
Lee et al. BMC Bioinformatics (2018) 19:221
https://doi.org/10.1186/s12859-018-2210-6

SOFTWARE Open Access

Blazing Signature Filter: a library for fast
pairwise similarity comparisons
Joon-Yong Lee1, Grant M. Fujimoto1, Ryan Wilson1, H. Steven Wiley2 and Samuel H. Payne1*

Abstract

Background: Identifying similarities between datasets is a fundamental task in data mining and has become an
integral part of modern scientific investigation. Whether the task is to identify co-expressed genes in large-scale
expression surveys or to predict combinations of gene knockouts which would elicit a similar phenotype, the
underlying computational task is often amulti-dimensional similarity test. As datasets continue to grow, improvements
to the efficiency, sensitivity or specificity of such computation will have broad impacts as it allows scientists to more
completely explore the wealth of scientific data.

Results: The Blazing Signature Filter (BSF) is a highly efficient pairwise similarity algorithm which enables extensive
data mining within a reasonable amount of time. The algorithm transforms datasets into binary metrics, allowing it to
utilize the computationally efficient bit operators and provide a coarse measure of similarity. We demonstrate the
utility of our algorithm using two common bioinformatics tasks: identifying data sets with similar gene expression
profiles, and comparing annotated genomes.

Conclusions: The BSF is a highly efficient pairwise similarity algorithm that can scale to billions of comparisons
without the need for specialized hardware.

Keywords: Pairwise similarity comparison, Filtering, Large-scale data mining

Background
Data mining is frequently used in scientific research for
hypothesis generation, mechanistic insight, or validation.
Similarity metrics are an essential component of data
mining, and are used to identify relevant data. In com-
putational biology, a wide variety of similarity metrics
have been devised to maximize specificity and sensitivity
in sequence alignment [1], proteomic mass spectrometry
[2], evolutionary tree building [3], co-expression network
creation [4], etc. These algorithms are typically used to
facilitate comparing a data point against a curated library
of experiments to derive insight [5]. As modern data
generation capabilities have created a deluge of poten-
tial data to compare against, exhaustive similarity search
may become computationally prohibitive for inefficient
algorithms. Therefore, efficient and accurate algorithms
for computing similarity are necessary. For instance, the

*Correspondence: Samuel.Payne@pnnl.gov
1Integrative Omics, Pacific Northwest National Laboratory, 99352 Richland, WA
USA
Full list of author information is available at the end of the article

library of integrated network-based cellular signatures
(LINCS) program has generated over one million gene
expression experiments [6]. To compute the pairwise
similarity between all experiments therefore requires 0.5
trillion similarity calculations.
When doing similarity-based computations on very

large data, a significant drawback is that most of the pair-
wise comparisons yield a negative result, i.e. the two data
points are not similar. An example of this is sequence
alignment of genomic data. The current NCBI nr database
contains >78 million proteins (as of January 2017, release
80), the vast majority of which are not related to an input
query. It would be a significant waste of time to per-
form the Smith-Waterman local alignment search against
all 78 million sequences [7]. To overcome this limitation
and enable large-scale data mining, sequence compar-
ison algorithms commonly filter the set of sequences
in the library prior to a more sensitive search. The
BLAST algorithm requires a shared k-mer between the
query sequence and candidate sequences from the library
[8]. Only those proteins which contain a shared k-mer

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2210-6&domain=pdf
http://orcid.org/0000-0002-8351-1994
mailto: Samuel.Payne@pnnl.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lee et al. BMC Bioinformatics (2018) 19:221 Page 2 of 12

progress to a full alignment. This style of filtering can-
didates before a more computationally expensive scoring
scheme is a common strategy which allows data mining to
scale to ever-larger data volumes [9–11].
A second method to improve the speed of an algo-

rithm is to adopt a faster core calculation. Most scientific
data is stored as floating-point numbers; multiplication
or division of floats is relatively slow. Therefore, opti-
mizing an approach to minimize these will improve the
computational speed. Bit operations (e.g. AND, OR, XOR)
are dramatically faster than multiplication, yet require
a restructuring of the basic approach or a data trans-
form. The FastBit algorithm transforms data into bitmaps,
then performs a hybrid compression to enable several
common algorithmic operations (e.g. less than operator,
histograms, exact pattern matching). This method is
specifically designed to facilitate querying very large
libraries with scientific data of high cardinalities [12]. Sim-
ilarly, bit-vectors have been used to improve the speed of
string matching [13].
We combine these two ideas in the Blazing Signature

Filter (BSF), a new approach to prune unproductive
pairwise similarity calculations and enable large-scale
data mining. The BSF identifies signatures in digital data
through bit representation (non-full precision) and bit-
wise operators. These binary operands are dramatically
more efficient than floating-point multiplication and divi-
sion in terms of CPU cycles per comparison. This simple
heuristic allows us to remove > 98% of pairwise compar-
isons rapidly and therefore concentrate computational
effort on pairs that are more likely to be meaningfully sim-
ilar, enabling data mining tasks which previously appeared
infeasible. We demonstrate the power of the BSF by
computing the pairwise similarity of all publicly available
LINCS datasets and identifying similarity of all genomes
annotated by the Kyoto Encyclopedia of Genes and
Genomes (KEGG).

