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Pairwise efficiency: a new mathematical
approach to qPCR data analysis increases
the precision of the calibration curve assay
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Abstract

Background: The real-time quantitative polymerase chain reaction (qPCR) is routinely used for quantification of
nucleic acids and is considered the gold standard in the field of relative nucleic acid measurements. The efficiency
of the qPCR reaction is one of the most important parameters in data analysis in qPCR experiments. The Minimum
Information for publication of Quantitative real-time PCR Experiments (MIQE) guidelines recommends the
calibration curve as the method of choice for estimation of qPCR efficiency. The precision of this method has been
reported to be between SD = 0.007 (three replicates) and SD = 0.022 (no replicates).

Results: In this article, we present a novel approach to the analysis of qPCR data which has been obtained by
running a dilution series. Unlike previously developed methods, our method, Pairwise Efficiency, involves a new
formula that describes pairwise relationships between data points on separate amplification curves and thus
enables extensive statistics. The comparison of Pairwise Efficiency with the calibration curve by Monte Carlo
simulation shows the two-folds improvement in the precision of estimations of efficiency and gene expression
ratios on the same dataset.

Conclusions: The Pairwise Efficiency nearly doubles the precision in qPCR efficiency determinations compared to
standard calibration curve method. This paper demonstrates that applications of combinatorial treatment of data
provide the improvement of the determination.
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Background
Real-time qPCR is considered the most sensitive tech-
nique for nucleic acid quantification, and enables mea-
surements on as few as several molecules of the target
[1]. The advantage of this method over earlier methods
of quantification, such as end-point PCR followed by gel
visualization, is the ability to account for the efficiency
of the PCR reaction by following it in real time and
gathering fluorescence data after each amplification
cycle [2–4]. The efficiency of the reaction is defined as
the increase of product per cycle as a fraction of the
amount present at the start of the cycle [5, 6]. In a clas-
sical model (for example, the one on which ΔΔCt

method was based) it is assumed that the efficiency E of
a qPCR reaction is stable and maximal before reaction
saturation. The stability of E has been questioned nu-
merous times [7–11], however, in our article we will be
using the same assumptions as the classical model. Due
to the exponential nature of PCR, the reaction efficiency
can have dramatic effects on quantitative determina-
tions. It has been estimated that an uncorrected 0.05 dif-
ference in amplification efficiency between a reference
gene and a target gene can lead to false estimation of
the target gene expression change of 432% [12].
The calibration curve method is widely considered the

most precise method for qPCR efficiency estimation [13]
and is required in the MIQE guidelines: “Calibration
curves for each quantified target must be included with
the submitted manuscript, slopes and y intercepts de-
rived from these calibration curves must be included
with the publication” [5]. The calibration curve is built
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by creating a serial dilution of known DNA concentra-
tion and plotting the quantification cycle (Cq) values on
the y-axis against the logarithm of the sample concentra-
tions on the x-axis. The efficiency (E) is then estimated
from the slope of this curve using the classical formula
E = 10–1/slope – 1; the estimation in this case is based
on knowledge of the concentrations of all diluted sam-
ples. However, due to the insufficient precision of single
dilution sets, it is often recommended to run at least
three PCR reaction replicates for each sample to have
three dilution sets for a single calibration curve. It has
been shown that replicating a calibration curve three
times by this approach increases the precision of effi-
ciency estimation expressed as a confidence interval (CI)
from 8.3 to 2.3% [13]. The downside of this approach is
the increased workload and cost.
To overcome this problem of increased workload, sev-

eral other methods have been developed to estimate
qPCR efficiency from single curves and to improve
qPCR precision in general, such as the PCR-Miner [14],
LinRegPCR [15], sigmoidal fitting [16], and others. How-
ever, according to a recent analysis by Ruijter and col-
leagues, the majority of these alternative methods are
very similar in principle as they are based on determin-
ing the same basic parameters (called Fq, Cq and E) and
“all calculate a target quantity using an efficiency value
and a Cq value” [6]. In addition, alternative methods that
rely on different ways of approximating a single amplifi-
cation curve have never yielded acceptable accuracy
[17]. Thus, it remains to be seen whether a truly novel
approach could improve the precision of qPCR efficiency
and ratio estimations.
Here, we present a mathematical approach that im-

