDB, HumanCyc,
IMPaLA, MBRole, MetaboAnalyst, Metabox, MetExplore,
MPEA, PathVisio and Reactome and the pathway map-
ping tool KEGGREST. Table 2 summarizes the main fea-
tures of these tools and type of identifiers used. Analyses
were performed following the guidelines of each tool.

The output of these tools was examined for the follow-
ing metabolic pathways: 1) KEGG: the three aforemen-
tioned pathways; 2) Reactome: Metabolism of amino
acids and derivates pathway; and 3) HumanCyc: tRNA
charging pathway. Ranking (position in the list of path-
ways sorted by significance), total number of metabo-
lites/pathway, number of hits/pathway, p- and adjusted
p-value (generally FDR, calculated by the tools) were re-
corded from each output.

Disease-based enrichment analyses

Disease-based enrichment analyses were performed by
using the list of significant metabolites of the five data-
sets on: 1) MetaboAnalyst (SMPDB disease pathway
database) [48]; 2) MBRole (HMDB disease database); 3)
IPA° (Ingenuity® disease database); and 4) MetaCore™
(MeSH and OMIM disease databases). Disease, ranking
(position according to their p-value), total number of
metabolites/disease, number of hits/disease, p- and ad-
justed p-values were recorded from each output.



Marco-Ramell et al. BMC Bioinformatics (2018) 19:1

Page 4 of 11

Table 2 Summary of the tools used to assess the performance of over-representation (ORA) methods and their main characteristics

(July 2017). Tools and databases are sorted alphabetically

Tool Tool Database Database Test used in Platform Input Website
name version used version this work code
ConsensusPathDB 32 HumanCyc 19.1 Fisher's exact test Online HumanCyc http://cpdb.molgen.mpg.de/
KEGG (06/2015) Fisher's exact test KEGG
Reactome 80.0 Fisher's exact test Reactome
(10/2016)
59
(12/2016)
HumanCyc 210 HumanCyc 210 Fisher's exact test Online Name https://humancyc.org/
(12/2016)
IMPalLA 10 HumanCyc NA Fisher's exact test Online HumanCyc http://impala.molgen.mpg.de/
KEGG NA Fisher's exact test KEGG
Reactome NA Fisher's exact test Reactome
IPA® NA IPA® disease  NA Fisher's exact test, Java-based KEGG
Z-score software
KEGGREST 1170  KEGG NA - R KEGG https://bioconductor.org/packages/release/bioc/
html/KEGGREST.html
MBRole 20 HMDB 35 Hypergeometric test Online HumanCyc http://csbg.cnb.csices/mbrole2/
disease (01/2013) Hypergeometric test KEGG
HumanCyc 17.1 Hypergeometric test
KEGG (06/2013)
54.1
(05/2010)
MetaboAnalyst 30 SMPDB NA Fisher's exact test, Online KEGG http://www.metaboanalyst.ca/
disease NA hypergeometric test
KEGG Fisher's exact test,
hypergeometric test
Metabox NA KEGG NA Hypergeometric test R PubChem  https://github.com/kwanjeeraw/metabox
MetaCore™ NA MeSH and NA - Online PubChem  https://portal.genego.com/
OMIM disease
MetExplore 2112 HumanCyc 18.0 Fisher's exact test Online HumanCyc http.//metexplore.toulouse.inra.fr/metexplore2/
KEGG (02/2014) Fisher's exact test KEGG
74.0
(04/2015)
MPEA (2010)  KEGG (2010) Hypergeometric test Online KEGG http://ekhidna.biocenter.helsinki.fi/poxo/mpea
PathVisio 324 Reactome 54 Z-score Java-based KEGG https://www.pathvisio.org/
(10/2015) software
Reactome 61 Reactome 61 Fisher's exact test Online KEGG http://reactome.org/
(06/2017)

Abbreviations: NA not available

Results

Evaluation of the state-of-the-art of bioinformatic tools
Figure 1 displays a similarity plot of the most commonly
used bioinformatic tools. Tools were distributed all along
the two dimensions revealing their diversity. The first di-
mension mainly separated tools that: 1) perform ORA and
are non-open source, 2) perform ORA and are open-
source, and 3) are a metabolite database. On the other
hand, the second dimension mainly separated tools that:
1) perform metabolite identification, 2) perform ORA and
are not programmable, and 3) perform ORA and are
programmable. MetScape and MetaMapp, which only
carry out data visualization, were distant in the plot.