Implementation
A simplified example of the BSF is illustrated in Fig 1,
where a 64-element signature is compared to a pool
of candidates in a library. This 64-element signature
is entirely binary, meaning that we only keep track of
whether the element is part of the signature or not. Bit
operations on two 64-bit binary signatures happen in
a single instruction as two registers are compared with
operators like AND, or XOR. Counting the number of
successes in the comparisons (1s in the resulting array)
is rapidly done using the hardware instruction ‘POPCNT’
[14]. In comparison, identifying the cosine similarity or
Euclidean distance between two 64-element floating point
vectors requires over 100 additions, multiplications, divi-
sions and square root operations. For modern proces-
sors, cosine distance and Euclidean distance have an

average throughput of 398∼ 1579 and 199∼ 724 clock
cycles, respectively, whereas BSF uses 2∼ 4 clock cycles.
Although this simplified example shows a 64-element
signature, the software implementation of the BSF has
been engineered to allow an arbitrary signature length.
This is essential for comparing gene expression signa-
tures which may scale to tens of thousands of elements,
e.g. 20,000 human proteins. As this is larger than the
size of a single CPU register, the data is chunked into
appropriate sizes and comparisons are flowed through the
registers.
The BSF code, written in C++, is an open source soft-

ware project licensed under BSD. Source can be found
at https://github.com/PNNL-Comp-Mass-Spec/bsf-core.
For ease of access, we have written a python wrapper to
interface with the BSF C++ library, https://github.com/
PNNL-Comp-Mass-Spec/bsf-py. Python extensions and
numpy C-API are employed to implement the python
wrapper.
The BSF is accessed through an API which ensures that

input data is appropriate and meaningful, and interprets
the output tables which are returned. Input to the BSF
consists of two binary tables of size K-by-N and K-by-
M. K is the vector length of a signature. N is the number
of signatures in the query. M is the number of signatures
in the library. For the input tables, all the bits of each
column are stored into an array of 64-bit unsigned inte-
gers. It enables bitwise operators using the 64-bit registers.
The user also specifies which binary operator to use. The
return from BSF is an N-by-M table with each cell rep-
resenting the value of comparing element i in the query
table with element j in the library table. The pseudocode
is described in Algorithm 1.

Algorithm 1 BSF algorithm to analyze the similarity
between columns of a library matrix and a query matrix
Input: lib[K] [M]← a library matrix, q[K] [N]← a query matrix
Output: out[N] [M]← a 2D array of unsigned integers
1: function BSFCORE1(lib, q)
2: for all i in [0,N] do
3: for all j in [0,M] do
4: popcount ← 0
5: for all k in [0,K] do
6: sim ← lib[k] [j] & q[k] [i]
7: popcount ← popcount + __builtin_popcountll(sim)

8: out[i] [j]← count

9: return out

When computing all the pairwise comparisons between
two signatures within a single K-by-M matrix, the BSF
outputs a M-by-M strictly upper triangular matrix with

https://github.com/PNNL-Comp-Mass-Spec/bsf-core
https://github.com/PNNL-Comp-Mass-Spec/bsf-py
https://github.com/PNNL-Comp-Mass-Spec/bsf-py

Lee et al. BMC Bioinformatics (2018) 19:221 Page 3 of 12

Fig. 1 Illustration for the core of BSF. This simple example shows how the BSF deals with the binary data to identify the similarity between query and
library signatures. Each signature has 64 elements (rows in the matrix). The binary data represents whether an element is part of the signature, i.e. ‘1’
means that the element is part of the signature, ‘0’ means that it is not part of the signature. a A set of query signatures represented as a binary
matrix. b A set of library signatures to which the query signatures are compared. c The binary comparison for a single column in the query and
library matrices. d The results matrix containing the similarity for each pairwise comparison. In the 64-bits example, clock cycle needs for the BSF are
1 for ‘AND’ and 3 for ‘POPCNT’, while cosine and Euclidean metric use >500 and >700 clock cycles, respectively. (See Methods)

zero diagonal entries so that we avoid the redundant com-
putation of aij for i > j which must be equal to aji. The
pseudo code for this is shown in Algorithm 2.

Algorithm 2 BSF algorithm to analyze the similarity
between columns of a single library matrix
Input: lib[K][M]←a 2D array of unsigned 64bit integers
Output: out[M] [M]← a 2D array of unsigned integers
1: function BSFCORE2(lib)
2: for all i in [0,M − 1] do
3: for all j in [i + 1,M] do
4: popcount ← 0
5: for all k in [0,K] do
6: sim ← lib[k] [i] & lib[k] [j]
7: popcount ← popcount +__builtin_popcountll(sim)

8: out[i] [j]← count

9: return out

For very large matrices, the result file size may become
too large to fit in physical memory, which would lead to
an out-of-memory exception. To safely avoid this memory
issue, we split the output matrix into multiple chunks of
a manageable size. Given the file size, the size of a chunk
matrix is automatically decided. Details are described in
Algorithm 3.

Results
Mining large data repositories to identify similar datasets
is a common technical task. Depending on the num-
ber of comparisons to be done, the time involved in
this simple task may be prohibitive. In most large-
scale pairwise similarity searches (e.g., identifying sim-
ilarity between all public transcriptomics datasets), the
vast majority of pairs will be dissimilar. Thus, the most
efficient way to speed such data mining explorations is
to rapidly identify dissimilar pairs and remove them from

Lee et al. BMC Bioinformatics (2018) 19:221 Page 4 of 12

Algorithm 3 Chunk split for avoiding out-of-memory in
handling a big library matrix
Input:

lib[K] [M]← a library matrix,
size ← the chunk size (GB, e.g., 4 for4GB)

Output: multiple binary files of which size is less than schunk
1: schunk ← int(

√
size × 109/4)

(e.g.,
√
4 × 109 bytes/4 bytes ≈ 31, 623 for splitting into 4GB chunks)