proves the precision of qPCR efficiency estimation in the
same number of samples that are required for calibra-
tion curve construction, thus reducing the necessary
workload for qPCR. The aim of our method is to in-
crease precision of qPCR efficiency estimation, as op-
posed to increase accuracy. Precision is defined as a
measure of random error, in other words the error that
arises due to random uncontrolled measurement vari-
ability, such as noise etc.; while accuracy is a measure of
systematic error (e.g. an error that is “built into” experi-
mental system due to, for example, systematic malfunc-
tion of equipment). Accuracy cannot be improved or
determined by any statistical manipulations of the data,
and correction of accuracy requires a comparison of the
results to an already known standard. Since such stan-
dards (e.g. standard sample of ideal efficiency for the
actin gene) do not exist in biology yet, the aim of our
work was to decrease the magnitude of random,
measurement-related error. In other words, since it is
currently impossible to know the “true” amplification ef-
ficiency of any gene due to lack of internationally

recognized standard samples, our statistical method con-
cerns precision only, as do all other previously developed
methods.
Our approach relies on pairwise relationships between

fluorescence (not Cq) readings on several amplification
curves of a dilution set. We employ the following strat-
egy to increase the precision of determinations. First, we
introduce a new formula for efficiency (E) estimation
based on the relationship between data points on each
of the amplification curves from the dilution set. This
approach allows us to increase the number of deter-
mined unique E values to hundreds. Second, using this
array of unique E values, we perform standard statistical
analyzes such as the analysis of value distribution, and
the exclusion of outlier values. The statistical analysis
becomes possible precisely due to the fact that we gener-
ate hundreds of data points, as any statistics quality de-
pends on the number of unique values in any given set.
Our results show that the application of Pairwise Effi-

ciency makes it possible to nearly double the precision
in qPCR efficiency determinations without increasing
the pipetting workload and minimizing cost. In addition,
we demonstrate a 2.3-fold improvement in precision of
the estimation of gene expression ratios. This constitutes
a conceptual advance in the field of qPCR and allows for
further development of ideas in this direction. Moreover,
these advancements have important practical implica-
tions for the use of qPCR.

Methods
DNA sample
Mouse embryonic stem cell line E14Tg2a was purchased
from RIKEN Cell bank, JP (AES0135) and was main-
tained as previously described [18]. Total RNA was ex-
tracted using RNeasy kit (Cat# 74106, Qiagen, Japan)
following the manufacturer’s instructions. Genomic
DNA digestion was performed on-column according to
said instructions. RNA concentration and absorbance
ratios (A260/280 and A260/230) were checked with a spec-
trophotometer Nanodrop 2000 Spectrophotometer
(NanoDrop Technologies, Japan). To produce cDNA for
qPCR analysis, 300 ng of total RNA were reverse-
transcribed with an Omniscript RT Kit (Cat# 205111,
Qiagen) in a total volume of 20 μl. The resulting DNA
concentration was assessed by spectrophotometric ana-
lysis and diluted to 100 ng/μl.

Quantitative real-time PCR setup and reagents
qPCR was performed using a CFX96 Connect apparatus
(Bio-Rad, Japan). Hard-Shell® 96-Well PCR Plates (Cat #
HSP 9601, Bio-Rad) sealed with optically clear adhesive
seals (Microseal® ‘B’ seal, Cat # MSB1001, Bio-Rad) were
used in all experiments. The thermocycler program con-
sisted of an initial hot start cycle at 95 °C for 3 min,

Panina et al. BMC Bioinformatics          (2019) 20:295 Page 2 of 12



followed by 33 cycles at 95 °C for 10 s and 59 °C for 30 s.
Mouse actin beta (Actb) was amplified using the follow-
ing primers: F-5′-AACCCTAAGGCCAACCGTGAA-3′,
R-5′-ATGGCGTGAGGGAGAGCATA-3′ (with esti-
mated product length 194 bp). The primers were used at
a concentration of 300 nM. SYBR Green-based PCR
supermix (Bio-Rad) was used for all reactions according
to manufacturer’s instructions. Each reaction was per-
formed in a final volume of 8 μL. To confirm product
specificity, a melting curve analysis was performed after
each amplification, and agarose gel analysis was per-
formed to ensure the amplification of the right product
(Additional file 1: Figure S1).

