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Abstract

Background: Cancer develops when pathways controlling cell survival, cell fate or genome maintenance are
disrupted by the somatic alteration of key driver genes. Understanding how pathway disruption is driven by somatic
alterations is thus essential for an accurate characterization of cancer biology and identification of therapeutic targets.
Unfortunately, current cancer pathway analysis methods fail to fully model the relationship between somatic
alterations and pathway activity.

Results: To address these limitations, we developed a multi-omics method for identifying biologically important
pathways and genes in human cancer. Our approach combines single-sample pathway analysis with multi-stage,
lasso-penalized regression to find pathways whose gene expression can be explained largely in terms of gene-level
somatic alterations in the tumor. Importantly, this method can analyze case-only data sets, does not require
information regarding pathway topology and supports personalized pathway analysis using just somatic alteration
data for a limited number of cancer-associated genes. The practical effectiveness of this technique is illustrated
through an analysis of data from The Cancer Genome Atlas using gene sets from the Molecular Signatures Database.

Conclusions: Novel insights into the pathophysiology of human cancer can be obtained from statistical models that
predict expression-based pathway activity in terms of non-silent somatic mutations and copy number variation. These
models enable the identification of biologically important pathways and genes and support personalized pathway
analysis in cases where gene expression data is unavailable.

Keywords: Gene set testing, Pathway analysis, Cancer genomics, Driver mutations

Background

High-throughput genomic assays have revolutionized our
understanding of cancer. Projects such as The Can-
cer Genome Atlas (TCGA) [1] and the Catalog of
Somatic Mutations in Cancer (COSMIC) [2] have col-
lected detailed measurements of DNA sequence, mRNA
expression and methylation for thousands of individ-
ual tumors across multiple cancer types. Leveraging this
data, researchers have identified hundreds of genes whose
somatic alterations drive human cancer [3]. Although the
discovery of cancer associated mutations and genes has
enabled significant advances in cancer care through the
identification of new therapeutic targets and support for
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personalized treatment, a strictly gene or mutation-level
analysis fails to capture many important aspects of can-
cer biology. While a small number of cancer-associated
genes are commonly mutated, i.e., present in more than
10%, of tumors, and can therefore be more easily stud-
ied, there exists a much larger set of rarely mutated cancer
genes spread across the human genome [4]. Adding to
this complexity, the activity of cancer-associated genes
can be impacted in a variety of ways including copy num-
ber variation, somatic mutations and methylation changes
[5]. Capturing all of these mechanisms requires the mea-
surement and joint analysis of multiple types of omics
data. To address the complexity of the cancer genomics
landscape, researchers have turned to pathway analysis
methods that combine the somatic alterations or expres-
sion of multiple, functionally related, genes [6]. Cancer is
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fundamentally a disease of disrupted pathways in which
a population of cells develops a selective growth advan-
tage due to the altered function of pathways controlling
cell survival, cell fate or genome maintenance [7]. To fully
elucidate the mechanisms driving cancer, it is thus critical
that researchers understand how the somatic alterations
present in each tumor collectively impact these pathways.
To interpret cancer genomic data at the level of
biological pathways, researchers have developed a large
number of pathway analysis methods, many specifically
customized for cancer data [6]. For these methods, a path-
way, or gene set, refers to a group of genes whose products
share a common biological function. A number of large
and well maintained repositories of such gene sets now
exist with some, e.g., the Gene Ontology (GO) [8], holding
simple unordered genes sets and others, e.g., Reactome
[9], defining pathways in terms of a complex topology of
molecular interactions. In this paper, the terms pathway
and gene set are used synonymously and it is assumed
that topological information is unavailable. Given a collec-
tion of such gene sets, pathway analysis methods aim to
identify statistically significant associations between the
activity of pathway members and a phenotype of inter-
est, e.g., cancer type or case/control status [10]. Although
most pathway methods focus on population-level associ-
ations, a number of recent approaches provide pathway
enrichment results at the single-subject level [11-14].
Although the pathways most commonly impacted by
somatic alterations in cancer have been identified [7] and
significant progress has been made developing cancer-
specific pathway analysis methods [6, 11, 14—21], existing
approaches have several important limitations. Many cur-
rent methods focus on either gene expression data [11] or
mutation data [21] and therefore fail to capture the impor-
tant association between the two in cancer. The utility of
methods that use only expression data is also impacted by
the lack of gene expression data for many tumor samples.
For methods that just use mutation data, performance
is hindered by the limited number of genomic regions
sequenced in many clinical settings, the overall sparsity
of somatic alterations and the fact that pathways are
often defined in the context of protein activity/abundance,
which may not be closely linked to the mutational sta-
tus of the underlying gene. Most methods that jointly
analyze multiple types of omics data ignore pathway infor-
mation and instead aim to identify specific mutations or
mutated genes that are associated with alterations in gene
expression [22, 23] or perform unsupervised clustering
[24, 25]. Among the few existing pathway methods that
do combine mutations with expression [14-16, 19, 20],
none of them support both population-level and sin-
gle subject analyzes, few provide information on both
cancer-associated pathways and genes, all of them rank
pathways or genes according to measures of statistical
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association rather than predictive performance, and most
require knowledge of pathway topology, which is unavail-
able for many gene sets of interest, e.g., those from GO
[8]. A further limitation of most existing methods is the
dependence on data from matched controls, which is
very limited for certain data sets [1]. Collectively, these
limitations make it difficult to catalog the full set of path-
ways impacted in cancer along with the genes whose
somatic alteration drives pathway dsyregulation. Espe-
cially challenging is the identification of the small number
of pathways with potential therapeutic value from among
the larger set of pathways with altered activity in human
cancer.

