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Abstract

Background: The genomic similarity is a large-scale measure for comparing two given genomes. In this work we
study the (NP-hard) problem of computing the genomic similarity under the DCJ model in a setting that does not
assume that the genes of the compared genomes are grouped into gene families. This problem is called family-free
DCJ similarity.

Results: We propose an exact ILP algorithm to solve the family-free DCJ similarity problem, then we show its
APX-hardness and present four combinatorial heuristics with computational experiments comparing their results to
the ILP.

Conclusions: We show that the family-free DCJ similarity can be computed in reasonable time, although for larger
genomes it is necessary to resort to heuristics. This provides a basis for further studies on the applicability and model
refinement of family-free whole genome similarity measures.
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Background
A central question in comparative genomics is the eluci-
dation of similarities and differences between genomes.
Local and global measures can be employed. A popular
set of global measures is based on the number of genome
rearrangements necessary to transform one genome into
another one [1]. Genome rearrangements are large scale
mutations, changing the number of chromosomes and/or
the positions and orientations of DNA segments. Exam-
ples of such rearrangements are inversions, transloca-
tions, fusions, and fissions.

As a first step before such a comparison can be per-
formed, some preprocessing is required. The most com-
mon method, adopted for about 20 years [1, 2], is to
base the analysis on the order of conserved syntenic DNA
segments across different genomes and group homolo-
gous segments into families. This setting is said to be
family-based. Without duplicate segments, i.e., with the
additional restriction that at most one representative of
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each family occurs in any genome, several polynomial
time algorithms have been proposed to compute genomic
distances and similarities [3–7]. However, when dupli-
cates are allowed, problems become more intricate and
many presented approaches are NP-hard [2, 8–13].

Although family information can be obtained by access-
ing public databases or by direct computing, data can be
incorrect, and inaccurate families could be providing sup-
port to erroneous assumptions of homology between seg-
ments [14]. Thus, it is not always possible to classify each
segment unambiguously into a single family, and an alter-
native to the family-based setting was proposed recently
[15]. It consists of studying genome rearrangements with-
out prior family assignment, by directly accessing the pair-
wise similarities between DNA segments of the compared
genomes. This approach is said to be family-free (FF).

The double cut and join (DCJ) operation, that consists of
cutting a genome in two distinct positions and joining the
four resultant open ends in a different way, subsumes most
large-scale rearrangements that modify genomes [5]. In
this work we are interested in the problem of computing
the overall similarity of two given genomes in a family-
free setting under the DCJ model. This problem is called
FFDCJ similarity, and in some contexts it may be more
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powerful than a distance measure, where it is known that
the parsimony assumption holds only for closely related
genomes [16], while a well-designed similarity measure
may allow more flexibility. As shown in [17], the complex-
ity of computing the FFDCJ similarity was proven to be
NP-hard, while the FFDCJ distance was already proven to
be APX-hard. In the remainder of this paper, after pre-
liminaries and a formal definition of the FFDCJ similarity
problem, we first present an exact ILP algorithm to solve
it. We then show the APX-hardness of the FFDCJ simi-
larity problem and present four combinatorial heuristics,
with computational experiments comparing their results
to the ILP for datasets simulated by a framework for
genome evolution.

A preliminary version of this paper appeared in the
Proceedings of the 15th RECOMB Satellite Workshop on
Comparative Genomics (RECOMB-CG 2017) [18].

Methods
Each segment (often called gene) g of a genome is an ori-
ented DNA fragment and its two distinct extremities are
called tail and head, denoted by gt and gh, respectively.
A genome is composed of a set of chromosomes, each of
which can be circular or linear and is a sequence of genes.
Each one of the two extremities of a linear chromosome is
called a telomere, represented by the symbol ◦. An adja-
cency in a chromosome is then either the extremity of a
gene that is adjacent to a telomere, or a pair of consecutive
gene extremities. As an example, observe that the adja-
cencies 5h, 5t2t , 2h4t , 4h3t , 3h6t , 6h1h and 1t can define a
linear chromosome. Another representation of the same
linear chromosome, flanked by parentheses for the sake of
clarity, would be (◦ −5 2 4 3 6 −1 ◦), in which the genes
preceded by the minus sign (−) have reverse orientation.

A double cut and join or DCJ operation applied to a
genome A is the operation that cuts two adjacencies of A
and joins the separated extremities in a different way, cre-
ating two new adjacencies. For example, a DCJ acting on
two adjacencies pq and rs would create either the adja-
cencies pr and qs, or the adjacencies ps and qr (this could
correspond to an inversion, a reciprocal translocation
between two linear chromosomes, a fusion of two circular
chromosomes, or an excision of a circular chromosome).
In the same way, a DCJ acting on two adjacencies pq and
r would create either pr and q, or p and qr (in this case,
the operation could correspond to an inversion, a translo-
cation, or a fusion of a circular and a linear chromosome).
For the cases described so far we can notice that for each
pair of cuts there are two possibilities of joining. There are
two special cases of a DCJ operation, in which there is only
one possibility of joining. The first is a DCJ acting on two
adjacencies p and q, that would create only one new adja-
cency pq (that could represent a circularization of one or
a fusion of two linear chromosomes). Conversely, a DCJ

can act on only one adjacency pq and create the two adja-
cencies p and q (representing a linearization of a circular
or a fission of a linear chromosome).

In the remainder of this section we extend the notation
introduced in [17]. In general we consider the comparison
of two distinct genomes, that will be denoted by A and B.
Respectively, we denote by A the set of genes in genome
A, and by B the set of genes in genome B.