Experiment design and PCR dataset generation
For the assessment of precision of our method and
comparison with the classical calibration curve
method, we produced 16 replicas of a 6-step dilution
series. We provide the detailed pipetting layout in
Additional file 1: Figure S2. Two datasets were gener-
ated from this experiment and processed using Bio-
Rad CFX Manager 2.0 (2.0.885.0923). Additional file 2:
Dataset 1 consists of relative fluorescence data ob-
tained from the aforementioned experiment: 6 serial
dilution wells × 16 replicas = 96 wells. Fluorescence
data in Additional file 2: Dataset 1 are expressed as
RFU (Relative Fluorescence Units) which is a term
specific to Bio-Rad software. It is important to note
that, since our goal was to improve the accuracy of
the classical calibration curve, all RFU values were
taken as already processed by Bio-Rad software with
the same settings that were applied to the generation
of Cq values, as follows: Baseline Setting set to Base-
line Subtracted Curve Fit, Cq Determination Mode
set to Single Threshold. Additional file 3: Dataset 2
contains automatically generated Cq values corre-
sponding to Additional file 2: Dataset 1. The thresh-
old was automatically set at 31.07 by the Bio-Rad
software.

Determination of the exponential region
The most suitable bounds of the exponential region
of the respective amplification curves were deter-
mined experimentally. Prior to the experimental esti-
mation, we conducted an initial estimation using the
“first outlier” method and the First Derivative Max-
imum (FDM) approach [9, 19]. The initial estimation
was done solely in order to provide a general range
for experimental testing. The results of the formula of
“first outlier” detection [19] application to the first
calibration curve replica (wells A1 through A6) are
provided in Additional file 1: Table S1. In agreement
with these data, the tentative lower boundary of the
exponential region was set at 10–40 RFU. The FDM

values for the first calibration curve replica can be
found in Additional file 1: Table S2. As expected, the
values differ for samples with different initial DNA
concentration, and are in the range of 18–25 cycles
for FDM values. Additional file 1: Figure S3a shows
the FDM values for the whole Additional file 2: Data-
set 1 plotted against cycle numbers. The earliest FDM
was encountered at cycle 18 in the most concentrated
sample. The latest FDM of the dataset came at cycle
25. As shown in Additional file 1: Figure S3b, the
RFU values for cycles corresponding to calculated
FDMs fall in the range of 120–230 RFU. Thus, in ac-
cordance with these data, the tentative initial estima-
tion of the upper boundary of the exponential region
to use in the experimental test was set between 120
and 230 RFU.

Determination of the best-performing boundaries in the
exponential region
As shown in the previous section, the exponential re-
gion of each curve in a dilution set starts at a differ-
ent cycle. Thus, it is necessary to experimentally
determine the most suitable upper and lower bound-
aries of the exponential region for all curves taken to-
gether. To determine the most suitable boundaries,
we experimentally tested at what fluorescence range
(i.e. what portion of each of the amplification curves)
the application of our method produces results with
the highest precision. For this estimation we applied a
“Monte Carlo” approach that was previously described
by Svec et.al. for the evaluation of precision of the
calibration curve method [13]. The lower boundary
was tested at the range of 10 RFU - 80 RFU, and the
higher boundary was tested at the range of 120 RFU
- 230 RFU. Exact boundaries tested can be found in
Additional file 1: Table S5 (altogether 10 combina-
tions of boundaries, which we wanted to compare for
precision performance). Using fluorescence RFU read-
ings from Additional file 2: Dataset 1 that contained
16 technical replicas of a 6-step dilution set, we
randomly drew 100 different “samplings” (or sub-
populations) consisting of three six-sets, from the
general population of 16 (Additional file 1: Figure S4),
and calculated the precision for each combination of
varying boundaries expressed as standard deviation
(SD). The results of this operation are displayed in
Additional file 1: Table S5 and visualized in Add-
itional file 1: Figure S4. The best results were ob-
tained at the lower portion of the curve (40–120
RFU). The variation in the SD value did not exceed
0.001 for the lower portion (40–120 RFU, 40–150
RFU, 20–150 RFU). To include as many values as
possible in our case, we decided to use 20–180 RFU
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boundaries, which produce smallest SD while includ-
ing approximately 4 fluorescence data points.

Baseline treatment
Since the goal of our analysis was to directly improve
the precision of the classical calibration curve
method, the same software settings were applied to
fluorescence data as to the generation of Cq values.
The Bio-Rad software was set to Baseline Subtracted
Curve Fit, and the baseline was subtracted automatic-
ally by the software producing Relative Fluorescence
Unit values. This Bio-Rad subtraction method is
based on either adding a constant value, or a linearly
growing value to the raw fluorescence and thus does
not eliminate the noise inherent to any qPCR instru-
ment as an electric device.