Evaluation of the completeness of metabolite databases
Metabolites of the five datasets were used to assess the
completeness of the metabolite and pathway databases.

Almost all the metabolites presented PubChem (97%),
ChEBI (91%), METLIN (91%), KEGG (88%), ChemSpider
(87%) and HMDB (86%) identifiers, and the 97% of the
lipid subset had LipidMAPS identifiers. In some cases,
KEGG, HumanCyc and Recon2 provided chemical class
identifiers instead of a single identifier to certain metab-
olites, especially to the lipid subset (Additional file 1:
Table S1 and Additional file 4: Table S4).

Evaluation of over-representation methods

In general, ORA methods vyielded consistent results
using both real and enriched data in all the range of
tools tested (Tables 3 and 4). Also similar results were
obtained in paired analyses/tools such as MetaboAnalyst
hypergeometric test - Fisher’s exact test, MBRole full -
Homo sapiens database, MPEA top down - bottom up
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Fig. 1 Non-metric multidimensional scaling (NMDS) plot of the most used tools for metabolomics data enrichment based on Jaccard's distances.
Additional file 3: Table S3 shows the main features of each tool

analyses, or ConsensusPathDB - IMPaLA tools, as ex-
pected (Tables 3 and 4).

Minor differences in the total number of metabolites/
pathway and number hits/pathway were found. For in-
stance, MPEA (Table 3) and MBRole (Table 4) presented
a higher number of metabolites/pathway than the other
tools. Other divergences were also observed, e.g. MPEA
provided higher adjusted p-values values (nearly 1 in all
the cases) than other tools, or not all the tools mapped
the same metabolites of the dataset onto the queried
pathways (not shown).

Evaluation of disease-based libraries

The significant metabolites of the five datasets were used to
analyse the accuracy of the SMPDB, HMDB, IPA°, MeSH
and OMIM disease-based libraries. Outputs revealed that
the diseases queried (diabetes type 1 and 2, obesity, respira-
tory alterations and breast and colorectal cancer) were not
successfully identified by these tools, as they appeared in a
low position in the list of potential diseases and most of the
times they presented a p > 0.05 (Table 5).

Discussion

Interpretation of metabolomic data is much less straight-
forward than that with genomic and proteomic datasets
[36]. In the present work we have described the diversity
of bioinformatic tools for metabolite sets and have evalu-
ated their performance by exploring three features: the
completeness of metabolite databases, ORA approaches
and disease-based analyses. To that end, we have used five
metabolite sets of blood biomarkers of different diseases
obtained from LC-MS, GC-MS and NMR metabolomics
approaches. This approach allowed minimizing the pos-
sible bias introduced by a given metabolomic platform
and thus working with a wide range of metabolites.

Metabolomics is a developing field, thus bioinformatic
tools designed to perform enrichment of metabolomics
datasets are being developed and released by various
groups using diverse statistical tests [3]. Our exploratory
multivariate analysis mirrors the high diversity of the cur-
rently available tools for the analysis of metabolite sets.

To date about 30,000 endogenous metabolites have
already been identified, but this number is rapidly
increasing due to advances in high-throughput technolo-
gies [21]. Current metabolite databases do not have the
full potential to quickly absorb these advances in the de-
scription of the endogenous metabolome yet, as not a
single metabolite database used in this work covered the
full list of significant metabolites of the five datasets.
Among all the metabolites databases, PubChem was the
one that covered more metabolites from the datasets.
However, PubChem is a crowded compound database
and presents duplicated metabolite entries, which might
produce a larger number of false positives than search-
ing against the KEGG database [49]. To address the low
metabolite coverage of metabolite databases, some of
them such as KEGG and HumanCyc assign chemical
class identifiers to certain types of compounds, especially
lipids such as phosphatidylcholines, sphingomyelins or
triglycerides. For instance, KEGG coded phosphatidyl-
cholines and sphingomyelins as ‘C00157’ and ‘C00550;
respectively, and HumanCyc as ‘PHOSPHATIDYLCHO-
LINE’ and ‘Sphyngomyelin (class)’.