2: tail ← M (mod schunk)
3: Nchunk ← tail = 0?(M/schunk) : (M/schunk) + 1
4: for all i in [0,Nchunk] do
5: for all j in [i,Nchunk] do
6: if i < Nchunk − 1 then
7: rows ← schunk
8: else
9: rows ← tail = 0?schunk : tail

10: if j < Nchunk − 1 then
11: cols ← schunk
12: else
13: cols ← tail = 0?schunk : tail

14: x1 ← i ∗ schunk , x2 ← i ∗ schunk + rows
15: y1 ← j ∗ schunk , y2 ← j ∗ schunk + cols
16: chunk[rows] [cols]← An empty matrix
17: if i = j then
18: chunk ← BSFCORE2(lib[K] [x1 : x2])
19: else
20: chunk ← BSFCORE1(lib[K] [x1 : x2] , lib[K] [y1 : y2])
21: Write chunk[rows] [cols] into a binary file

the analysis pipeline. The purpose of the BSF is to iden-
tify pairwise similarity comparisons which are unlikely
to be statistically meaningful. Our heuristic is to bina-
rize the data and calculate a similarity metric on the
binary data using bit operators, as bitwise computa-
tion is dramatically faster than floating point operations.
In this way, the BSF can work as a front-end filter to
computational analysis tools and dramatically speed up
their pipeline.

Performance benchmarking
To demonstrate the speed of the similarity metrics, we
performed a benchmark test of BSF, cosine similarity
and Euclidean distance using a synthetic dataset mim-
icking gene expression measurements. In gene expression
experiments, the goal is often to identify the up/down reg-
ulated genes relative to a reference condition. For example,
in a gene knockout experiment, the desire is to under-
stand and investigate which proteins are altered in their
regulation relative to wild-type. The synthetic data was
generated as measurements of 20,000 genes for 15,000
experiments (See Materials and Methods). Full precision
floating point data was used by cosine and Euclidean

distance metrics, whereas the BSF used binarized data
showing up or down regulated genes.
We performed the full pairwise comparison of all 15K

experiments for both the up and down matrix (∼ 225 mil-
lion comparisons). To characterize the time-dependence
of each algorithm on the length of the signature, we
tested each algorithm with a different number of genes
ranging from 1000 to 20,000. This is essential to under-
standing the utility of each algorithm, as different appli-
cations may contain highly variable signature lengths.
As shown in Fig 2, the time taken by each algorithm
grows with the length of the signature. However, we
note that the time dependence of the BSF grows dra-
matically more slowly than other methods. For the full
20,000 length signature (approximately what would be
used for human gene expression data), the BSF algo-
rithm ran in 45 s, while Euclidean and cosine meth-
ods took ∼ 2000 or ∼ 6000 s respectively. Both the
Euclidean and cosine method show a linear time depen-
dence on the signature length, O(n), while the BSF
shows a log-linear dependence, O(log n), consistent with
algorithmic expectations.

LINCS network analysis
The LINCS L1000 project is a large-scale gene expres-
sion analysis, where numerous perturbations are applied
to a variety of human cell lines and the response measured
at multiple time points (https://clue.io/). The L1000 assay
acquires transcript measurements on ∼ 1000 carefully
chosen landmark genes followed by imputing the expres-
sion values for the remaining ∼ 21, 000 human genes.
Perturbations used in the LINCS L1000 project include
small molecule inhibitors, gene knockdowns and gene
over-expression. Identifying similarities between pertur-
bations is a primary focus of the project, which could
enable the characterization of drug compounds having
unknown targets or identifying signaling cross-talk.
As a real-world test for the BSF, we computed the

pairwise similarity for the publicly available subset of the
LINCS L1000 datasets [6]. We downloaded the December
2016 snapshot which contains the differentially expressed
genes from 117K experiments. We convert the up/down
regulated genes into a 22,688-by-117,373 binary matrix
and computed the 6.89 billion pairwise comparisons for
the up-regulated genes and another 6.89 billion com-
parisons for the down-regulated genes. Results from
these were merged to show the number of up/down
regulated genes shared between two experiments.
Additional file 1: Figure S1 shows that 98.8% of all pairs
of experiments shared less than 10 up/down regulated
genes. By spending about 2 h determining this lack of
pattern similarity using the BSF, a more sensitive sim-
ilarity metric did not need to be calculated for these
unproductive pairs, thus saving 9.6 days of computation.

https://clue.io/

Lee et al. BMC Bioinformatics (2018) 19:221 Page 5 of 12

Fig. 2 Benchmark result of BSF. a shows the average running time of computing each metric. TCOS(K), TEUC(K), TBSF(K) indicate the linear functions
to fit the time points in terms of K of cosine similarity, Euclidean distance, and BSF, respectively, where K means the length of each signature. b is a
zoomed portion of (a) to focus on the BSF. The BSF has a logarithmic time complexity while others have a linear time complexity. Refer to Methods
and https://github.com/PNNL-Comp-Mass-Spec/BSF_publication