Evaluation of the noise influence
To determine the properties of noise and the scale of
noise influence, we examined the fluorescence read-
ings in the beginning cycles of the Additional file 2:
Dataset 1. As shown in Additional file 1: Figure S6a,
the fluorescence readings in the beginning cycles (up
to cycle 13–18, depending on the starting concentra-
tion) were distributed close to 0, with inclusion of
negative readings. The minimal value of the whole
dataset was − 9.44 RFU. To demonstrate the noise
distribution, we show three histograms which contain
fluorescence readings from the following cycles: 1)
Cycles 1 through 5; 2) Cycles 1 through 10; and 3)
Cycles 5 through 10. The data were taken from Add-
itional file 2: Dataset 1 and two more 96-well plates
replicating serial dilutions, with the Actb gene as tar-
get (raw data of these two plates are available on re-
quest). The total number of data points resulted in
2880 fluorescence readings (first 10 cycles from 96
wells in 3 plates). The result is shown in Additional
file 1: Figure S6b. The noise in the beginning cycles
appeared to have a nearly normal distribution with a
non-zero peak. The positions of the peaks and the
distribution did not change depending on the number
of included cycles, which indicated that there was no
detectable signal at this stage - because the increasing
signal would have produced a shift to the right in the
noise distribution if it existed. Thus, we concluded
that the initial fluorescence readings in our system
contain noise, and the noise has the approximate
range of − 10 RFU to 10 RFU. To ensure that all data
points that we would take for analysis contain the
non-noise signal, we concluded that the lower bound-
ary should not be lower than 10 RFU which is in ac-
cordance with the boundary set by the ‘first outlier’
(see Determination of the exponential region).

Data processing
The data processing was carried out in Microsoft Excel
and R. All excel files are available in Additional files 2
and 3.

Results
Assessment of the detectability of stable amplification
efficiency in the exponential phase
The goal of our analysis was to increase the accuracy of
measuring the mean amplification efficiency that is nor-
mally determined by the classical calibration curve
method [5] as opposed to cycle-to-cycle efficiency de-
scribed in other models. According to the mainstream
view, any PCR reaction proceeds with stable efficiency
until end-stage reagent depletion and the accumulation
of reaction products cause a steep decline in the effi-
ciency, and the reaction gradually slows down [20, 21].
The calibration curve method aims at measuring the
stable efficiency of the reaction before the saturation oc-
curs, and this maximal efficiency is assumed to be iden-
tical across all dilution samples. However, it has been
argued that the sensitivity of some qPCR machines does
not allow detection of a weak fluorescent signal in the
exponential phase of the PCR reaction, where the effi-
ciency is still stable, and the signal first appears when
the efficiency is already declining [7, 9, 22]. It has also
been pointed out that the analyzes based on stable effi-
ciency should be conducted strictly at the region before
efficiency decline, if such a region is detectable.
To determine if our system allows to detect the

theoretical stable efficiency, we analyzed the fluores-
cence readings data from Additional file 2: Dataset 1
(see Materials and Methods for description) using the
following formula for the calculation of efficiency E.

E ¼ 2
log2 Fi− log2 F0

i −1 ð1Þ

, where i is the cycle number for a particular fluores-
cence reading F, and F0 is the initial fluorescence value
of the sample. The logarithms, base 2, are used because
the series contains 2-fold dilution sets.
The formula (1) cannot be used directly for E calcula-

tion because the fluorescence level of the starting mater-
ial F0 is unknown. The purpose of the analysis described
below was to confirm the detectability of the stable ex-
ponential E region with varying F0 values. To obtain ini-
tial approximation of F0 value to test with formula (1),
we used E values calculated using calibration curve
method (Additional file 1: Table S3). Knowing the effi-
ciency of the reaction (around 80%) allowed us to pro-
duce initial F0 estimations by the standard formula. The
resulting F0 values were in the range of 0.007 to 0.0002.
We then substituted these F0 values in the formula (1)
and analyzed the resulting E values at each cycle of the
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reaction (Fig. 1). As shown in the figure, we found that
in the first cycles where non-background signal is de-
tected by the machine, E displays a relatively constant
pattern (SD = 0.01), while in the later cycles it starts to
decline steadily (Additional file 1: Table S4). The initial
region with the small standard deviation lasted from
cycle 13 until cycle 17 for the most concentrated sample.
Varying the F0 value did not affect the detection of this
region of relatively constant E, as other curves also pro-
duced a similar pattern with small variation of E in the
initial 3–5 cycles where the signal was already detected,
and a steady decline after that.
According to these data, our experimental system

allowed the detection of approximately 4 fluorescence
values from the exponential phase of amplification
where the variation of efficiency does not exceed ±0.01.
This result overall shows that the theoretical stable effi-
ciency is detectable and can be quantified.