To address these limitations, we have developed a new
multi-omics pathway analysis method for cancer genomic
data that aims to:

1 Identify pathways that play an important role in the
pathophysiology of human cancers.

2 Identify genes whose somatic alterations are
significantly associated with pathway activity.

3 Support personalized pathway analysis using only
somatic alteration data for known cancer genes.

To achieve these aims, our method jointly analyzes
gene expression and somatic alteration data from human
tumors to build statistical models that predict the subject-
level pathway activity in terms of the somatic alterations
of known cancer genes. Importantly, this method does
not require data from matched controls and can analyze
pathways lacking topological information. This design is
motivated by our hypothesis that biologically important
pathways are those for which expression-level activity of
the genes in the pathway relative to other cancers of the
same type can be well predicted by the somatic alter-
ations present in the tumor. To realize our method, we
leveraged three important advances in cancer genomics
and biostatistics, namely the development of large can-
cer genomics data sets that combine gene expression
and somatic alteration data, e.g, TCGA [1], the cre-
ation of effective single-sample pathway analysis methods
[11-14], and the development of computationally efficient
estimation algorithms [26] for penalized regression mod-
els such as the LASSO [27]. The novelty of our approach
lies in the combination of these three advances to build
regression models that explain the variation of pathway
activity within a single cancer type using gene-level mea-
sures of somatic alteration.

Methods

Our approach, illustrated in Fig. 1, finds pathways whose
expression-level activity within a single cancer type is
well predicted by somatic alterations. For a detailed
description of the method, including data source details
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Fig. 1 lllustration of the proposed pathway analysis method. Green cylinders represent data sources, grey boxes are intermediate data structures,
blue boxes are processing steps, and orange boxes represent the analysis results associated with each of the primary aims. The numbers in each
blue box correspond to one of the processing steps detailed in the “Methods” section

and relevant mathematics, please see the Additional
file 1. The computational approach and code imple-
menting this approach along with a description of its
logic is provided at http://www.dartmouth.edu/hrfrost/
MutPath/. This website also contains detailed informa-
tion on the regression models fit using this approach.
Reflecting the data sources used to evaluate our method,
Fig. 1 shows TCGA as the source of cancer genomic
data, the Molecular Signatures Database (MSigDB) [28]
as the source of pathway definitions and the COSMIC
cancer gene census [29] as the source of known can-
cer genes, however, the proposed method can be used
with any appropriate source of tumor genomic data, any
desired collection of gene sets and any relevant list of
cancer-associated genes. Our approach is comprised by

the following high-level steps (the step numbers match the
numbered blue boxes in Fig. 1):

Step 1. Estimate single-sample pathway activity

Our method first determines the activity of each candi-
date pathway within each tumor relative to other tumors
of the same cancer type. This step is performed using
the single-sample pathway analysis method gene set vari-
ation analysis (GSVA) [12] which takes as inputs a set
of pathway definitions (i.e., a mapping of genes to path-
ways) and a matrix of gene expression data measured
on multiple tumors of the same cancer type. We specifi-
cally utilize the variant of GSVA that identifies gene sets
whose members are primarily up-regulated or primar-
ily down-regulated. Using this data, the GSVA method
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generates a matrix holding pathway scores for each tumor
that capture the extent to which the expression of path-
way genes in that tumor deviates from the mean pathway
gene expression measured in all tumor samples for that
cancer type. Our motivation for performing single sam-
ple pathway analysis on just the data from a single cancer
type is based on findings that variation in the expression
of genes among just cancer cases is a better predictor of
cancer driver genes than differential expression between
cancer cases and non-cancer controls [30]. Focusing on
just one cancer type also enables case-only analyses, which
is important for data sets, such as TCGA, that contain
little data from matched controls. It should be noted an
alternate single sample gene set testing method (or vari-
ation of GSVA) can be used with our approach if such a
method better captures the features of pathway activity of
interest for a specific analysis (see Section 1.3. of the Addi-
tional file 1 for more details; comparative results from
GSVA and ssGSEA [13] for pancreatic cancer are included
in Additional file 1: Tables S24 and S25).