Missing, ambiguous or redundant entries have been
commonly found in public repositories [50]. Indeed me-
tabolites with more than one PubChem, HMDB or
ChEBI identifiers were found in this work, which reduce
enrichment analyses’ accuracy. Several on-going initia-
tives on identifiers standardization such as BridgeDB
and the Chemical Translation Service are trying to
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Table 3 Evaluation of over-representation analysis (ORA) outputs of bioinformatic tools employing KEGG pathways. Real (from dataset
ST000284) and enriched data were used. The number of total metabolites in the pathway, the number of hits, the ranking of the pathway
among all the KEGG pathways (according to their significance), the p-value and the adjusted p-value were calculated by the tools

Tool Data Rank Total metab. Hits P-value Adjusted p-value

Alanine, aspartate and glutamate metabolism

ConsensusPathDB Real 2 28 8 377811 9.99E-10
Enriched 2 28 7 3.76E-13 7.32E-12
IMPaLA Real 2 28 8 3.77E-11 791E-09
Enriched 2 28 7 3.76E-13 3.00E-10
KEGGREST Real NA 28 7 NA NA
Enriched NA 28 7 NA NA
MBRole (full database) Real 2 24 8 347E-12 2.07E-10
Enriched 1 24 7 7.23E-14 5.86E-12
MBRole (Homo sapiens) Real 1 24 8 231E-11 1.50E-09
Enriched 1 24 7 3.85E-13 2.00E-11
MetaboAnalyst (Fisher) Real 1 24 7 391E-06 6.74E-05
Enriched 1 24 7 6.21E-12 497E-10
MetaboAnalyst (hyper.) Real 1 24 7 3.91E-06 6.74E-05
Enriched 1 24 7 6.21E-12 497E-10
Metabox Real 2 32 8 3.60E-11 5.22E-10
Enriched 2 32 7 1.34E-13 1.27E-12
MetExplore Real 3 NA 8 1.03E-08 4.32E-07
Enriched 2 NA 7 442E-10 1.33E-08
MPEA (top down analysis) Real 1 24 8 441E-11 0.660
Enriched 1 24 7 501E-13 0440
MPEA (bottom up analysis) Real 1 24 8 1.01E-11 0.170
Enriched 1 24 7 1.08E-12 1.00
Aminoacyl-tRNA biosynthesis
ConsensusPathDB Real 4 52 8 7.89E-10 1.05E-07
Enriched 9 52 5 2.58E-07 1.12E-06
IMPalLA Real 4 52 8 7.89E-09 8.74E-07
Enriched 9 52 5 2.58E-07 1.13E-05
KEGGREST Real NA 52 8 NA NA
Enriched NA 52 5 NA NA
MBRole (full database) Real 5 75 8 6.07E-08 1.20E-06
Enriched 12 75 5 1.23E-06 8.30E-06
MBRole (Homo sapiens) Real 5 75 8 3.75E-07 487E-06
Enriched 6 75 5 3.95E-06 342E-05
MetaboAnalyst (Fisher) Real 3 75 8 1.40E-05 3.75E-04
Enriched 7 75 5 2.72E-05 3.11E-04
MetaboAnalyst (hyper.) Real 3 75 8 1.40E-05 3.75E-04
Enriched 7 75 5 2.72E-05 311E-04
Metabox Real 4 56 8 4.28E-09 3.10E-08
Enriched 4 56 5 8.69E-08 2.15E-07
MetExplore Real 5 NA 8 1.55E-06 1.69E-06
Enriched 7 NA 5 1.51E-05 4.52E-04
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Table 3 Evaluation of over-representation analysis (ORA) outputs of bioinformatic tools employing KEGG pathways. Real (from dataset
ST000284) and enriched data were used. The number of total metabolites in the pathway, the number of hits, the ranking of the pathway
among all the KEGG pathways (according to their significance), the p-value and the adjusted p-value were calculated by the tools