Adjacency graph and family-based DCJ similarity
In most versions of the family-based setting the two
genomes A and B have the same content, that is, A =
B. When in addition there are no duplicates, that is,
when there is exactly one representative of each family in
each genome, we can easily build the adjacency graph of
genomes A and B, denoted by AG(A, B) [6]. It is a bipar-
tite multigraph such that each partition corresponds to
the set of adjacencies of one of the two input genomes, and
an edge connects the same extremities of genes in both
genomes. In other words, there is a one-to-one correspon-
dence between the set of edges in AG(A, B) and the set of
gene extremities. Since the graph is bipartite and vertices
have degree one or two, the adjacency graph is a collec-
tion of paths and even cycles. An example of an adjacency
graph is presented in Fig. 1.

It is well known that a DCJ operation that modifies
AG(A, B) by increasing either the number of even cycles
by one or the number of odd paths by two decreases the
DCJ distance between genomes A and B [6]. This type
of DCJ operation is said to be optimal. Conversely, if we
are interested in a DCJ similarity measure between A
and B, rather than a distance measure, then it should be
increased by such an optimal DCJ operation. This sug-
gests that a formula for a DCJ similarity between two
genomes should correlate to the number of connected
components (in the following just components) of the
corresponding adjacency graph.

When the genomes A and B are identical, their corre-
sponding adjacency graph is a collection of c 2-cycles and
b 1-paths [6], so that c + b

2 = |A| = |B| . This should be
the upper bound of our DCJ similarity measure, and the

Fig. 1 The adjacency graph for the genomes
A = {(◦ −5 2 4 3 6 −1 ◦)} and B = {(◦ 1 2 4 −3 6 5 ◦)}
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contribution of each component in the formula should be
upper bounded by 1.

We know that an optimal operation can always be
applied to adjacencies that belong to one of the two
genomes and to one single component of AG(A, B), until
the graph becomes a collection of 2-cycles and 1-paths. In
other words, each component of the graph can be sorted,
that is, converted into a collection of 2-cycles and 1-paths
independently of the other components. Furthermore, it
is known that each of the following components – an even
cycle with 2d + 2 edges, or an odd path with 2d + 1
edges, or an even path with 2d edges – can be sorted
with exactly d optimal DCJ operations. Therefore, for the
same d, components with more edges should actually have
higher contributions in the DCJ similarity formula.

With all these considerations, the contribution of each
component C in the formula is then defined to be its
normalized length ̂�(C):

̂�(C) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|C|
|C| = 1 , if C is a cycle ,
|C|

|C|+1 , if C is an odd path ,
|C|

|C|+2 , if C is an even path .

Let C be the set of all components in AG(A, B). The for-
mula for the family-based DCJ similarity is the sum of
their normalized lengths:

sDCJ(A, B) =
∑

C∈C
̂�(C) . (1)

Observe that sDCJ(A, B) is a positive value, indeed upper
bounded by |A| (or, equivalently, by |B|). In Fig. 1 the DCJ
similarity is sDCJ(A, B) = 2 · 1

2 + 3 · 1 = 4. The formula
of Eq. 1 is the family-based version of the family-free DCJ
similarity defined in [17], as we will see in the following
subsections.

Gene similarity graph
In the family-free setting, each gene in each genome is
represented by a unique (signed) symbol, thus A ∩ B = ∅
and the cardinalities |A| and |B| may be distinct. Let a be
a gene in A and b be a gene in B, then their normalized
gene similarity is given by some value σ(a, b) such that
0 ≤ σ(a, b) ≤ 1.

We can represent the gene similarities between the
genes of genome A and the genes of genome B with
respect to σ in the so called gene similarity graph [15],
denoted by GSσ (A, B). This is a weighted bipartite graph
whose partitions A and B are the sets of (signed) genes in
genomes A and B, respectively. Furthermore, for each pair
of genes (a, b) such that a ∈ A and b ∈ B, if σ(a, b) > 0
then there is an edge e connecting a and b in GSσ (A, B)

whose weight is σ(e) := σ(a, b). An example of a gene
similarity graph is given in Fig. 2.

Fig. 2 Representation of a gene similarity graph GSσ (A, B) for two
unichromosomal linear genomes A = {(◦ 1 2 3 4 5 6 ◦)} and
B = {(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}

Weighted adjacency graph
The weighted adjacency graph AGσ (A, B) of two genomes
A and B has a vertex for each adjacency in A and a ver-
tex for each adjacency in B. For a gene a in A and a
gene b in B with gene similarity σ(a, b) > 0 there is
one edge eh connecting the vertices containing the two
heads ah and bh and one edge et connecting the ver-
tices containing the two tails at and bt . The weight of
each of these edges is σ

(

eh) = σ
(

et) = σ(a, b). Dif-
ferently from the simple adjacency graph, the weighted
adjacency graph cannot be easily decomposed into cycles
and paths, since its vertices can have degree greater than
2. As an example, the weighted adjacency graph corre-
sponding to the gene similarity graph of Fig. 2 is given
in Fig. 3.

We denote by w(G) the weight of a graph or subgraph G,
that is given by the sum of the weights of all its edges, that
is, w(G) = ∑

e∈G σ(e). Observe that, for each edge e ∈
GSσ (A, B), we have two edges of weight σ(e) in AGσ (A, B),
thus, the total weight of the weighted adjacency graph is
w (AGσ (A, B)) = 2 w (GSσ (A, B)).