Step 2. Estimate the association between pathway activity

and somatic alterations

Our approach next determines how well the expression-
based activity of each pathway can be predicted from
gene-level somatic alterations. This step is performed via
the regression of the single-sample pathway scores com-
puted in Step 1 on gene-level indicators of non-silent
somatic mutations and copy number variation (CNV) val-
ues. These models are estimated using LASSO-penalized
multiple linear regression [31] with the penalty thresh-
old and predictive performance computed via cross-
validation. In particular, the predictive performance is
represented by the proportion of null deviance explained
by the model on the test data, which is equivalent to

the predicted coefficient of determination (R;re d) in this

case. LASSO penalization is used both to identify a parsi-
monious set of uncorrelated predictors and to support the
analysis of data sets where the number of tumor samples
for a given cancer type is less than the number of predictor
variables. To obtain non-shrunken coefficient estimates
and the approximate statistical significance of each pre-
dictor, the penalized regression is followed by an unpenal-
ized multiple linear regression using only those predictors
with non-zero coefficients in the LASSO fit. For each
pathway and cancer type combination, we fit two different
regression models using this procedure. The first model
uses as predictor variables non-silent somatic mutation
indicators and CNV values for all genes captured in the
TCGA data for the target cancer type. The second model
uses somatic alteration values for the subset of TCGA
genes that also belong to the COSMIC cancer gene census
[2]. By comparing the models fit using only consensus
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cancer genes with the models fit using all available genes,
it is possible to assess whether the models are capturing
cancer-specific phenomena and potentially identify novel
cancer-associated pathways and genes. Please see Sections
1.2 and 1.3 in the Additional file 1 for a detailed math-
ematical description of these regression models and the
estimation procedure.

Step 3. Interpret regression models to identify important
pathways and genes

Using the regression models estimated in Step 2, one or
more of the primary aims can be addressed:

Aim 1. To identify biologically important pathways, the
pathways are ranked according to the mean Rzre , from
cross-validation of the LASSO-penalized models fit using
just consensus cancer gene predictors. The pathways
whose activity can be well predicted by somatic alterations
in cancer associated genes are deemed to be biologically
important, and have potential therapeutic value, for the
analyzed cancer type.

Aim 2. To identify genes whose somatic alteration is
associated with pathway activity for a specific cancer type,
the estimated coefficients for the mutation and CNV pre-
dictors in the unpenalized pathway regression models are
inspected. If somatic alteration of a gene is retained as a
significant predictor in the model for a specific pathway,
the gene is deemed to be a potential driver for that path-
way in the analyzed cancer type. A list of inferred driver
genes for each cancer type can be generated by summariz-
ing predictor significance across all pathway models while
taking into account model predictive performance.

Aim 3. The regression models estimated in the sec-
ond step enable personalized pathway analysis using just
somatic alteration data for a limited number of cancer-
associated genes. Specifically, given tumor-specific muta-
tional status and CNV values for the genes with non-zero
coefficients in the LASSO-penalized models, it is possible
to predict the activity of each evaluated pathway in that
patient. When predictions are based on the unpenalized
regression models, an approximate prediction interval can
also be computed.

Results

To evaluate our proposed method, we analyzed 20 TCGA
cancer types using gene sets from the MSigDB curated
canonical (C2.CP) and oncogenic signatures (C6) collec-
tions (see the Additional file 1 for details on the TCGA
data sets and MSigDB collections). Figure 2 illustrates the
predicted R? values generated for the pathways in the
C2.CP collection for each supported TCGA cancer type
(Additional file 1: Figure S1 contains a similar heatmap
for the C6 collection). Through this analysis, we aimed
to answer six questions that address the overall and aim-
specific effectiveness of our method:
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1 Do the estimated regression models capture
non-random associations?

2 Do the models capture cancer-specific phenomena?

3 (Aim 1) Does model predictive performance identify
biologically important pathways?