After computing all pairwise comparisons within the
LINCS dataset, we built a network connectivity graph to
identify similar signatures of gene expression. In explor-
ing this graph, we first examined perturbations using
small molecule histone deacetylase (HDAC) inhibitors.
We queried the network using nine well-known HDAC
inhibitors (belinostat, entinostat, mocetinostat, praci-
nostat, trichostatin A, vorinostat, rocilinostat, HDAC6
inhibitor ISOX, and valproic acid), which generated a sub-
network of 1066 nodes and 6.3 million edges. Figure 3
shows the network of the top 500 connections. Each
node is a perturbation dataset and its size indicates the
number of up/down-regulated genes by each perturba-
tion. The weight of an edge shows the similarity score
between two nodes. This analysis revealed that the nodes
clustered by cell line rather than drug, indicating the
response to various HDAC inhibitors is more cell line-
specific than drug-specific. In addition to the query per-
turbations, six additional drug treatments were also found
to show a similar signature and thus form part of the
sub-network. Among these six are known or putative
HDAC inhibitors such as HC toxin [15], panobinostat
[16] and scriptaid, one of the first HDAC inhibitors dis-
covered via high-throughput screening [17]. THM-I-94
had previously been hypothesized to act as an HDAC
inhibitor based on structural similarity [18], and its clus-
tering here supports that assertion. Other small molecules
which cluster with the HDAC inhibitors include unnamed

or poorly characterized pharmacological agents. With
respect to the differential gene expression pattern shared
by these drug treatments, we found enrichment in path-
ways associated with the cell cycle, MAPK signaling and
KEGG’s Pathways in Cancer network based on the Fisher’s
exact test.
A second data mining example from LINCS investigates

the effect on human cell lines of non-human medica-
tion. Niclosamide is used to treat tapeworm infestations,
but has recently been explored as a treatment for MRSA
and Zika virus [19, 20]. With the capability of BSF, we
identified the LINCS datasets which were most similar
to niclosamide (Additional file 2: Figure S2). Even though
it wasn’t designed to target human cells, niclosamide has
strong connectivity with IMD-0354, which is an IKKβ

inhibitor and blocks IκBα phosphorylation. In addition to
their high concordance in affecting the NF-κB pathway
(Additional file 2: Figure S2 b), the two signatures have
very high overlap in KEGG’s cell cycle pathway, with both
showing strong down regulation of cyclins, cyclin depen-
dent kinases, checkpoint kinases and the MCM complex
(Additional file 2: Figure S2 c).

Whole genome similarity
A second application of the BSF is to compare gene
content across a large number of genomes. Sequenced
genomes are functionally annotated both by sequence
repositories for inclusion in RefSeq [21] or Uniprot [22],

https://github.com/PNNL-Comp-Mass-Spec/BSF_publication

Lee et al. BMC Bioinformatics (2018) 19:221 Page 6 of 12

Fig. 3 A sub-network associated to known HDAC inhibitors. The top 500 edges (among 6.3 million) are shown which includes the perturbations
from the query (belinostat, pracinostat, trichostatin A, vorinostat, and HDAC6 inhibitor ISOX) and other compounds, some of which are known
(scriptaid) and putative (THM-I-94) HDAC inhibitors. H7270 and S1030 are catalog numbers for HC toxin and panobinostat, both recognized HDAC
inhibitors. Other perturbations are unnamed drugs (See Methods). The networks naturally form tight clusters, mostly distinguished by cell type and
time point. The line width represents its similarity score between two nodes

or they can be annotated by a variety of systems biol-
ogy style knowledgebases like KEGG [23] or RAST [24].
At the advent of genome sequencing, large scale com-
parisons of all genomes was used to understand protein
function and evolution [25]. As genome sequencing tech-
nology has improved, the number of publicly available
genomes grows dramatically and an all-versus-all compar-
ison is much less frequently done due to computational
costs.
KEGG is a functional annotation system which orga-

nizes whole genomes into pathways and molecular inter-
actions for 20,624 protein orthologs in 4648 organisms
(356 eukaryotes, 4049 bacteria, and 243 archaea). Anno-
tated genes are identified by their KEGG ortholog num-
ber, which are used to define metabolic, signaling and
information pathways. Using the BSF, we computed the
functional similarity between all genomes annotated by
KEGG. Because gene presence/absence is already a binary
measure, genome similarity comparisons are a simple and
natural use for the BSF. We prepare the binary matrix
consisting of 20,624 rows (orthologs) by 4648 columns
(genomes) where each cell represents where whether an
ortholog is present in a genome. Computation for the full
pairwise comparison took 5.2 s.
To show the diversity of genomic content within a taxo-

nomic grouping, we plotted the average number of shared

genes between genomes within a taxonomic group, e.g.
Homo sapiens compared to all vertebrates (Fig 4). Eukary-
otic genomes are generally larger than genomes of bacteria
and archaea, and therefore it is not surprising to find a
higher number of shared genes among eukaryotes. Addi-
tionally, KEGG contains a significant number of orthologs
annotated in human disease pathways, and therefore the
number of shared genes among animals is notably higher
than among plants. We note that there is a broad range
of similarity within a taxonomic group, most of which
appears to be driven by genome size. For example, within
alphaproteobacteria, most organisms share between 500-
1100 orthologs. There are, however, a few which share
< 140 genes. These are 4 different strains of Candida-
tus Hodgkinia cicadicola (See Materials and methods),
an endosymbiont of the cicada, which has a tiny 144 kb
genome [26]. To look at the comparisons within a taxo-
nomic division, we plotted the average similarity between
all genera within the class Bacilli (Fig 5). Many genera
within Lactobacillales have very low similarity to all other
genera of Bacilli. Some of this can be due to low gene
counts (e.g. Weissella), however, several have high self-
similarity but very low average overlap with any other taxa
(e.g. Streptococcus, Leuconostoc, Melissococcus). Thus
they likely represent an adaptive genomic response to
unique environmental niche.