Reduced genomes
Let A and B be two genomes and let GSσ (A, B) be
their gene similarity graph. Now let M = {e1, e2, . . . , en}
be a matching in GSσ (A, B) and denote by w(M) =
∑

ei∈M σ(ei) the weight of M, that is the sum of its edge
weights. Since the endpoints of each edge ei = (a, b)

in M are not saturated by any other edge of M, we can
unambiguously define the function �M(a) = �M(b) = i
to relabel each vertex in A and B [17]. The reduced
genome AM is obtained by deleting from A all genes
not saturated by M, and renaming each saturated gene
a to �M(a), preserving its orientation (sign). Similarly,
the reduced genome BM is obtained by deleting from
B all genes that are not saturated by M, and renaming
each saturated gene b to �M(b), preserving its orienta-
tion. Observe that the set of genes in AM and in BM

is G(M) = {

�M(g) : g is saturated by the matching M
} =

{1, 2, . . . , n}.
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Fig. 3 The weighted adjacency graph AGσ (A, B) for two unichromosomal linear genomes A = {(◦ 1 2 3 4 5 6 ◦)} and
B = {(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}

Weighted adjacency graph of reduced genomes
Let AM and BM be the reduced genomes for a given
matching M of GSσ (A, B). The weighted adjacency graph
AGσ

(

AM, BM)

can be obtained from AGσ (A, B) by delet-
ing all edges that are not elements of M and relabeling the
adjacencies according to �M. Vertices that have no connec-
tions are then also deleted from the graph. Another way
to obtain the same graph is building the adjacency graph
of AM and BM and adding weights to the edges as follows.
For each gene i in G(M), both edges itit and ihih inherit the
weight of edge ei in M, that is, σ

(

itit) = σ
(

ihih) = σ(ei).
Consequently, the graph AGσ

(

AM, BM)

is also a collection
of paths and even cycles and differs from AG

(

AM, BM)

only by the edge weights.

For each edge e ∈ M, we have two edges of weight σ(e)
in AGσ

(

AM, BM)

, therefore w
(

AGσ

(

AM, BM)) = 2 w(M).
Examples of weighted adjacency graphs of reduced
genomes are shown in Fig. 4.

The family-free DCJ similarity
For a given matching M in GSσ (A, B), a first for-
mula for the weighted DCJ (wDCJ) similarity sσ of the
reduced genomes AM and BM was proposed in [15] only
considering the cycles of AGσ

(

AM, BM)

. After that, this
definition was modified and extended in [17], in order to
consider all components of the weighted adjacency graph.

First, let the normalized weight ŵ(C) of a component C
of AGσ

(

AM, BM)

be:

Fig. 4 Considering, as in Fig. 2, the genomes A = {(◦ 1 2 3 4 5 6 ◦)} and B = {(◦ 7 8 −9 −10 11 −12 −13 14 ◦)}, let M1 (dashed edges) and M2

(dotted edges) be two distinct maximal matchings in GSσ (A, B), shown in the upper part. The two resulting weighted adjacency graphs
AGσ

(

AM1 , BM1
)

, that has two cycles and two even paths, and AGσ

(

AM2 , BM2
)

, that has two odd paths, are shown in the lower part
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ŵ(C) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

w(C)
|C| , if C is a cycle ,
w(C)
|C|+1 , if C is an odd path ,
w(C)
|C|+2 , if C is an even path .

Let C be the set of all components in AGσ

(

AM, BM)

.
Then the wDCJ similarity sσ is given by the following
formula [17]:

sσ
(

AM, BM) =
∑

C∈C
ŵ(C) . (2)

Observe that, when the weights of all edges in M are equal
to 1, this formula is equivalent to the one in Eq. 1.

The goal now is to compute the family-free DCJ sim-
ilarity, i.e., to find a matching in GSσ (A, B) that max-
imizes sσ . However, although sσ

(

AM, BM)

is a positive
value upper bounded by |M|, the behaviour of the wDCJ
similarity does not correlate with the size of the matching,
since smaller matchings, that possibly discard gene assign-
ments, can lead to higher wDCJ similarities [17]. For this
reason, the wDCJ similarity function is restricted to max-
imal matchings only, ensuring that no pair of genes with
positive gene similarity score is simply discarded, even
though it might decrease the overall wDCJ similarity. We
then have the following optimization problem:

Problem FFDCJ-SIMILARITY(A, B): Given genomes A
and B and their gene similarities σ , calculate their
family-free DCJ similarity

sFFDCJ(A, B) = max
M∈M

{

sσ
(

AM, BM)}

, (3)

where M is the set of all maximal matchings
in GSσ (A, B).

Problem FFDCJ-SIMILARITY is NP-hard [17]. Moreover,
one can directly correlate the problem to the adjacency
similarity problem, where the goal is to maximize the
number of preserved adjacencies between two given
genomes [11, 19]. However, since there the objective is
to maximize the number of cycles of length 2, even an
approximation for the adjacency similarity problem is
not a good algorithm for the FFDCJ-SIMILARITY prob-
lem, where cycles of higher lengths are possible in the
solution [20].

Capping telomeres
A very useful preprocessing to AGσ (A, B) is the capping of
telomeres, a general technique for simplifying algorithms
that handle genomes with linear chromosomes, com-
monly used in the context of family-based settings
[4, 5, 21]. Given two genomes A and B with i and j linear
chromosomes, respectively, for each vertex representing
only one extremity we add a null extremity τ to it (e.g., 1t

of Fig. 4 becomes τ1t). Furthermore, in order to add the
same number of null extremities to both genomes, |j − i|

null adjacencies ττ (composed of two null extremities) are
added to genome A, if i < j, or to genome B, if j < i.
Finally, for each null extremity of a vertex in A we add to
AGσ (A, B) a null edge with weight 0 to each null extremity
of vertices in B. Consequently, after capping of telomeres
the graph AGσ (A, B) has no vertex of degree one. Notice
that, if before the capping p was a path of weight w con-
necting telomeres in AGσ (A, B), then after the capping
p will be part of a cycle closed by null extremities with
normalized weight w

|p|+1 if p is an odd path, or of normal-
ized weight w

|p|+2 if p is an even path. In any of the two
cases, the normalized weight is consistent with the wDCJ
similarity formula in Eq. 2.