4 (Aim 2) Can the models be used to identify cancer
driver genes?

5 (Aim 3) Is model predictive performance sufficient
for personalized pathway analysis?

6 Can the models be used to characterize cancer
subtypes?

The following sections discuss each of these questions,
and the relevant analysis results, in more detail.

Do the estimated regression models capture non-random
associations?

To answer this question, we compared the Rfﬂ oq values
obtained on randomized TCGA somatic alteration data

with the R;re 4 Values estimated using non-randomized

data. Because randomized data should have no predictive
power, we expected the R2 -eq Values for random data to

be very close to zero. In contrast we expected the Rzre y
values for TCGA data to have a mean value 51gmf1cantly
larger than zero. These expectations were confirmed by
examining the distribution of R}ZJ -eq Values computed using
the C2.CP and C6 collections (see Fig. 3 and Additional
file 1: Figure S2).

Do the models capture cancer-specific phenomena?

To determine if the models correctly capture cancer-
specific phenomena, we compared the empirical distri-
bution and rank ordering of R? eq values obtained for
pathway models fit using two dléerent sets of predictors:
1) the somatic alteration status of genes in the COSMIC
cancer gene census or 2) the somatic alteration status
of all genes included in the TCGA data. As an expert
curated list of mutated human genes that have an exper-
imentally supported association with oncogenesis [29],
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the COSMIC cancer gene census provides a comprehen-
sive list of known human cancer genes. We expected the
empirical distribution of R? eq Values for these two poten-
tial predictor sets to be similar. Although the somatic
alteration of non-cancer genes will impact gene expres-
sion levels within tumors, we expected that the ability to
predict the variation of pathway activity across tumors of
a single cancer type would be driven largely by the somatic
alteration status of genes with a known cancer association.
In other words, a model that included somatic alteration
predictors for all TCGA genes would not have predictive
performance significantly greater than a model that just
included predictors for genes in the COSMIC cancer gene
census. Following similar reasoning, we expected the rank
ordering of pathways according to Rzm , to be to similar
regardless of whether non-COSMIC genes were included
as predictors. As seen in Fig. 3, the Rzre , empirical dis-
tribution is similar for both predictor sets with mean
R}zﬂe , values that are significantly larger than the mean
generated using random data, matching our expectation.
In fact, the mean RZre , for models that include predic-
tors for all TCGA genes is slightly lower than the mean
RIZW ,; for models that use just COSMIC genes, confirm-
ing that the addition of non-COSMIC predictors does not
meaningfully improve predictive performance. As seen in
Fig. 4, the Spearman rank correlation between the Rlzw J
values computed using the two predictor sets increases
with sample size and approaches 1 for the largest cohorts.
These results are consistent with our expectation that
pathway ranking depends primarily on somatic alterations
in cancer-associated genes. The lower correlation values
for the smaller cohorts reflects an expected increase in
variance for the Rfm , estimates.
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Does model predictive performance identify biologically
important pathways?

To address this question, we ranked the pathway models
for each high-level TCGA cancer type according to Rfm i
values. We expected that the pathways with the largest
R? values would represent biological processes that play
an important role in oncogenesis for the analyzed can-
cer type, would be more likely to identify therapeutic
targets and would have activity levels linked to patient
prognosis. As an illustrative example, Table 1 lists the
top MSigDB C2.CP pathways for the TCGA lung adeno-
carcinoma cohort (one of the larger cohorts with stable
pathway ranking between predictor sets) with separate
lists for the two potential predictor sets (i.e., somatic alter-
ations for COSMIC concensus cancer genes or somatic
alterations for all available TCGA genes). The Additional
file 1 contains similar tables for the other four of the five
largest TCGA cohorts (breast cancer, lower grade glioma,
head and neck cancer and thyroid cancer) for both the
C2.CP and C6 collections (see Additional file 1: Tables S3,
S4, S6, S7, S9, S10, S15 and S16). As shown in Table 1,
the top ten pathways for lung adenocarcinoma are almost
identical for both potential predictor sets with a Spear-
man rank correlation for the entire C2.CP collection of
0.96. All of the top ten pathways for models built using just
the COSMIC consensus cancer genes are related to the
cell cycle, which has a well known association with lung
adenocarinoma [32, 33]. Importantly, four of the top ten
pathways (pathways with ranks 1, 2, 6 and 10) are associ-
ated with genes identified as either therapeutic targets for
lung adenocarcinoma (Ran [34] and ATR [35, 36]) or as
biomarkers of patient prognonsis (CDC6 [37]).

Can the models be used to identify cancer driver genes?