(Continued)
Tool Data Rank Total metab. Hits P-value Adjusted p-value
MPEA (top down analysis) Real 3 53 8 5.32E-09 1.00
Enriched 7 53 5 1.42E-06 1.00
MPEA (Bottom up analysis) Real 5 53 8 7.12E-08 1.00
Enriched 4 53 5 6.57E-08 1.00
Arginine and proline metabolism
ConsensusPathDB Real 9 76 7 2.79E-06 1.64E-05
Enriched 4 76 6 3.94E-08 3.85E-07
IMPaLA Real 9 76 7 2.79E-09 8.74E-07
Enriched 4 76 6 3.94E-08 2.18E-06
KEGGREST Real NA 77 7 NA NA
Enriched NA 77 6 NA NA
MBRole (full database) Real 3 82 10 2.59E-10 8.55E-09
Enriched 2 82 8 9.30E-12 3.77E-10
MBRole (Homo sapiens) Real 2 82 10 2.58E-09 8.38E-08
Enriched 2 82 8 6.21E-11 1.61E-09
MetaboAnalyst (Fisher) Real 2 77 9 6.69E-06 6.74E-05
Enriched 2 77 8 861E-10 345E-08
MetaboAnalyst (hyper.) Real 2 77 9 6.69E-06 6.74E-05
Enriched 2 77 8 861E-10 345E-08
Metabox Real 9 84 7 1.92E-05 6.18E-05
Enriched 4 84 6 1.25E-08 5.96E-08
MetExplore Real 2 NA 10 4.03E-08 1.69E-06
Enriched 1 NA 8 3.34E-10 1.00E-08
MPEA (top down analysis) Real 4 90 10 1.40E-08 1.00
Enriched 2 90 7 1.09E-10 1.00
MPEA (bottom up analysis) Real 2 90 10 2.24E-09 1.00
Enriched 2 90 8 1.69E-10 1.00

NA means that information was not provided by the tool. Abbreviations: Fisher Fisher's exact test, hyper hypergeometric test, NA not available

overcome redundancy [50-52]. Some tools such as
MetaboAnalyst, ConsensusPathDB or PathVisio embrace
these initiatives and accept different types of identifiers,
which are then transformed into an internal identifier
prior to the enrichment analysis [51]. However, this ap-
proach also presents different pitfalls. For instance, these
tools usually transform the input code into KEGG iden-
tifiers, and thus certain types of metabolites such as
lipids lose their uniqueness and become a chemical class
KEGG identifier. Consequently bioinformatic tools ana-
lyse these lipids as a single entity, thereby losing the
diversity of these metabolites.

KEGG and HumanCyc are the most used pathway
libraries in metabolomics [3, 17] and Reactome is
widely used in other ‘omics’ studies [53]. Thus we
have evaluated and compared outputs of ORA

methods that employ these pathway libraries. Some
limitations prior to ORA analysis were found. For in-
stance, despite the fact that almost all the metabolites
of ST000284 dataset had a KEGG code, not all of
them were mapped in a KEGG pathway. However,
these compounds (e.g. 5-hydroxytryptophan and sali-
cylurate) were mapped in other pathway databases
such as Reactome, Wikipathways and SMPDB (not
shown). In addition, the KEGG code for glutamic acid
(C00025) was not recognized by MetaboAnalyst and
the alternative suggested by the tool corresponded to
the compound amphetamine (C07514).

The number of total metabolites and hits per pathway
varied according to the tool used and those tools that
employ the newer database versions (Table 2) presented
the higher number of metabolites, as expected.
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Table 4 Evaluation of over-representation analysis (ORA) outputs of bioinformatic tools employing Reactome and HumanCyc
pathways. Real (from dataset ST000284) and enriched data were used. The number of total metabolites in the pathway, the number
of hits, the ranking of the pathway among all the Reactome or HumanCyc pathways (according to their significance), the p-value