Results and discussion
An exact Algorithm
In order to exactly compute the family-free DCJ similarity
between two given genomes, we propose an integer linear
program (ILP) formulation that is similar to the one for the
family-free DCJ distance given in [17]. It adopts the same
notation and also uses an approach to solve the maximum
cycle decomposition problem as in [13].

Let A and B be two genomes, let G = GSσ (A, B) be
their gene similarity graph, and let XA and XB be the
extremity sets (including null extremities) with respect
to A and B for the capped adjacency graph AGσ (A, B),
respectively. The weight w(e) of an edge e in G is also
denoted by we. For the ILP formulation, an extension
H = (VH , EH) of the capped weighted adjacency graph
AGσ (A, B) is defined such that VH = XA ∪ XB, and
EH = Em ∪ Ea ∪ Es has three types of edges: (i) matching
edges that connect two extremities in different extrem-
ity sets, one in XA and the other in XB, if they are
null extremities or there exists an edge connecting these
genes in G; the set of matching edges is denoted by
Em; (ii) adjacency edges that connect two extremities in
the same extremity set if they form an adjacency; the
set of adjacency edges is denoted by Ea; and (iii) self
edges that connect two extremities of the same gene in
an extremity set; the set of self edges is denoted by Es.
Matching edges have weights defined by the normalized
gene similarity σ , all adjacency and self edges have weight
0. Notice that any edge in G corresponds to two matching
edges in H.

The description of the ILP follows. For each edge e in H,
we create a binary variable xe to indicate whether e will be
in the final solution. We require first that each adjacency
edge be chosen:

xe = 1, ∀ e ∈ Ea.

Now we rename each vertex in H such that VH =
{v1, v2, . . . , vk} with k = |VH |. We require that each of
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these vertices be adjacent to exactly one matching or self
edge:

∑

e=vrvt∈Em∪Es

xe = 1,∀ vr ∈ XA, and

∑

e=vrvt∈Em∪Es

xe = 1,∀ vt ∈ XB.

Then, we require that the final solution be valid, mean-
ing that if one extremity of a gene in A is assigned to an
extremity of a gene in B, then the other extremities of
these two genes have to be assigned as well:

xahbh = xatbt , ∀ ab ∈ EG.

We also require that the matching be maximal. This can
easily be ensured if we guarantee that at least one of the
vertices connected by an edge in the gene similarity graph
be chosen, which is equivalent to not allowing both of the
corresponding self edges in the weighted adjacency graph
be chosen:

xahat + xbhbt ≤ 1, ∀ ab ∈ EG.

To count the number of cycles, we use the same strategy
as described in [13]. For each vertex vi we define a variable
yi that labels vi such that

0 ≤ yi ≤ i, 1 ≤ i ≤ k.

We also require that adjacent vertices have the same label,
forcing all vertices in the same cycle to have the same label:

yi ≤ yj + i · (1 − xe), ∀ e = vivj ∈ EH ,
yj ≤ yi + j · (1 − xe), ∀ e = vivj ∈ EH .

We create a binary variable zi, for each vertex vi, to verify
whether yi is equal to its upper bound i:

i · zi ≤ yi, 1 ≤ i ≤ k.

Since all variables yi in the same cycle have the same label
but a different upper bound, only one of the yi can be equal
to its upper bound i. This means that zi is 1 if the cycle
with vertex i as representative is used in a solution.

Now, let L = {2j : j = 1, . . . , n} be the set of possible
cycle lengths in H, where n := min(|A|, |B|). We create the
binary variable xei to indicate whether e is in i, for each e ∈
EH and each cycle i. We also create the binary variable x�

ei
to indicate whether e belongs to i and the length of cycle i
is �, for each e ∈ EH , each cycle i, and each � ∈ L.

We require that if an edge e belongs to a cycle i, then it
can be true for only one length � ∈ L. Thus,

∑

�∈L
x�

ei ≤ xei, ∀ e ∈ EH and 1 ≤ i ≤ k. (4)

We create another binary variable z�
i to indicate whether

cycle i has length �. Then � · z�
i is an upper bound for the

total number of edges in cycle i of length �:
∑

e∈EM

x�
ei ≤ � · z�

i , ∀ � ∈ L and 1 ≤ i ≤ k.

The length of a cycle i is given by � · z�
i , for i = 1, . . . , k

and � ∈ L. On the other hand, it is the total amount of
matching edges e in cycle i. That is,

∑

�∈L
� · z�

i =
∑

e∈Em

xei, 1 ≤ i ≤ k.

We have to ensure that each cycle i must have just one
length:

∑

�∈L
z�

i = zi, 1 ≤ i ≤ k.

Now we create the binary variable yri to indicate
whether the vertex vr is in cycle i. Thus, if xei = 1, i.e., if
the edge e = vrvt in H is chosen in cycle i, then yri = 1 =
yti (and xe = 1 as well). Hence,

xei ≤ xe,
xei ≤ yri,
xei ≤ yti,
xei ≥ xe + yri + yti − 2,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

∀ e = vrvt ∈ EH and 1 ≤ i ≤ k.

(5)

Since yr is an integer variable, we associate yr to the cor-
responding binary variable yri, for any vertex vr belonging
to cycle i:

yr =
r

∑

i=1
i · yri, ∀ vr ∈ VH .

Furthermore, we must ensure that each vertex vr may
belong to at most one cycle:

r
∑

i=1
yri ≤ 1, ∀ vr ∈ VH .