To ascertain if the models can identify known cancer
driver genes, we ranked the somatic alteration predictors
for each cancer type according to predictor significance in
the pathway models. Specifically, alterations were ranked
according to a weight computed as the average across all
pathway models in a specific MSigDB collection of the
product of predictor significance (i.e., the -log(p-value) for
the predictor in the unpenalized model) and model Rzre g
An example of this ranking is shown in Table 2 for the
TCGA lung adenocarcinoma cohort with ranks computed
using all four combinations of MSigDB collection and pre-
dictor set (the Additional file 1 contains similar tables
for the other four of the five largest TCGA cohorts, see
Additional file 1: Tables S5, S8, S11, S17). It is important to
note the potential bias in these weights caused by pathway
overlaps. Specifically, the weights for somatic alterations
associated with the expression of genes annotated to mul-
tiple pathways will be inflated relative to the weights for
somatic alterations that are only associated infrequently
annotated genes.
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We expected that the top ranking gene-level somatic
alterations would disproportionately represent known
driver genes. To evaluate this, we first generated a list of
known driver genes for each cancer type using the cancer
type associations from the COSMIC cancer gene census
(see Additional file 1: Table S1 for details). Although not
comprehensive, these represent cancer type relationships
that are independent of the TCGA data (i.e., they are not

Table 1 Top pathway models for lung adenocarcinoma

inferred from TCGA somatic alteration data). Enrichment
of these known driver genes among the ranked predictors
associated with all available TCGA genes was then tested
using a Wilcoxon rank sum test and false discovery rate
(FDR) g-values were computed using the Benjamini and
Hochberg (BH) [38] method. Consistent with our expec-
tations, the enrichment g-values for all but three of the
cancer types using the C2.CP models was below 0.07 with

Consensus cancer genes

All TCGA genes

# Gene set R2

pred
1 BIOCARTA_RANMS_PATHWAY 0.487
2 REACTOME_ACTIVATION_OF_ATR_IN_RESPO... 0.486
3 REACTOME_G2_M_CHECKPOINTS 0483
4 REACTOME_CELL_CYCLE 0472
5 REACTOME_MITOTIC_M_M_G1_PHASES 0468
6 REACTOME_CDC6_ASSOCIATION_WITH_THE_... 0.468
7 REACTOME_DNA_REPLICATION 0.464
8 REACTOME_CELL_CYCLE_MITOTIC 0.464
9 REACTOME_GO_AND_EARLY_G1 0454
10 PID_ATR_PATHWAY 0450

# Gene set Ré,ed
1 BIOCARTA_RANMS_PATHWAY 0465
3 REACTOME_G2_M_CHECKPOINTS 0459
2 REACTOME_ACTIVATION_OF_ATR_IN_RESPO... 0456
6 REACTOME_CDC6_ASSOCIATION_WITH_THE_... 0450
14 REACTOME_CHROMOSOME_MAINTENANCE 0434
9 REACTOME_GO_AND_EARLY_G1 0433
4 REACTOME_CELL_CYCLE 0431
8 REACTOME_CELL_CYCLE_MITOTIC 0429
5 REACTOME_MITOTIC_M_M_G1_PHASES 0428
7 REACTOME_DNA_REPLICATION 0427

red

Top ten MSigDB C2.CP pathways ranked according to Rf)

for regression models constructed using the TCGA lung adenocarcinoma data. Separate rankings are shown for

models estimated using both potential predictor sets (i.e., the somatic alterations for either genes in the COSMIC cancer gene census or all genes available in the TCGA data).
The "#" columns contain the pathway rank according to the COSMIC models. Note that the complete names of the rank 2 and rank 6 pathways for COSMIC genes are
REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS and REACTOME_CDC6_ASSOCIATION_WITH_THE_ORC_ORIGIN_COMPLEX
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Table 2 Top predictors for lung adenocarcinoma