Amplification efficiency estimation
Next, we approached the question of how to reduce the
uncertainty in the estimation of E given that only 5 or
fewer fluorescence data points on each curve belong to
the E stability region.
For this purpose we introduced a new formula (4) for

E estimation from a dilution set. This formula describes
the relationship between 2 individual fluorescence read-
ings in any given dilution set. The fluorescence readings
are represented by data points on 6 amplification curves,
in the case of one 6-step serial dilution experiment
(Fig. 2b). The E estimation in our case is based on a rela-
tionship between a pair of actual fluorescence readings,

as opposed to the slope of the calibration curve, which is
based on cycle fraction values (Cq).
When devising our formula, we used the same basic

assumptions that the calibration curve method uses
[6, 23] when calculating the mean efficiency on a cali-
bration curve, namely:

1) The kinetics of a PCR reaction with a given DNA-
primer set are the same irrespective of the initial
template concentration.

2) The kinetics of the PCR reaction are assumed to be
classical (described by the classical formula F=
F0 × (1 + E)i)

3) The mean efficiency is maximal and constant before
the reaction saturation.

4) Fluorescence readings and double-stranded DNA
concentration are linearly related to each other, and
the increase in fluorescence is directly proportional
to the increase in target concentration.

Given these assumptions, any one fluorescence reading
F on any one of the amplification curves in the dilution
set can be described by the following equations:

Fi ¼ F0

2D1
� 1þ Eð Þi ð2Þ

F j ¼ F0

2D2
� 1þ Eð Þ j ð3Þ

, where i and j are cycle numbers for a particular fluor-
escence reading, Fi and Fj are the fluorescence readings
in cycle i or cycle j, F0 is the initial fluorescence of the

Fig. 1 A graphical representation of the efficiency (E) values across all cycles taken from a 6-step dilution set. Efficiency is calculated using the

formula E ¼ 2
log2 Fi− log2 F0

i −1. The Fi and i values for calculation are taken directly from Additional file 2: Dataset 1, wells A1 through A6. Since F0
value is unknown, it was selected from the range of theoretically possible F0 values (covering 0.007–0.0002) and used in the formula

Panina et al. BMC Bioinformatics          (2019) 20:295 Page 5 of 12



undiluted sample, D1 and D2 are dilution factors for
curve 1 and curve 2 (if the pair of data points are on the
same curve, then D1 = D2), and E is the amplification ef-
ficiency for the qPCR reaction for the given DNA-
primer set. The dilution factor D is defined as the loga-
rithm of the fold-dilution, compared to the undiluted
sample whose logarithm of the fold-dilution, by defin-
ition, is 0. Since we applied twofold dilutions for
mathematical clarity, D values in our case were integers
from 0 to 5. In the case of tenfold dilutions, the

corresponding ‘2’ values in the formulae will become 10,
and the dilution factors will remain unchanged.
The eqs. 2 and 3 allow us to calculate the efficiency E

for a given pair of fluorescence readings, such as:

Ei; j ¼ 2
log2 F jð Þ− log2 Fið Þþ D2−D1ð Þð Þ

j−ið Þ −1 ð4Þ

Thus, while the estimation of efficiency across a dilu-
tion set by the calibration curve method is based on a

Fig. 2 Graphical representation of the principle of Pairwise Efficiency method and its application to six dilution curves. (a) A graphical illustration of the
Pairwise Efficiency method. Small portions of three amplification curves, with three fluorescence data points on each, are shown. Dashed line connects
point A to point F on separate curves, and represents a single, unique pairwise E determination (pair AF). All possible pairs, each one representing a
unique pairwise E value, are shown on the right. Since some of the values occur on the same cycle (for example, AE, BF), such values are excluded
from the determinations, and are denoted in gray. (b) The amplification curves from the wells C1 through C6 are shown (RFU data taken from
Additional file 2: Dataset 1). Different shapes (circles, squares, triangles etc.) represent fluorescence readings taken by the machine after each PCR cycle.
Horizontal lines denote the region of amplification curves from which the fluorescence data points were taken for analysis. Upper cutoff was set at 180
RFU, and lower cutoff was set at 20 RFU. In this experiment, the total of 24 fluorescence data points fall inside the denoted region, and unique pairs
formed by these 24 points, excluding repetitive values occurring on the same cycle, are taken for analysis
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single curve and produces a single E value, our new
method, Pairwise Efficiency, calculates an array of E
values based on all possible pair combinations from this
dilution set, producing about 50–400 individual pairwise
E determinations (depending on the number of fluores-
cence readings included in the exponential region taken
for analysis), and then estimates the average efficiency
from this array of E determinations.