Finally, we set the objective function as follows:

maximize
k

∑

i=1

∑

�∈L

∑

e∈Em

wex�
ei

�
.

Note that, with this formulation, we do not have any path
as a component. Therefore, the objective function above
is exactly the family-free DCJ similarity SFFDCJ(A, B) as
defined in Eqs. (2) and (3).

Notice that the ILP formulation has O(N4) variables and
O

(

N3) constraints, where N = |A| + |B|. The number
of variables is proportional to the number of variables x�

ei,
and the number of constraints is upper bounded by (4)
and (5).
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APX-hardness and heuristics
In this section we first state that problem FFDCJ-
SIMILARITY is APX-hard and provide a lower bound for
the approximation ratio.

Theorem 1 FFDCJ-SIMILARITY is APX-hard and can-
not be approximated with approximation ratio better than
22/21 = 1.0476 . . ., unless P = NP.

Proof See Additional file 1.

We now propose four heuristic algorithms to compute
the family-free DCJ similarity of two given genomes: one
that is directly derived from a maximum matching of the
gene similarity graph GSσ and three greedy-like heuris-
tics that, according to different criteria, select cycles from
the weighted adjacency graph AGσ , such that the cycles
selected by each heuristic induce a matching in GSσ .

Maximum matching
In the first heuristic, shown in Algorithm 1 (MAXIMUM-
MATCHING), we find a maximum weighted bipartite
matching M in GSσ by the Hungarian Method, also
known as Kuhn-Munkres Algorithm [22–24]. Given the
matching M, it is straightforward to obtain the reduced
genomes AM and BM and return the similarity value
sσ

(

AM, BM)

.

Algorithm 1 MAXIMUM-MATCHING(A, B, σ)

Input: genomes A and B, gene similarity function σ

Output: a family-free DCJ similarity between A and B
1: Build the gene similarity graph GSσ (A, B).
2: Obtain a maximum weighted matching M in

GSσ (A, B) defining reduced genomes AM and BM.
3: Build the capped weighted adjacency graph

AGσ

(

AM, BM)

of the reduced genomes.
4: Let C be the set of all cycles in AGσ

(

AM, BM)

.
5: Return sσ

(

AM, BM) = ∑

C∈C ŵ(C).

For the implementantion of this heuristic we cast sim-
ilarity values (floating point edge weights in [ 0, 1]) in
GSσ (A, B) to integers by multiplying them by some power
of ten, depending on the precision of similarity values.
Given real or general simulated instances, and for a power
of ten large enough, this operation has little impact on the
optimality of the weighted matching M for the original
weights in GSσ (A, B) obtained from the Kuhn-Munkres
algorithm, i.e., the weight of M for the original weights
in GSσ (A, B) is optimal or near-optimal since only less
significant digits are not considered.

Greedy heuristics
Before describing the greedy heuristics, we need to intro-
duce the following concepts. We say that two edges in
AGσ (A, B) are consistent if one connects the head and the
other connects the tail of the same pair of genes, or if they
connect extremities of distinct genes in both genomes.
Otherwise they are inconsistent. A set of edges, in partic-
ular a cycle, is consistent if it has no pair of inconsistent
edges. A set of cycles is consistent if the union of all of
their edges is consistent. Observe that a consistent set of
cycles in AGσ (A, B) induces a matching in GSσ (A, B).

Each one of the three greedy algorithms selects disjoint
and consistent cycles in the capped AGσ (A, B). The con-
sistent cycles are selected from the set of all cycles of
AGσ (A, B), that is obtained in Step 4 of each heuristic (see
Algorithms 2, 3 and 4 below), using a cycle enumeration
algorithm by Hawick and James [25], which is based on
Johnson’s algorithm [26]. For this reason, the running time
of our heuristics is potentially exponential in the number
of vertices of AGσ (A, B).

In the three heuristics, after completing the cycle selec-
tion by iterating over the set of all cycles of AGσ (A, B),
the induced matching M in GSσ (A, B) could still be non-
maximal. Whenever this occurs, among the genes that are
unsaturated by M, we can identify disposable genes by one
of the two following conditions:

1. Any unsaturated gene in GSσ (A, B) that is connected
only to saturated genes, is a disposable gene;

2. For a given set of vertices S ⊆ A (or S ⊆ B) in
GSσ (A, B) such that, for the set of connected genes
N(S), we have |S| > |N(S)| (Hall’s theorem), then any
subset of size |S| − |N(S)| of unsaturated genes of S
can be set as disposable genes. In our implementa-
tion we choose those |S| − |N(S)| unsaturated genes
with the smallest labels. Such S ⊆ A can be found
as follows. Let v be the set of vertices saturated by
M, and let M′ be a maximum cardinality matching
in GSσ (A, B) \ v. Consider the sets A′ = A \ v and
B′ = B \ v. Now let GS′

σ (A, B) be a directed bipartite
graph on the vertex set A′ ∪ B′, which includes the
edges of M′ oriented from B′ to A′ and the remain-
ing edges of GSσ (A, B)\ v oriented from A′ to B′, and
let U ⊆ A′ be the set of vertices of A′ unsaturated by
M′. S ⊆ A is the corresponding set of vertices reach-
able from U in GS′

σ (A, B), if any. S ⊆ B can be found
analogously.