Consensus cancer genes All TCGA genes

C2.CP cé C2.CP cé
# Predictor W # Predictor W # Predictor W # Predictor W
1 TP53 0.784 1 TP53 0.672 1 KEAP1 0.766 1 KEAP1 0.942
2 SMARCA4 0.559 3 MET (CNV) 0.590 2 TP53 0.484 2 TP53 0423
3 MET (CNV) 0.445 2 SMARCA4 0.541 3 SMARCA4 0339 4 KRAS 0.397
4 KRAS 0374 4 KRAS 0.507 4 KRAS 0.249 3 SMARCA4 0.298
5 SETD2 0.268 8 EGFR (CNV) 0319 5 STK11 0171 8 *BAGE2 0.209
6 RBM10 0.263 25 EGFR 0.279 6 *DST 0.166 7 *FRG1B 0.148
7 STK11 0.239 9 FOXAT (CNV) 0.262 7 *FRG1B 0.145 13 MET (CNV) 0.146
8 EGFR (CNV) 0.220 10 MYC (CNV) 0.241 8 *BAGE2 0.131 43 *PKHD1 0.137
9 FOXAT (CNV) 0213 44 EP300 (CNV) 0.229 9 *SPTA1 0.127 36 EGFR 0.130
10 MYC (CNV) 0.209 M SMARCAA4 (CNV) 0.227 10 *ANK2 0.115 6 *DST 0.127

Top ten gene-level somatic alteration predictors from models estimated using the TCGA lung adenocarcinoma cohort. The predictors are ranked according to a weight, W,

computed as the average across all pathway models in the MSigDB collection of the product the -log(p-value) for the predictor in the unpenalized model and model R;,ed.

Separate rankings are shown for the C2.CP and C6 collections using both potential sets of predictors. The "#" columns contain the rank of the predictor in the list computed
using C2.CP collection and the target predictor set. Predictors marked in bold represent known driver genes for lung adenocarcinoma. Predictors prefixed with a "™*" are not in

the COSMIC cancer gene census

the majority below 0.01 (see Fig. 5 and S8). For the lung
cancer example, a careful examination of the top 10 COS-
MIC predictors for the C2.CP collection (see Table 2)
reveals that all ten in fact have a known association with
lung adenocarcinoma (only six are in the list of known
driver genes) with most also serving as therapeutic tar-
gets and/or prognostic indicators (TP53 [32], SMARCA4
[39], MET [40, 41], KRAS [42, 43], SETD2 [44], RBM10
[45], STK11 [46, 47], EGFR [43, 48], FOXA1l [49]
and MYC [43]).

We also expected that the predictor ranking would be
insensitive to the pathway collection on which it was
computed, ie., the C2.CP and C6 rankings would be
similar. As seen in Fig. 6, the Spearman rank correla-
tion between the predictor weights computed using the
C2.CP or C6 pathway models increases from ~ 0.5 for
the smallest cohorts to ~ 0.8 for the largest cohorts.
For the lung cancer example shown in Table 2, seven
of the top ten predictors for the C2.CP collection are
also in the top ten list for the C6 collection with this
magnitude overlap holding for both predictor sets. These
results are consistent with our expectation that predic-
tor ranking is identifying true driver genes and pro-
vides additional evidence that pathways with large R;re J
values are associated with important aspects of cancer

biology.

Can the models be used to identify novel driver genes?

To determine if the models are effective at identify-
ing novel driver genes, we examined the high-ranking
somatic alteration predictors for genes not included in the

COSMIC cancer gene census. In particular, we examined
non-COSMIC predictors whose high-ranking was repli-
cated across both the C2.CP and C6 collections. Because
these genes do not have a well-established role in cancer
but are significant predictors in models associated with
different pathway collections, we hypothesized that they
could represent novel drivers for the analyzed cancer type.
For the lung adenocarcinoma cohort, the predictors pre-
fixed with an * in the right two columns of Table 2 are
associated with non-COSMIC genes. Importantly, three
of the non-COSMIC predictors included in the top ten for
the C2.CP collection (DST, FRG1B and BAGE2) are also
in the top ten for the C6 collection and none of the three
has an established association with lung adenocarcinoma.
DST, FRG1B and BAGE?2 are thus candidate driver genes
for lung adenocarcinoma and good targets for follow-on
experiments.

Is model predictive performance sufficient for
personalized pathway analysis?

The RZre , values computed via CV on the TCGA data
sets reflect the predictive performance that can be
expected for personalized pathway analysis. Although
more research is needed to determine the true utility
of these models for personalized pathway analysis, we
believe that the current results are encouraging, espe-
cially for the larger TCGA cohorts and pathways models
that have R; ved values around ~ 0.5. These models,
when combined with model uncertainty to generate
a prediction interval, may provide useful information
regarding pathway dysregulation within a single tumor.
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the cohort sample size. All but one cancer type has a g-value of < 0.1 with

The prediction of expression-based activity from somatic
alteration status may be especially useful for cases where
gene expression data is unavailable. Appropriately, this
approach to personalized pathway analysis is strongly
influenced by somatic alterations of common cancer
driver genes, i.e., the somatic alteration of a gene like
p53 will impact the predicted aberrant activity of many
pathways whose expression-based activity is closely asso-
ciated with somatic alterations in the tumor. This fol-
lows from the criteria used by our method to identify
candidate driver genes, i.e., the somatic alteration pre-
dictors that are significant in highly predictive regression
models are assumed to represent potential cancer driver
genes. Improvements in predictive performance of this
approach can likely be achieved with larger sample sizes
(see Additional file 1: Figures S4 and S5 for the associ-
ation between mean Rzre , and cohort size) or with the
inclusion of additionalp predictors such as methylation
values.