Lee et al. BMC Bioinformatics (2018) 19:221 Page 7 of 12

Fig. 4 The average number of shared genes across all the genomes. Using protein orthologs from KEGG, we compare the gene presence/absence
across all annotated genomes. Data points represent the average number of shared genes of a genome with the other genomes in the same
taxonomic family. The graph is plotted on a log scale. Data points are colored according to taxonomic family membership. For clarity, taxonomic
groups with fewer than four organisms were not plotted

Most organisms that share a small number of genes
with other organisms are genome reduced and live as
obligate symbionts. To compare the functions retained
by genome reduced organisms, we plotted the simi-
larity between organisms which had fewer than 600
genes annotated by KEGG (Fig 6). The lack of simi-
larity between these minimalist genomes points to the
wide variety of possible adaptations to environmental
conditions. This is even true for parasites/pathogens
which have nominally similar environments: e.g., Cox-
iella and Borrelia are both tick borne pathogens
infecting humans.

Adapting BSF to other contexts
In the previous two sections, we have shown how the
Blazing Signature Filter can be used in common bioinfor-
matics applications to improve the speed of computation.
The step of taking data and creating a binary represen-
tation is a critical data transformation prior to using the
BSF. Therefore, we will describe here a few additional
contexts where the BSF can be used to identify similar-
ity between datasets. In some applications, the data is
inherently binary. This is like the genome content exam-
ple for KEGG orthologs. Many other datasets are simple
lists and could convert trivially to binary matrices. This

Lee et al. BMC Bioinformatics (2018) 19:221 Page 8 of 12

Fig. 5 The average number of shared genes in genera within the class Bacilli. Rows and columns are ordered via hierarchical clustering. When only
one sequenced member is present, the diagonal is marked with a boxed ×. A number in the bracket of each label shows the number of species of
each genus

is the case for gene sets, such as pathways. By creating a
large table enumerating all genes in rows, the columns can
represent the genesets as part of a pathway or MSigDB
entry. Finally, many datasets are natively continuous, and
can be productively analyzed in the BSF by converting the
data to binary via a threshold. It is important to remem-
ber that converting continuous data to binary will result
in some loss of fidelity/information. In this setting it is
strongly advised to use the BSF as a filter prior to a more
mathematically precise similarity metric using the full-
precision data. When using the BSF as a filter, its primary
value is to remove the vast majority of computations that
are unproductive.
In the LINCS example of gene co-expression, a prelim-

inary step was required to transform the continuous data
of gene expression into binary by choosing differentially
expressed genes (up or down) according to a statistically
derived threshold. The resulting matrix described the set

of dis-regulated genes in an experiment. By passing this
matrix through the BSF, we identified pairs of experiments
that share dis-regulated genes; the similarity of all exper-
iment pairs was saved to a matrix which can be thought
of as a graph adjacency matrix. To show an additional
example of how to use thresholding to create a binary data
matrix out of a continuous data matrix, we will describe
how to continue processing the adjacency matrix to iden-
tify clusters within the graph of nodes that have a similar
set of edges. First, we would convert the adjacency matrix
to binary by dropping edges which are deemed to be non-
significant. Based on the data in Additional file 1: Figure
S1, we might set this threshold at 20. By thresholding the
adjacency matrix, we simplify it to note only that there is
an edge between node i and node j, and do not retain the
weight of that edge. Now in the binary adjacency matrix,
the vector for column i states all the other nodes for which
there is an edge connecting them to node i. This binary

Lee et al. BMC Bioinformatics (2018) 19:221 Page 9 of 12

Fig. 6 The average number of shared genes between minimalist bacteria. These organisms have 200-600 genes annotated by KEGG. Organisms are
grouped by taxonomy

adjacencymatrix can be sent through the BSF. The seman-
tic meaning of this computation will be: How many nodes
are incident on both node i and j? Therefore, this shows
the similarity of edges between two nodes and is an effec-
tive heuristic for clustering a graph. Given the speed and
efficiency of the BSF computation, this is an effective filter
for graphs that contains hundreds of thousands of nodes
and millions/billions of edges.

Conclusions
As technologies for scientific data generation continue to
dramatically improve and facilitate an ever greater char-
acterization and description of the natural world, data
mining for hypothesis generation and validation becomes
both more important and more technically challeng-
ing. With the BSF, we introduce a simple and efficient
method for identifying patterns, or signatures, in mas-
sive amounts of data. This is enabled by the rapid pair-
wise comparison of data as binary vectors. We show

two example applications where pairwise comparisons are
a common bioinformatics task: comparing genomes for
similar gene content and identifying experiments with
similar gene expression patterns. In both applications, the
sheer number of comparisons would be time prohibitive
without optimized computational methods such as
the BSF.
New experimental technologies will improve the abil-

ity to make comprehensive datasets. For example, the
task of identifying genetic interactions between pairs of
genes was previously difficult to scale to whole genomes
[27]. However, the CRISPR technology now makes is
dramatically simpler to explore the effects of multiple
knockouts [28], and we anticipate that whole genome
double knockouts will be common in the near future.
Even for genomically compact bacteria with∼ 2000 genes,
the number of double knockouts exceeds millions of
strains. The subsequent task of identifying similarity
(or differences) between the millions of strains will

Lee et al. BMC Bioinformatics (2018) 19:221 Page 10 of 12

then require trillions of calculations. In these scenarios,
efficient similarity metrics like the BSF will be essential to
enable scientific discovery.
For datasets that are natively binary (e.g. gene con-

tent), the BSF works trivially. Another computation that
is inherently binary is the set overlap calculation that is
part of a Fisher’s exact test, commonly used for gene set
enrichment. For datasets which are numeric or categori-
cal, use of the BSF requires a meaningful transformation
into binary space such as was done in the LINCS gene
expression compendium. A wide variety of bioinformatics
needs, e.g. proteomics library searches and FBA model-
ing, could benefit from using the BSF to quickly filter
out unproductive data point prior to a more sensitive
computation on the native (i.e. non-binary) data.