If there is no consistent cycle to be selected and the
matching M is still non-maximal, new consistent cycles
appear in AGσ (A, B) after the deletion of all identified
disposable genes (see Fig. 5). In order to delete a dis-
posable gene g, we need to remove from AGσ (A, B) the
edges corresponding to extremities gt or gh and “merge”
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Fig. 5 Consider genomes A = {(◦ 1 2 3 ◦)} and B = {(◦ −4 5 6 −7 ◦)} and their gene similarity graph GSσ (A, B). The selection of the dashed cycle
in AGσ (A, B) adds to the matching M in GSσ (A, B) the edges connecting gene 1 to gene 4 and gene 2 to gene 5. After this selection, although the
matching M is not yet maximal, there are no more consistent cycles in AGσ (A, B). Observe that in GSσ (A, B) gene 6 is unsaturated and its single
neighbor - gene 2 - is already saturated. Since gene 6 can no longer be saturated by M, it is a disposable gene and is deleted from AGσ (A, B), resulting
in AG′

σ (A, B), where a new consistent cycle appears. The selection of this new cycle adds to the matching M the edge connecting gene 3 to gene 7.
Both AGσ (A, B) and AG′

σ (A, B) have a simplified representation, in which the edge weights, as well as two of the four null edges of the capping, are
omitted. Furthermore, for the sake of clarity, in this simplified representation each edge has a label describing the extremities connected by it

the two vertices that represent these extremities. Every
time disposable genes are deleted from AGσ (A, B), a new
iteration of the algorithms starts from Step 4 (see again
Algorithms 2, 3 and 4). This procedure assures that,
in each one of the three algorithms, the final set of
selected cycles defines a maximal matching M, such
that AGσ

(

AM, BM)

is exactly the union of those selected
cycles.

Best density The best density heuristic is shown in
Algorithm 2 (GREEDY-DENSITY). The density of a cycle C
is given by w(C)

|C|2 (its weight divided by the square of its
length). The cycles of AGσ (A, B) are arranged in decreas-
ing order of their densities, and consistent cycles are
selected following this order.

Algorithm 2 GREEDY-DENSITY(A, B, σ)

Input: genomes A and B, gene similarity function σ

Output: a family-free DCJ similarity between A and B
1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ (A, B).
3: Build the capped weighted adjacency graph

AGσ (A, B).
4: for � = 10, 20, . . . , maximum cycle length possible

do
5: List all cycles of AGσ (A, B) of length at most � in

decreasing order of their densities.
6: While it is possible, select the best density consis-

tent cycle C that is also consistent with all cycles
in C and add it to C, let AGσ (A, B) := AGσ (A, B) \
C, update M by adding the new gene connections
induced by C.

7: If M is not a maximal matching of GSσ (A, B), find and
delete disposable genes from AGσ (A, B) and go back
to Step 4.

8: Return
∑

C∈C ŵ(C).

Since the number of cycles of any length may be expo-
nential in the size of the input graph, in our implemen-
tation we add a heuristic in which initially the search is
restricted to cycles of length up to ten. Then, as long as
the obtained matching is not maximal, Steps 4 to 7 are
repeated, while gradually increasing the allowed maxi-
mum cycle length in steps of ten.

Best length The best length heuristic is shown in
Algorithm 3 (GREEDY-LENGTH). The cycles of AGσ (A, B)

are found in increasing order of their lengths, and ties are
broken by the decreasing order of their weights. Here we
first find and select cycles of length 2, then of length 4,
and so on, for each fixed length iterating over the set of
all cycles in decreasing order of their weights. Consistent
cycles are selected following this procedure.

Algorithm 3 GREEDY-LENGTH(A, B, σ)

Input: genomes A and B, gene similarity function σ

Output: a family-free DCJ similarity between A and B
1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ (A, B).
3: Build the capped weighted adjacency graph

AGσ (A, B).
4: for � = 2, 4, . . . , maximum cycle length possible do
5: List all cycles of AGσ (A, B) of length � in decreasing

order of their weights.
6: While it is possible, select the best weight consis-

tent cycle C that is also consistent with all cycles
in C and add it to C, let AGσ (A, B) := AGσ (A, B) \
C, update M by adding the new gene connections
induced by C.

7: If M is not a maximal matching of GSσ (A, B), find and
delete disposable genes from AGσ (A, B) and go back
to Step 4.

8: Return
∑

C∈C ŵ(C).
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Best length with weighted maximum independent
set The best length heuristic with WMIS is shown in
Algorithm 4 (GREEDY-WMIS) and is a variation of
GREEDY-LENGTH. Instead of selecting cycles of greater
weights for a fixed length, this algorithm selects the great-
est amount of cycles for a fixed length by a WMIS algo-
rithm. The heuristic builds a cycle graph where each vertex
is a cycle of AGσ (A, B), the weight of a vertex is the weight
of the cycle it represents and two vertices are adjacent
if the cycles they represent are inconsistent. The heuris-
tic tries to find next an independent set with the greatest
weight in the cycle graph. Since this graph is not d-claw-
free for any fixed d, the WMIS algorithm [27] does not
guarantee any fixed ratio.

Algorithm 4 GREEDY-WMIS(A, B, σ)

Input: genomes A and B, gene similarity function σ

Output: a family-free DCJ similarity between A and B
1: M := ∅; C := ∅.
2: Build the gene similarity graph GSσ (A, B).
3: Build the capped weighted adjacency graph

AGσ (A, B).
4: for � = 2, 4, . . . , maximum cycle length possible do
5: List all cycles of AGσ (A, B) of length �.
6: Select a set C′ of consistent cycles trying to maxi-

mize the sum of weights by a WMIS algorithm and
add C′ to C, let AGσ (A, B) := AGσ (A, B)\C′, update
M by adding the new gene connections induced by
C′.

7: If M is not a maximal matching of GSσ (A, B), find and
delete disposable genes from AGσ (A, B) and go back
to Step 4.

8: Return
∑

C∈C ŵ(C).