Can the models be used to characterize cancer subtypes?
Although the TCGA cohorts provide a useful high-level
grouping of cancers, significant heterogeneity often exists
within each type of cancer. For example. breast cancers
are often sub-divided according to gene expression or
mutational profiles [50] into two (e.g., luminal-like and
basal-like) or more (e.g., luminal A, luminal B, HER2
enriched, basal-like) subtypes. To determine if the path-
way models fit for the high-level TCGA cancer types could
be used to characterize the features of cancer subtypes,
we explored the differences in predicted pathway activ-
ity and somatic mutation predictors for the TCGA BRCA
subjects assigned to either the basal or luminal PANCAN
cluster-of-cluster assignments [51] (see Section 1.4 of the
Additional file 1 for analysis details). As illustrated in the
Additional file 1 (Tables S18-S23), the differences in pred-
icated pathway activity and important somatic alterations
are consistent with known differences between luminal
and basal breast cancer types subtypes.
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Discussion
We have described a novel approach for jointly analyzing
gene expression and somatic alteration data through the
lens of biological pathways. Our approach combines sin-
gle sample pathway analysis on gene expression data with
LASSO-penalized regression to build statistical models
that use the somatic alterations present in each tumor
to predict the deviation of pathway activity from the
expected activity for the associated cancer type. Because
this method can analyze case-only data and does not
require information regarding pathway topology, it allows
researchers to explore data sets that cannot be analyzed
by existing cancer pathway analysis techniques. These
models can be used to achieve our three primary aims:
Aim 1: Identify pathways that play an important role
in the pathophysiology of human cancers. By ranking the
pathway-specific regression models according to predic-
tive performance, it is possible identify pathways whose
activity is driven by somatic alterations in the tumor.
These pathways can be expected to play a key role in
the pathophysiology of each cancer type and are thus
strong candidates for therapeutic intervention. As shown
through our analysis of TCGA data using MSigDB path-
ways, the regression models are capturing real cancer-
specific phenomena. A qualitative analysis of the models
with the largest predictive performance indicates that
the associated pathways have a clear relationship with

the cancer type and, in many cases, identify therapeutic
targets.

Aim 2: Identify genes whose somatic alteration is sig-
nificantly associated with pathway activity. By ranking
the gene-level somatic alteration predictors according to
predictor significance and model predictive performance,
it is possible to identify the genes whose somatic alter-
ation drives pathway activity for each cancer type. As
demonstrated by the analysis of TCGA data and MSigDB
pathways, the predictor rankings can be replicated across
disjoint pathway collections and are significantly enriched
for genes known to be associated with each cancer type.
By fitting regression models using somatic alterations for
genes without a known cancer association, our approach
also supports the discovery of novel driver genes.

Aim 3: Support personalized pathway analysis using only
somatic alteration data. The predictive performance esti-
mated for the MSigDB pathway models on the TCGA
data reflects the expected performance for personalized
pathway analysis. Although additional software engineer-
ing will be required to create a tool that can be easily
used by other researchers for personalized pathway analy-
sis, the current results are promising and motivate future
work in this direction. For cases in which gene expres-
sion data is unavailable and somatic alteration data may
be limited to known cancer driver genes, these models
can provide useful information on the activity of pathways
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within a patient’s tumor; information that may help assess
prognosis or guide treatment.