and the adjusted p-value were calculated by the tools

Tool Data Rank Total metab. Hits P-value Adjusted p-value
Reactome
Metabolism of amino acids and derivates
ConsensusPathDB Real 3 272 18 846E-14 4.55E-12
Enriched 1 272 12 7.67E-15 5.75E-13
IMPaLA Real 3 272 18 8A46E-14 421E-11
Enriched 1 272 12 7.67E-15 1.02E-11
PathVisio Real NA NA NA NA NA
Enriched NA NA NA NA NA
Reactome Real 9 283 18 1.03E-04 381E-03
Enriched 1 283 12 8.18E-08 1.00E-05
HumanCyc
tRNA charging
ConsensusPathDB Real 2 24 8 9.14E-12 1.92E-10
Enriched 2 24 5 440E-09 1.30E-07
HumanCyc Real 8 24 8 2.57E-05 0.002
Enriched 18 24 5 7.90E-05 4.25E-03
IMPaLA Real 2 24 8 9.14E-12 2.28E-09
Enriched 2 24 5 4.40E-09 351807
MBRole (full database) Real 4 64 8 8.38E-09 1.14E-06
Enriched 47 64 4 3.58E-07 7.97E-06
MBRole (Homo sapiens) Real 5 64 8 1.26E-04 244E-03
Enriched 11 64 5 1.58E-04 1.52E-03
MetExplore Real 1 NA 8 71807 7.75E-05
Enriched 6 NA 5 4.45E-05 3.60E-04

NA means that information was not provided by the tool. Abbreviations: NA not available

Surprisingly, KEGGREST, a R package that provides an
updated client interface to the KEGGREST server, did
not provide the highest number of total metabolites
among the tested KEGG pathways. Despite regular up-
dates to some pathway databases, such as KEGG [16] or
Reactome [42], being carried out, most of the tools eval-
uated do not use up-to-date database versions (Table 2)
[54]. Wadi et al. performed an elegant review on the im-
pact of outdated annotations on pathway enrichment
analysis, which revealed that many software tools use
functional information not updated for years, thereby
strongly affecting the quality of the analyses [54].

We can conclude that current ORA methods, despite
their differences, provide consistent, robust and repro-
ducible results regardless of their analytic approach
(statistical test, p-value adjustment or pathway database
used), despite the limitations and small differences found
between outputs. The most discordant result was ob-
tained with MPEA, probably due to the fact that it

employs a different method to handle many-to-many re-
lationships that may occur between the query com-
pounds and metabolite annotations [38].

Although we cannot recommend one tool over the
others, we suggest choosing those tools that employ up-
dated metabolite/pathway databases in order to obtain
more complete results. Nevertheless, we also consider
that the enrichment analysis must not be restricted to a
single database or tool. The combined use of libraries
such as KEGG, Reactome, HumanCyc or WikiPathways
will increase the metabolome coverage and the statistical
power of the enrichment analysis.

Disease-based enrichment analysis did not yield accur-
ate results. Although we only used serum/plasma bio-
markers, results with other types of biological samples
would have been similar. On one hand, metabolite dis-
ease sets are not up-to-date. For instance, MetaboAna-
lyst and MBRole (SMPDB and HMDB disease databases,
respectively) base their searches of literature dated
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Table 5 Disease-based enrichment analyses of the five datasets performed with MetaboAnalyst (SMPDB disease database), MBRole
(HMDB disease database) and IPA® (in-house disease database) and MetaCore (based on MeSH and OMIM annotations). When the
exact disease/condition of study was not obtained, a similar disease was selected