Experimental results
Experiments for the ILP and our heuristics were con-
ducted on an Intel i7-4770 3.40GHz machine with 16 GB
of memory. In order to do so, we produced simulated
datasets by the Artificial Life Simulator (ALF) [28] and
obtained real genome data from NCBI, using the FFGC

tool [29] to obtain similarity scores between genomes.
Gurobi Optimizer 7.0 was set to solve ILP instances with
default parameters, time limit of 1800 s and 4 threads, and
the heuristics were implemented in C++.

Simulated data
We generated datasets with 10 genome samples each, run-
ning pairwise comparisons between all genomes in the
same dataset. Each dataset has genomes of sizes around
25, 50 or 1000 (the latter used only for running the heuris-
tics), generated based on a sample from the tree of life with
10 leaf species and PAM distance of 100 from the root
to the deepest leaf. Gamma distribution with parameters
k = 3 and θ = 133 was used for gene length distribution.
For amino acid evolution we used the WAG substitution
model with default parameters and the preset of Zipfian
indels with rate 0.00005. Regarding genome level events,
we allowed gene duplications and gene losses with rate
0.002, and reversals and transpositions (which ALF refers
to as translocations) with rate 0.0025, with at most 3 genes
involved in each event. To test different proportions of
genome level events, we also generated simulated datasets
with 2- and 5-fold increase for reversal and transpositions
rates.

Results are summarized in Table 1. Each dataset is com-
posed of 10 genomes, totaling 45 comparisons of pairs per
dataset. Rate r = 1 means the default parameter set for
genome level events, while r = 2 and r = 5 mean the
2- and 5-fold increase of rates, respectively. For the ILP
the table shows the average time for instances for which
an optimal solution was found, the number of instances
for which the optimizer did not find an optimal solu-
tion within the given time limit and, for the latter class
of instances, the average relative gap between the best
solution found and the upper bound found by the solver,
calculated by

(

upper bound
best solution − 1

)

× 100. For our heuristics,
the running time for all instances of sizes 25 and 50 was
negligible, therefore the table shows only the average rela-
tive gap between the solution found and the upper bound
given by the ILP solver (if any).

Results clearly show the average relative gap of heuris-
tics increases proportionally to the rate of reversals and

Table 1 Results of experiments for simulated genomes

ILP MAXIMUM-MATCHING GREEDY-DENSITY GREEDY-LENGTH GREEDY-WMIS

Time (s) Not finished Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

25 genes, r = 1 19.50 0 – 16.26 5.03 5.84 5.97

25 genes, r = 2 84.60 2 69.21 58.69 30.77 43.57 43.00

25 genes, r = 5 49.72 0 – 81.39 43.83 55.38 55.38

50 genes, r = 1 265.23 12 23.26 63.02 24.76 27.86 26.94

50 genes, r = 2 463.50 29 38.12 123.71 65.41 66.52 64.78

50 genes, r = 5 330.88 29 259.72 281.70 177.58 206.60 206.31
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transpositions. This is expected, as higher mutation rates
often result in higher normalized weights on longer cycles,
thus the association of genes with greater gene similar-
ity scores will be subject to the selection of longer cycles.
Interestingly, for some larger instances the relative gap
for heuristics is very close to the values obtained by the
ILP solver, suggesting the use of heuristics may be a good
alternative for some classes of instances or could help the
solver finding lower bounds quickly. It is worth noting that
the GREEDY-DENSITY heuristic found solutions with gap
smaller than 1% for 38% of the instances with 25 genes.

In a single instance (25 genes, r = 2), the gap between
the best solution found and the upper bound was much
higher for the ILP solver and for the heuristics. This
instance in particular is precisely the one with the largest
number of edges in GSσ (A, B) in the dataset. This may
indicate that a moderate increase in degree of vertices (1.3
on average to 1.8 in this case) may result in much harder
instances for the solver and the heuristics, as after half of
the time limit the solver attained no significant improve-
ment on solutions found, and the heuristics returned
solutions with a gap even higher.

We also simulated 10 genomes of sizes around 50, with
PAM distance of 15 from the root to the deepest leaf,
therefore evolutionarily “closer” to each other and for
which higher similarity values are expected. For these
genomes the default rates were multiplied by ten (10-fold)
for Zipfian indels, gene duplications, gene losses, reversals
and transpositions, otherwise there would be no significa-
tive difference between them. The exact ILP algorithm
found an optimal solution for only 4 of the 45 instances,
taking 840.59 s on average. For the remaining instances,
where the ILP did not finish within the time limit, the
average gap is 329.53%. Regarding the heuristics (Table 2),
that all run in negligible time, GREEDY-DENSITY outper-
forms the others, with an average gap of 163% compared
to the best upper bound found by the ILP solver. Surpris-
ingly, values returned by greedy heuristics are better than
values obtained by the ILP for these instances. Results
again suggest that the ILP could benefit greatly from
heuristics by using their results as initial lower bounds.
Moreover, for some groups of instances even heuristics
alone can obtain excellent results.

Although we have no upper bounds for comparing
the results of our heuristics for genome sizes around
1000, they are still very fast. For these genomes we
analyze the MAXIMUM-MATCHING algorithm separately
afterwards, taking into account for now only the other

three heuristics. The average running times are 0.30 s,
15.11 s and 12.16 s for GREEDY-DENSITY, GREEDY-
LENGTH and GREEDY-WMIS, respectively, showing never-
theless little difference on results.

However, in 25% of the instances with r = 5, the dif-
ference from the best to the worst solutions provided by
these heuristics varied between 10% and 24%, the best of
which were given by GREEDY-DENSITY. That is probably
because, instead of prioritizing shorter cycles, GREEDY-
DENSITY attempts to balance both normalized weight
and length of the selected cycles. The average running
times for the instances with r = 5 are 1.84 s, 76.02 s
and 80.67 s for GREEDY-DENSITY, GREEDY-LENGTH and
GREEDY-WMIS, respectively.