Materials andmethods
The data and analysis methods for all figures are availa-
ble at https://github.com/PNNL-Comp-Mass-Spec/BSF_
publication.

LINCS application
The LINCS L1000 project measures gene expression
(transcriptomics) over different cell lines with a broad
range of small molecule perturbations and genetic manip-
ulations (knockout, knockdown and over-expression)
[29, 30]. In this manuscript, we use the L1000 mRNA
gene-expression signatures computed using the charac-
teristic direction signatures method [6, 29], giving binary
up and down regulated genes for each of the ∼ 117, 000
datasets. It is publicly available at http://amp.pharm.
mssm.edu/public/L1000CDS_download/. This site con-
tains a single MongoDB bson file for the expression values
for each of the perturbations and associated meta-data
describing experimental parameters. After downloading,
we converted the expression values into two binary matri-
ces. If the characteristic direction algorithm determined
that a gene was up-regulated in an experiment, the cor-
responding bit in the binary matrix file for up-regulated
genes was set to 1. We created the binary matrix for
down-regulated genes in the same manner. When try-
ing to interpret the function of various perturbations, we
used the pert_desc field in the MongoDB to get the name
of the compounds and combined that with the meta-
data available at NCBI-GEO for GSE70138 which con-
tains a more complete description of perturbations in the
pert_info.txt file.

KEGG application
All KEGG annotations were taken from in Release 81.0
downloaded on January 1, 2017. A binary matrix repre-
senting the table of orthologs was created where rows
represent KEGG Ortholog accessions and the columns
represent genomes. If KEGG has annotated an ortholog

as being present in a genome, the corresponding matrix
coordinate was set to 1. This matrix was fed into the
BSF using the python interface to compare all genomes
against each other. The output of this shows the num-
ber of shared orthologs between genomes. The Figs. 4, 5,
and 6 were all derived from this output file using iPython
notebooks which are publicly available in the kegg_data
section at https://github.com/PNNL-Comp-Mass-Spec/
BSF_publication.

Benchmarking
The synthetic benchmarking data was created as a table
(15K columns × 20K rows) of floating point num-
bers drawn randomly from the Gaussian distribution of
N(0, 0.5). Rows can be thought of as different gene mea-
surements, and columns as distinct datasets. This con-
tinuous data was binarized into two tables to represent
the extremes of the distribution, i.e. values < −0.6 were
written as 1 in a binary table representing the ’low’ val-
ues and values > 0.6 were written as 1 to a binary table
representing high values.
We use the cosine distance and Euclidean distance on

the original floating point data to compare the perfor-
mance with BSF. In the manuscript, we discussed clock
cycles required for various operations. For a descrip-
tion of core clock cycles per instruction set, refer to the
latency and reciprocal throughput in http://www.agner.
org/optimize/instruction_tables.pdf. Supposing the M-
by-N signature matrix [S1, S2, S3, · · · , SN], the formulae
for cosine and Euclidean similarity are:

euclidean(Si, Sj) =
√√√√

M∑

k=1
(ak − bk)2 (1)

cosine(Si, Sj) = si · sj
|si||sj| =

∑M
k=1 akbk√∑M

k=1 a2k
√∑M

k=1 b2k
(2)

where Si = [a1, a2, a3, · · · , aM]Tand Sj = [b1, b2, b3, · · · ,
bM]T (i, j = 1, 2, 3, · · · ,N).

Availability and requirements
Project name: Python wrapper for Blazing Signature
Filter
Project home page: https://github.com/PNNL-Comp-
Mass-Spec/bsf-py
Operating system(s): Linux/OSX/Windows 8+
Programming language: C++ and Python
Other requirements: e.g. GCC 4.9 or higher, Python 3.4
or higher
License: BSD-2 License

https://github.com/PNNL-Comp-Mass-Spec/BSF_publication
https://github.com/PNNL-Comp-Mass-Spec/BSF_publication
http://amp.pharm.mssm.edu/public/L1000CDS_download/
http://amp.pharm.mssm.edu/public/L1000CDS_download/
https://github.com/PNNL-Comp-Mass-Spec/BSF_publication
https://github.com/PNNL-Comp-Mass-Spec/BSF_publication
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://github.com/PNNL-Comp-Mass-Spec/bsf-py
https://github.com/PNNL-Comp-Mass-Spec/bsf-py

Lee et al. BMC Bioinformatics (2018) 19:221 Page 11 of 12

Additional files

Additional file 1: Figure S1. Score distribution of the 6.89 billion pairwise
comparisons in the LINCS L1000 dataset. The color of each point describes
the number of pairs which have shared genes. X and Y axes indicate the
number of shared up-regulated genes and down-regulated genes,
respectively. For example, a point of (50, 50) has 147, whichmeans 147 pairs
of two signatures share 50 up-regulated genes and 50 down-regulated
genes. The overwhelming majority of pairwise comparisons, ∼6.80 billions
or 98.8%, are located in a small box of up-regulated genes <10 and
down-regulated genes <10. These represent pairs of experiments, which
do not share a discernable signature of regulated gene expression and are
unproductive data mining events. (PNG112 kb)