Dataset Disease input Disease output Rank Input number metabolites Hits output P-value  Adjusted p-value
MetaboAnalyst
ST000091  Type 1 diabetes mellitus Diabetes mellitus MODY 20 8 2 340E-02 5.84E-01
ST000383  Type 2 diabetes mellitus Diabetes mellitus MODY 4 27 4 8.60E-03 6.69E-01
Obesity Obesity 31 27 1 9.07E-02 8.83E-01
MTBLS364  Smokers - - 81 - - -
MTBLS424  Breast cancer Mammary tumour 30 22 2 408E-03 4.68E-02
ST000284  Colorectal cancer Cervical/colon/ovarian cancer 46 42 1 847E-02 530E-01
MBRole
ST000091  Type 1 diabetes mellitus - - 8 - - -
ST000383  Type 2 diabetes mellitus  Type 2 diabetes mellitus 8 27 3 1.16E-02  5.48E-02
Obesity Obesity 28 27 1 1.08E-01  1.48E-01
MTBLS364  Smokers Lung Cancer 16 81 31 3.02E-02 9.25E-02
MTBLS424  Breast cancer Lung Cancer 7 22 6 1.27E-04 1.09E-03
ST000284  Colorectal cancer Colorectal cancer 44 42 1 5.19E-02  1.14E-01
IPA®
ST000091  Type 1 diabetes mellitus - - 8 - - -
ST000383  Type 2 diabetes mellitus Insulin resistance 21 27 3 6.10E-05 NA
Obesity Adipogenesis of fat 264 27 1 1.54E-02 NA
MTBLS364  Smokers Cough 490 81 11 433E-02 NA
MTBLS424  Breast cancer Gastric cancer 2 22 9 503E-11 NA
ST000284  Colorectal cancer Colorectal cancer 3 42 11 231E-08 NA
MetaCore™
ST000091  Type 1 diabetes mellitus  Type 1 diabetes mellitus NA 8 0 NA NA
ST000383  Type 2 diabetes mellitus  Type 2 diabetes mellitus NA 27 7 NA NA
Obesity Obesity NA 27 1 NA NA
MTBLS364 Smokers Respiratory disorders NA 81 1 NA NA
MTBLS424  Breast cancer Breast neoplasms NA 22 0 NA NA
ST000284  Colorectal cancer Colorectal neoplasms NA 42 13 NA NA

Abbreviations: NA not available

between 1975 and 2008, as stated in the outputs of these
tools. Since 2008, advances in high-throughput tech-
niques have remarkably improved metabolomics ana-
lyses and, consequently, more knowledge about these
diseases is available. As previously discussed, the use of
not updated annotation sets strongly affect the quality of
the analyses [54]. On the other hand, metabolites can
overlap between unrelated physiopathological events
since similar metabolic processes are altered [55]. This
fact could complicate the development and accuracy of
background sets for disease-based enrichment analysis.
Although extensive work in developing bioinformatic
tools for metabolite sets has been carried out in recent
years, more effort in improving metabolite/pathway
databases and tools is still needed. On one hand,

metabolite databases have to rapidly absorb new infor-
mation from unstoppable advances in high-throughput
technologies. On the other hand, enrichment methods
should include a wider range of metabolite identifiers
(e.g. LipidMAPS, ChemSpider or METLIN) and metab-
olite pathway databases in order to increase the metabo-
lome coverage. For instance, the LipidMAPS Structure
Database contains about 30,000 human endogenous
lipids and 12,000 plant lipids, but also databases based
on lipid metabolism and signalling pathways, MS/MS
spectra and protein-related data [25, 56]. ChemSpider is
a general chemical database and offers access to infor-
mation for almost 25 million experimentally determined
structures of natural and synthetic compounds [22].
However, similarly to PubChem, ChemSpider may lead
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to a high number of false positives [57]. The METLIN
database includes nearly 1,000,000 molecules, ranging
from lipids, steroids, plant & bacteria metabolites, small
peptides, carbohydrates, exogenous drugs/metabolites
and central carbon metabolites, and more than 200,000
MS/MS  spectra [24]. Including these information
sources in current bioinformatic tools would also involve
more effort in the improvement of metabolite identifiers
converters. Therefore, there is still a long way ahead to
achieve complete metabolite and pathway databases and
thus accurate enrichment analyses of metabolite sets.

Conclusions

We have extensively reviewed, for the first time, the
state-of-the-art of bioinformatic tools for the enrichment
of metabolite sets from metabolomics studies, visualized
their diversity, and examined their performance. The re-
dundancy of identifiers, the use of chemical class identi-
fiers and the incompleteness of metabolite databases and
disease metabolite sets limit the extent of the analyses
and reduce their accuracy. In general, ORA tools pro-
vided consistent results among tools revealing that these
analyses are robust and reproducible regardless of their
analytic approach. However, more work in the complete-
ness of metabolite/pathway databases is required to get
more accurate and global insights of the metabolome.
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