Still for genomes of size around 1000 and r = 5, the
MAXIMUM-MATCHING heuristic is the fastest, with an
average running time of 1.70 s. Despite being the best
heuristic for a few cases, the similarity value given by this
heuristic is merely 27% of the value given by the best
heuristic, on average. While the MAXIMUM-MATCHING
heuristic is clearly not useful for calculating similarity val-
ues, these results show how significant it is choose cycles
with the best normalized weights versus prioritizing edges
with best weights in the gene similarity graph for the
FFDCJ-SIMILARITY problem. Since this property of the
MAXIMUM-MATCHING somehow reflects the strategy
of family-based comparative genomics, this observation
indicates an advantage of family-free analysis compared to
family-based analysis.

To better understand how cycles scale, we generated
5-fold larger instances (up to 10000 genes), running the
GREEDY-DENSITY heuristic. Results show that most of
the cycles found are of short lengths compared to the
genome sizes and in practice their number does not
increase exponentially, providing some insight on why our
heuristics are fast.

Finally, as expected, experiments for genomes simulated
with different parameters indicate the FFDCJ similarity
decreases as the PAM distance or the rates of genome level
events increases (data not shown).

Real genome data
To show the applicability of our methods to real data, we
obtained from NCBI protein-coding genes of X chromo-
somes of human (Homo-sapiens, assembly GRCh38.p7),
house mouse (Mus musculus, assembly GRCm38.p4
C57BL/6J), and Norway rat (Rattus norvegicus, assem-
bly Rnor_6.0). In mammals, the set of genes on the X

Table 2 Results of experiments for 10 simulated genomes (45 pairwise comparisons) with smaller PAM distance

ILP MAXIMUM-MATCHING GREEDY-DENSITY GREEDY-LENGTH GREEDY-WMIS

Time (s) Not finished Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

50 genes, r = 10 840.59 41 329.53 415.57 163.00 172.02 168.58



Rubert et al. BMC Bioinformatics 2018, 19(Suppl 6):152 Page 41 of 62

Table 3 Results for heuristics on real genomes

Smaller genome
Matching size Time (s) Similarity

MM GD GL GW MM GD GL GW MM GD GL GW

Human/mouse 696 643 643 643 643 0.07 19.6 0.1 8.6 404.56 420.64 421.48 420.72

Human/rat 672 613 611 611 612 0.05 11.6 0.04 3.3 358.36 374.17 374.27 373.82

Mouse/rat 746 690 689 689 689 0.17 0.18 0.13 0.18 481.53 500.59 500.57 500.36

Smaller genome column shows for each pair of genomes the number of genes in the smaller one, an upper bound for the matching size. Heuristics are represented by their
initials (e.g. GREEDY-LENGTH = GL)

chromosome has been reasonably conserved throughout
the last several million years [30], having however their
order disrupted many times.

Since protein sequences are used to obtain the simi-
larity scores (with the help of the BLASTp tool) instead
of nucleotide sequences, 76 genes from the rat genome
were excluded because no protein sequence was available.
Besides, when a gene has multiple isoforms, the longest
is kept. The number of genes in the resulting genomes
were 822, 953 and 863 for human, mouse and rat, respec-
tively, some of them removed from the pairwise genome
comparison due to the pruning process of FFGC.

Table 3 shows, as expected, that the two rodent X chro-
mosomes have a higher similarity than any of them to the
human X chromosome. The values returned by the greedy
heuristics are very similar, where GREEDY-LENGTH is the
fastest. MAXIMUM-MATCHING results are less than 5%
distant from the results of the greedy heuristics, which
indicates the choice of cycles has some influence but
does not dominate the similarity values obtained for these
instances. Matching sizes are similar for all heuristics,
showing that about 8% of the genes of the smaller genomes
could not be matched to some gene of the other genome
and had to be removed, that is, they are disposable genes.

Conclusions
In this paper we developed methods for computing the
(NP-hard) family-free DCJ similarity, which is a large-
scale rearrangement measure for comparing two given
genomes. We presented an exact algorithm in form of
an integer linear program and extended our previous
hardness result by showing that the problem is APX-
hard and has a lower bound of 22/21 for its approx-
imation ratio. Therefore, we developed four heuristic
algorithms and could show that they perform well while
having reasonable running times also for realistic-size
genomes.

Our initial experiment on real data can be considered
a proof of concept. In general, the computational results
of this paper can be used to more systematically study
the applicability of the DCJ similarity measure in var-
ious contexts. One important point to be investigated
is whether, differently from parsimonious distance mea-
sures that usually only hold for closely related genomes,

a genomic similarity would allow to perform good com-
parisons of more distant genomes as well. Fine-tuning of
both the data preparation and objective function may be
necessary, though.

For example, one drawback of the function sFFDCJ as
defined in Eq. 3 is that distinct pairs of genomes might
give family-free DCJ similarity values that cannot be com-
pared easily, because the value of SFFDCJ varies between 0
and |M|, where M is the matching giving rise to SFFDCJ.
Therefore some kind of normalization would be desirable.
A simple approach could be to divide SFFDCJ by the size of
the smaller genome, because this is a trivial upper bound
for |M|. Moreover, it can be applied as a simple postpro-
cessing step, keeping all theoretical results of this paper
valid. A better normalization, however, might be to divide
by |M| itself. An analytical treatment here seems more dif-
ficult, though. Therefore we leave this and the application
to multiple genomes in a phylogenetic context as an open
problem for future work.

Other questions that can be studied in the future are
the relationships between family-based and family-free
genomic similarity measures in general.
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