Additional file 2: Figure S2. A sub-network of LINCS L1000 experiments
most similar to niclosamide. (a) We extracted the network for 88 datasets
associated with non-human medications such as niclosamide (tapeworm
infestations) and daminozide (plant growth regulator). It shows 257
experiments of 20 drugs highly connected to these 88 signatures. Refer to
Materials and Methods for details. (b) Differentially expressed genes shared
between niclosamide and IMD 0354, an IKKβ inhibitor. Most of all common
genes are down-regulated and cell cycle looks slow down. (c) Shared
differential genes shown for the NF-κB signaling pathway; most of the
genes are up-regulated. (PNG 690 kb)

Abbreviations
BLAST: Basic local alignment search tool; BSF: Blazing signature filter; CRISPR:
Clustered regularly interspaced short palindromic repeats; FBA: Flux balance
analysis; HDAC: Histone deacetylases; KEGG: Kyoto encyclopedia of genes and
genomes; LINCS: Library of integrated network-based cellular signatures;
MSigDB: Molecular signatures database; RAST: Rapid annotation using
subsystem technology; RefSeq: Reference sequence database; UniProt:
Universal protein knowledgebase

Funding
This work was supported by the National Cancer Institute (NCI) CPTAC award
U24 CA210972 (SHP), and the U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research, Pan-omics Program. Battelle
operates the Pacific Northwest National Laboratory for the DOE under
contract DE-AC05-76RLO01830. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data andmaterials
The BSF library is available under the BSD license from https://github.com/
PNNL-Comp-Mass-Spec/bsf-py and https://github.com/PNNL-Comp-Mass-
Spec/bsf-core. The repository provides tutorials and installation guides for
easy testing and performing simple examples. The library can be installed
through the Docker by typing docker pull coldfire79/bsf-py.

Authors’ contributions
J-YL and SHP designed the method. J-YL, GMF and RW wrote software. J-YL,
HSW and SHP interpreted data. J-YL and SHP wrote the manuscript with input
from all authors. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Integrative Omics, Pacific Northwest National Laboratory, 99352 Richland, WA
USA. 2Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 99352 Richland, WA USA.

Received: 25 July 2017 Accepted: 17 May 2018

References
1. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein

blocks. Proc Natl Acad Sci U S A. 1992;89(22):10915–9.
2. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for

identifying proteins by tandemmass spectrometry. Anal Chem.
2003;75(17):4646–58.

3. Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.

4. Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for
global discovery of conserved genetic modules. Science. 2003;302(5643):
249–55. https://doi.org/10.1126/science.1087447.

5. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J,
Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G,
Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES,
Golub TR. The connectivity map: using gene-expression signatures to
connect small molecules, genes, and disease. Science. 2006;313(5795):
1929–35. https://doi.org/10.1126/science.1132939.

6. Duan Q, Reid SP, Clark NR, Wang Z, Fernandez NF, Rouillard AD,
Readhead B, Tritsch SR, Hodos R, Hafner M, Niepel M, Sorger PK,
Dudley JT, Bavari S, Panchal RG, Ma’ayan A. L1000cds2: Lincs l1000
characteristic direction signatures search engine. NPJ Syst Biol Appl.
2016;2:16015. https://doi.org/10.1038/npjsba.2016.15.

7. Smith TF, Waterman MS. Identification of common molecular
subsequences. J Mol Biol. 1981;147(1):195–7.

8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.
1016/S0022-2836(05)80360-2.

9. Kent WJ. Blat–the blast-like alignment tool. Genome Res. 2002;12(4):
656–64. https://doi.org/10.1101/gr.229202.
ArticlepublishedonlinebeforeMarch2002.

10. Frank A, Tanner S, Bafna V, Pevzner P. Peptide sequence tags for fast
database search in mass-spectrometry. J Proteome Res. 2005;4(4):
1287–95. https://doi.org/10.1021/pr050011x.

11. Tabb DL, Saraf A, Yates JR. Gutentag: high-throughput sequence tagging
via an empirically derived fragmentation model. Anal Chem. 2003;75(23):
6415–21. https://doi.org/10.1021/ac0347462.

12. Wu K, Ahern S, Bethel EW, Chen J, Childs H, Cormier-Michel E, Geddes C,
Gu J, Hagen H, Hamann B, Koegler W, Lauret J, Meredith J, Messmer P,
Otoo E, Perevoztchikov V, Poskanzer A, Prabhat, Rübel O, Shoshani A,
Sim A, Stockinger K, Weber G, Zhang WM. Fastbit: interactively
searching massive data. J Phys Conf Ser. 2009;180(1):012053.

13. Myers G. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. J ACM. 1999;46(3):395–415. https://doi.
org/10.1145/316542.316550.

14. Haque IS, Pande VS, Walters WP. Anatomy of high-performance 2d
similarity calculations. J Chem Inf Model. 2011;51(9):2345–51. https://doi.
org/10.1021/ci200235e.

15. Walton JD. Hc-toxin. Phytochemistry. 2006;67(14):1406–13. https://doi.
org/10.1016/j.phytochem.2006.05.033.

16. Ellis L, Pan Y, Smyth GK, George DJ, McCormack C, Williams-Truax R,
Mita M, Beck J, Burris H, Ryan G, Atadja P, Butterfoss D, Dugan M,
Culver K, Johnstone RW, Prince HM. Histone deacetylase inhibitor
panobinostat induces clinical responses with associated alterations in
gene expression profiles in cutaneous t-cell lymphoma. Clin Cancer Res.
2008;14(14):4500–10. https://doi.org/10.1158/1078-0432.CCR-07-4262.

17. Su GH, Sohn TA, Ryu B, Kern SE. A novel histone deacetylase inhibitor
identified by high-throughput transcriptional screening of a compound
library. Cancer Res. 2000;60(12):3137–42.