Statistical analysis of the array of resulting efficiency (E)
values
To further improve the precision of estimation of Pair-
wise Efficiency, we considered methods to remove out-
liers, which aims at excluding unreasonable values that
occur due to random measurement errors, as to increase
the precision of determinations. First, we analyzed the
distribution of pairwise E values for normality in each
group of pairwise E determinations. This analysis is ne-
cessary in order to decide which kind of method to use
for outlier exclusion (parametric, such as three sigma
rule, vs. non-parametric). To assess the distribution nor-
mality in a mathematically objective way, we used stand-
ard tools, namely, skew, kurtosis, and chi-square test. As
shown in Table 1, the majority of skewness values sig-
nificantly deviated from 0, confirming distribution asym-
metry. In addition, all kurtosis values were positive,

indicating that calculated pairwise E determinations
from these dilution sets had leptokurtic distribution
(Fig. 3).
Next, we used the Pearson’s chi-squared test to test

the goodness of fit of the frequency distribution of calcu-
lated pairwise E values. When analyzing 16 curves, we
have an average standard deviation value of 0.116 over
16 replicas. Therefore, we used the interval length of
0.05, as required by chi-square test. The details of our
chi square test calculations are shown in Additional file
1: Table S6. The application of chi-square test is consid-
ered valid if there are at least 50 values analyzed for dis-
tribution (which is the case of Pairwise Efficiency), and
no more than 20% of the values have expected frequen-
cies below 5. The values whose frequency is less than 5
are considered statistically unreliable and are designated
as outliers. An analysis by the Chi-square test showed
that our distributions significantly deviated from normal
(Additional file 1: Table S6). Thus, parametric tools de-
signed for normally distributed values, such as quartile
ranges or sigma rules, could not be applied in this case.
Instead, when the distributions do not follow a fixed set
of parameters (e.g. are not normal), non-parametric stat-
istical tools are used; however, the selection of specific
tool is left to the researcher and is decided case-by-case.
Since Pearson’s chi-square test is a universal tool that
can be applied to any kind of distribution (both parame-
terized and non-parametrized), we chose to use the cri-
teria of this test to exclude outlier E values in our case.
As mentioned above, according to the principles of the
Pearson’s chi-square test, the values whose frequency is
less than 5 are considered statistically unreliable. Based
on this criterion, the pairwise E determinations with fre-
quency less than 5 were considered outliers and were ex-
cluded from the calculation of the E value of one
dilution set.
Thus, for example, the dilution set in wells A1 through

A6 had 167 individual pairwise E determinations, skew-
ness = 1.06 and kurtosis = 7.36. The frequency of E
values below 5 was first encountered at E = 0.6 (60% effi-
ciency) on the lower end, and at E = 1.05 (105% effi-
ciency) on the higher end (Additional file 1: Table S7).
Based on Chi-square criterion, all pairwise E determina-
tions that exceeded 105% and did not reach 65% were
excluded from the calculation of average E for this dilu-
tion set. E value for wells A1 through A6 prior to outlier
analysis was E = 0.79, and after the removal of outliers
became E = 0.816. Other E values for the remaining 15
sets were processed on the basis of the same algorithm.

Comparison of the performance of pairwise efficiency
method vs. the calibration curve-based E estimation
Next, we set out to compare the precision of our method
to the classical calibration curve method. Since precision