Limitations

Important limitations of our method and the reported
results include the scope and quality of the data drawn
from the TCGA, COSMIC and MSigDB, limitations of the
statistical models and estimation approaches employed
for pathway analysis, and limitations associated with
the subjective interpretation of pathways associated with
highly predictive regression models. Limitations associ-
ated with the TCGA data include the small number of
samples for many of the analyzed cohorts, the heterogene-
ity of tumors within each cohort (e.g., the major subtypes
of breast cancer), errors in the gene-level estimates of
non-silent somatic mutations and copy number variation,
sparsity of the somatic alteration data, and the fact that
the employed non-silent mutation indicators fail to dis-
tinguish between gain-of-function and loss-of-function
mutations. An additional limitation associated with the
leveraged TCGA data is the fact that somatic alteration
data types like methylation, mutations of non-protein
coding genes and structure features such as fusions and
translations are not included as predictors in the regres-
sion models. Although the COSMIC cancer gene census
provides a comprehensive list of genes with a known can-
cer association, the census does not quantify the degree
or direction of association, provides only approximate
cancer type associations for each gene, and likely misses
many genes that have a true link to cancer. Limitations
of the gene set collections in MSigDB include the vari-
able quality of annotations, bias in pathway annotations
(i.e., more annotations will exist for well studied genes
and pathways), the fact that the analyzed MSigDB path-
ways do not represent all potential cancer-related path-
ways, and overlaps between the members of many path-
ways. An important implication of our use of curated
pathways from MSigDB is that our method is unlikely
to identify truly novel pathway-cancer associations. The
statistical model used to predict pathway activity only
includes copy number alterations and indicators of non-
silent somatic alterations as predictors; other genomic
features that are known to impact gene expression such
as epigenetic changes (e.g., methylation), translocations,
gene fusions and mutation of non-protein coding genes
are ignored. Given the unknown marginal and joint distri-
bution of the R;re J values, a formal statistical test was not

[T 2 .
performed on individual Rpre , values or comparing the

different RIZW , distributions shown in Fig. 3. Other analyt-
ical limitations include the fact that the scores generated
by GSVA only approximate pathway activity within each
tumor, and the stochastic nature of LASSO-penalized esti-
mation. An important limitation of the evaluation results
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is the qualitative and subjective analysis used to ascertain
the cancer relevance and therapeutic value of identified
pathways and genes. While the estimated regression mod-
els provide useful insight into the somatic alterations can
drive pathway dysregulation in the analyzed TCGA can-
cer types, model performance has not been evaluated on
non-TCGA data and the current models and implementa-
tion logic do not support the direct use of these models for
personalized pathway analysis on new patient tumor data.

Future directions

Possible extensions to this method include support for
additional data types, modifications to the statistical
model, exploration of cancer subtypes, validation on other
cancer genomics data sets and creation of tools to support
personalized pathway analysis on new tumor genomic
data. To more accurately model the somatic alterations
that drive gene expression, the current approach can
be expanded to include epigenetic modifications (e.g.,
methylation), mutations of non-protein coding genes, and
features such as gene fusions and translocations as pre-
dictors in the regression model. An important issue that
must be address in future efforts to integration addi-
tional predictor variables will be the limited available of
many of these additional genomic data types. Potential
enhancements of the statistical model include the addi-
tion of interaction terms, predictor weighting based on
prior knowledge regarding the role of specific genes in
cancer and modification of predictor weights to account
for the overlap between pathways. To support formal sta-
tistical analysis of the RIZW , values computed for each
pathway model, resampling approaches could be used
(i.e., generate multiple bootstrap resampled versions of
the TCGA data and estimate pathway regression models
for each resampled data set). Alternative approaches for
computing the single sample pathway scores can also be
investigated, e.g., generate GSVA statistics that can iden-
tify gene sets with both up and down-regulated members,
base single sample scores on gene expression relative to
controls or another cancer type, etc. Evaluation of this
approach can be expanded to include the analysis of other
cancer types or subtypes of the analyzed cohorts (e.g.,
extend the analysis of breast cancer subtypes to other can-
cers), and the analysis of data from other cancer genomics
repositories. A particularly important topic for future
research involves the use of more a objective and system-
atic approach for evaluating identified pathways and genes
with experimental confirmation of any novel findings.

Conclusions

We have developed a new approach for the pathway-based
analysis of multi-omics cancer data. Our approach com-
bines single-sample pathway analysis with multi-stage,
lasso-penalized regression to find pathways whose gene
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expression can be explained largely in terms of the non-
silent somatic mutations and copy number variations
present in the tumor. This method enables the identifi-
cation of biologically important pathways and genes and
can be used for personalized pathway analysis in cases
where gene expression data is unavailable. Importantly,
this method can be used on case-only data sets and does
not require information regarding pathway topology. An
analysis of 20 human cancer types using TCGA genomic
data and MSigDB gene sets illustrates the effectiveness
of our technique. These analysis results also provide can-
cer researchers with ranked lists of pathways and genes
that likely play a key role in the etiology of these cancer
types, information that can be used to generate hypothe-
ses for more detailed experimental exploration of cancer
pathways and novel driver genes.

Additional file

Additional file 1: Additional results and details on the computational
pipeline, analyzed data sets and logic used to generate all tables and
figures. (PDF 1772 kb)
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