18. Siavelis JC, Bourdakou MM, Athanasiadis EI, Spyrou GM, Nikita KS.
Bioinformatics methods in drug repurposing for alzheimer’s disease. Brief
Bioinform. 2016;17(2):322–35. https://doi.org/10.1093/bib/bbv048.

19. XuM, Lee EM, Wen Z, Cheng Y, HuangWK, Qian X, Tcw J, Kouznetsova J,
Ogden SC, Hammack C, Jacob F, Nguyen HN, Itkin M, Hanna C, Shinn
P, Allen C, Michael SG, Simeonov A, Huang W, Christian KM, Goate A,
Brennand KJ, Huang R, Xia M, Ming GL, Zheng W, Song H, Tang H.
Identification of small-molecule inhibitors of zika virus infection and
induced neural cell death via a drug repurposing screen. Nat Med.
2016;22(10):1101–1107. https://doi.org/10.1038/nm.4184.

20. Rajamuthiah R, Fuchs BB, Conery AL, Kim W, Jayamani E, Kwon B,
Ausubel FM, Mylonakis E. Repurposing salicylanilide anthelmintic drugs
to combat drug resistant staphylococcus aureus. PLoS One. 2015;10(4):
0124595. https://doi.org/10.1371/journal.pone.0124595.

https://doi.org/10.1186/s12859-018-2210-6
https://doi.org/10.1186/s12859-018-2210-6
https://github.com/PNNL-Comp-Mass-Spec/bsf-py
https://github.com/PNNL-Comp-Mass-Spec/bsf-py
https://github.com/PNNL-Comp-Mass-Spec/bsf-core
https://github.com/PNNL-Comp-Mass-Spec/bsf-core
https://doi.org/10.1126/science.1087447
https://doi.org/10.1126/science.1132939
https://doi.org/10.1038/npjsba.2016.15
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1101/gr.229202. Article published online before March 2002
https://doi.org/10.1101/gr.229202. Article published online before March 2002
https://doi.org/10.1021/pr050011x
https://doi.org/10.1021/ac0347462
https://doi.org/10.1145/316542.316550
https://doi.org/10.1145/316542.316550
https://doi.org/10.1021/ci200235e
https://doi.org/10.1021/ci200235e
https://doi.org/10.1016/j.phytochem.2006.05.033
https://doi.org/10.1016/j.phytochem.2006.05.033
https://doi.org/10.1158/1078-0432.CCR-07-4262
https://doi.org/10.1093/bib/bbv048
https://doi.org/10.1038/nm.4184
https://doi.org/10.1371/journal.pone.0124595

Lee et al. BMC Bioinformatics (2018) 19:221 Page 12 of 12

21. Pruitt KD, Tatusova T, Brown GR, Maglott DR. Ncbi reference sequences
(refseq): current status, new features and genome annotation policy.
Nucleic Acids Res. 2012;40(Database issue):130–5. https://doi.org/10.
1093/nar/gkr1079.

22. UniProt C. Uniprot: a hub for protein information. Nucleic Acids Res.
2015;43(Database issue):204–12. https://doi.org/10.1093/nar/gku989.

23. Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28(1):27–30.

24. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,
Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL,
Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD,
Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. The rast
server: rapid annotations using subsystems technology. BMC Genomics.
2008;9:75. https://doi.org/10.1186/1471-2164-9-75.

25. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The cog database: a tool
for genome-scale analysis of protein functions and evolution. Nucleic
Acids Res. 2000;28(1):33–6.

26. McCutcheon JP, McDonald BR, Moran NA. Origin of an alternative
genetic code in the extremely small and gc-rich genome of a bacterial
symbiont. PLoS Genet. 2009;5(7):1000565. https://doi.org/10.1371/
journal.pgen.1000565.

27. Tong AH, EvangelistaM, Parsons AB, Xu H, Bader GD, Page N, Robinson M,
Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C.
Systematic genetic analysis with ordered arrays of yeast deletion mutants.
Science. 2001;294(5550):2364–8. https://doi.org/10.1126/science.
1065810.

28. Boettcher M, Tian R, Blau J, Markegard E, Wu D, Biton A, Zaitlen N,
McCormick F, Kampmann M, McManus MT. Decoding directional
genetic dependencies through orthogonal crispr/cas screens. bioRxiv.
2017. https://doi.org/10.1101/120170.

29. Clark NR, Hu KS, Feldmann AS, Kou Y, Chen EY, Duan Q, Ma’ayan A. The
characteristic direction: a geometrical approach to identify differentially
expressed genes. BMC Bioinformatics. 2014;15:79. https://doi.org/10.
1186/1471-2105-15-79.

30. Liu C, Su J, Yang F, Wei K, Ma J, Zhou X. Compound signature detection
on lincs l1000 big data. Mol Biosyst. 2015;11(3):714–22. https://doi.org/10.
1039/c4mb00677a.

https://doi.org/10.1093/nar/gkr1079
https://doi.org/10.1093/nar/gkr1079
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1186/1471-2164-9-75
https://doi.org/10.1371/journal.pgen.1000565
https://doi.org/10.1371/journal.pgen.1000565
https://doi.org/10.1126/science.1065810
https://doi.org/10.1126/science.1065810
https://doi.org/10.1101/120170
https://doi.org/10.1186/1471-2105-15-79
https://doi.org/10.1186/1471-2105-15-79
https://doi.org/10.1039/c4mb00677a
https://doi.org/10.1039/c4mb00677a

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Results
	Performance benchmarking
	LINCS network analysis
	Whole genome similarity
	Adapting BSF to other contexts

	Conclusions
	Materials and methods
	LINCS application
	KEGG application
	Benchmarking

	Availability and requirements
	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