Table 1 Estimation of distribution normality

Dilution set (wells) Skew Kurtosis Total data points

A1–6 1.064 7.357 237

B1–6 0.615 4.085 237

C1–6 0.221 3.556 244

D1–6 1.051 6.305 241

E1–6 0.473 5.524 240

F1–6 1.88 6.769 222

G1–6 2.012 10.079 220

H1–6 1.379 12.177 223

A7–12 −0.337 2.16 220

B7–12 0.098 4.508 217

C7–12 0.215 2.838 259

D7–12 0.739 2.514 241

E7–12 0.563 3.555 223

F7–12 −0.034 3.843 206

G7–12 1.429 7.023 198

H7–12 −0.148 5.319 240

Pairwise E values of 16 dilution sets were analyzed for skewness and kurtosis.
Skewness values that deviate from 0 indicate asymmetry of the distribution,
making it a non-normal distribution. Positive kurtosis values also imply
deviation from normal distribution and indicate that the distribution is sharp
(more values are close to mathematical expectation, and precision is higher
than would be expected in the case of normal distribution). The right column
contains the numbers of individual pairwise E determinations for each dilution
set that were taken for this analysis
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is defined as a measure of random error, it can be inves-
tigated by the same Monte Carlo approach that was used
for comparison of different boundaries described in Ma-
terials and Methods. In this case, we did not vary the
boundaries (because the purpose was not to compare
the precision of varying boundaries) but varied the ap-
proach instead: E calculated by classical calibration curve
method vs. E calculated by Pairwise Efficiency method.
Again, to produce precision estimation, we randomly
took 100 “samplings” (or sub-populations) consisting of
three replicates of 6-times dilution sets (Additional file
1: Figure S4). Thus, one “sampling” would produce three
separate E values because one 6-times dilution set yields
one E estimation (MIQE guidelines). These three E
values in a “sampling” were averaged, as required by
MIQE. Then, this procedure was repeated 100 times to
produce 100 “samplings”, and SD was found for all of
them. The SD was found to be 0.019. Next, we applied
the same approach to the corresponding RFU values
(not Cq this time) on exactly same qPCR plate and
exactly same samples, with only difference that E was
calculated by Pairwise Efficiency. The results are shown
in Table 2. Pairwise Efficiency produced an increase in

the precision of E estimation from 0.010 to 0.019, thus
nearly two-fold. While the average E values were found
to be 80% in both methods, Pairwise Efficiency produced
a smaller standard deviation and a smaller difference be-
tween maximal and minimal E values. The dispersion of
E values obtained by Pairwise Efficiency method,
expressed as Max E - Min E, did not exceed 0.045, as
opposed to 0.072 obtained by the calibration curve
method. This means that the magnitude of random error
in the E estimation was approximately two times lower
in the case of Pairwise Efficiency compared to the cali-
bration curve method.
Next, we investigated whether this increased precision

in the efficiency estimation would translate into in-
creased precision of gene expression ratio measure-
ments. To do that, we calculated the magnitude of
possible error for the calibration curve method and for
the Pairwise Efficiency method, using the same assump-
tions as described in Materials and Methods. For the cal-
culation of expression ratios in the case of calibration
curve, we used the equations described by M. Pfaffl [24].
The mathematical model presented in his publication is,
in principle, equivalent to the model previously designed

Fig. 3 A graphical representation of the distribution of pairwise E values for the wells A1-A12 and B1-B12. The distribution of pairwise E values is
leptokurtic in all sets, and has a sharp appearance, indicating that the values are closer to mathematical expectation, and precision is higher than
would be expected in the case of normal distribution. In addition, the distributions are skewed and possess larger tail areas, indicating significant
deviation from normality

Table 2 Comparison of the calibration curve method with the Pairwise Efficiency method

Approach SD Max E Min E Max-Min difference Average E

Calibration curve 0.019 0.83 0.76 0.072 0.80

Pairwise Efficiency 0.010 0.82 0.78 0.047 0.80

Standard deviations (SD) obtained from the Monte Carlo test, maximal and minimal efficiency values, the range between maximal and minimal values, and the
average efficiencies are shown. While the average E value was the same for both methods (E = 0.80), the precision of E estimation obtained by the Pairwise
Efficiency method, expressed as standard deviation (SD), was nearly two times higher, and the dispersion, expressed as the difference between maximal and
minimal calculated E values, was 1.6 times smaller
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by Roche Diagnostics and takes into account the effi-
ciency of both target and reference genes. The formula
presented by Pfaffl has the following appearance:

ratio ¼ EΔCt
target

, where ΔCt is the difference between Ct of the sample
and Ct of control at the same threshold. Since our data-
set of 16 dilution replicas contained exactly the same
amount of target gene (Actb) in wells with the same
concentration, theoretically the calculated ratio between
these wells should be 1. Thus, we could evaluate the
magnitude of error in the determination of the ratio by
measuring maximal difference between each one of
these 16 replicas. In this case, the error would be max-
imal when the efficiency value is maximal.
First, we determined which one of the 16 dilution sets

gives the highest efficiency value. The analysis using the
calibration curve method showed that wells D1 through
D6 produced the highest efficiency (E = 0.882). Next,
using this efficiency, we applied the aforementioned for-
mula for the undiluted samples, considering the Ct sample

the highest Ct from all 16 replicas, and Ct control the low-
est of all. This resulted in a ratio = 1.606. Thus, the max-
imal possible error in the estimation of gene expression
ratio when using the calibration curve method can reach
up to 60%. Similarly, we used the maximal efficiency cal-
culated by Pairwise Efficiency method to estimate the
magnitude of error on Additional file 2: Dataset 1 with
16 replicas. The maximal efficiency value was obtained
in the same wells (D1 through D6) as for the calibration
curve, which underscores robustness of both methods
for E estimation. Using this maximal efficiency value, we
estimated F0 in all wells using our modified formula (2):

F0 ¼ Fi

1þ Eð Þi

, based on actual fluorescence values. The estimation
of F0 in our Pairwise Efficiency method in this case was
analogous to the calibration curve method, while the
way we estimate efficiency differed. We obtained the fol-
lowing result: Max F = 0.00435436, Min F = 0.00345735.
Then we calculated the difference between maximal F0
and minimal F0 which yielded a ratio = 1.26. Thus, the
magnitude of possible error in ratio estimation using
Pairwise Efficiency method amounts to 26%, which
amounts to an improvement of about 2.3 fold in the pre-
cision of gene expression ratio estimation compared to
the calibration curve method.
Then, we compared the performance of Pairwise Effi-

ciency vs. calibration curve in terms of accuracy. Since
accuracy is a measure of systematic error, it can only be
determined by comparing the result to a known stand-
ard. International biological standards for RT-qPCR do

not exist. Thus, it is only possible to determine accuracy
indirectly, for example, by comparing the resulting de-
terminations to a chosen standard of another known
value (such as dilution proportions which are known
etc.) For this comparison, we calculated the error in de-
termination of the dilution ratio because in our case the
dilution ratios were known (Table 3).
This result demonstrates that Pairwise Efficiency can

produce more accurate estimations of template quantity
than the calibration curve approach (described in MIQE)
in the same experiment with the same number of pipet-
ted wells.
Finally, to confirm the universality of Pairwise Effi-

ciency method, we have applied it to different baseline
settings (in our case, “Baseline Subtracted” and “Baseline
Subtracted Curve Fit”), as well as to 10-fold dilution
series. The results can be found in Supplementary Infor-
mation (Additional file 1: Tables S8, S9, S10).

Discussion
Quantitative PCR is an affordable and widely used tech-
nique for nucleic acid quantification. However, despite
its popularity, this method has yet to gain full accept-
ance in the research community due to limitations in its
ability to provide precise determinations, which may
lead to low reproducibility. Multiple methods for qPCR
data analysis have been developed throughout its history,
yet the vast majority of these relies on Cq values, as well
as a calibration curve or curve fitting for efficiency esti-
mation and subsequent data analysis. Moreover, such
previous methods do not achieve sufficient improvement
in precision of estimations of efficiency or gene expres-
sion ratio. Thus, new approaches are needed to over-
come the limitations of existing methodologies. In this
report, we introduce a new approach to qPCR data ana-
lysis, Pairwise Efficiency, which consists of three ele-
ments. First, it introduces a formula describing the
relationship between two fluorescence readings on amp-
lification curves and does not rely on Cq values or a cali-
bration curve for the estimation of reaction efficiency.
Second, it estimates the boundaries of the exponential
region for a group of amplification curves in order to de-
termine reliable data boundaries. And third, it eliminates
outliers during the process of calculating E values, as op-
posed to at the end.
It should be noted that the PCR efficiency determined

from a dilution series calculates an ‘average’ efficiency
with an equation that includes the intended dilution of
the samples (Eq. 4). Therefore, an error in the actual di-
lution of the samples leads to a systematic error in the
measured fluorescence values and thus to a bias in the
observed PCR efficiency values. Indeed, when we ana-
lyzed the PCR efficiency by standard method and Pair-
wise Efficiency method in case of 10-times dilutions, the
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efficiency values themselves were slightly different (Add-
itional file 1: Table S10). The difference observed be-
tween the efficiency values in the 2-times and 10-times
diluted series may be due to such a systematic error in
pipetting the dilution series.
Quantitative PCR is often associated with issues in re-

producibility and excessive workload, such as the need
to create multiple technical replicas to ensure statistical
robustness. Pairwise Efficiency provides a significant in-
crease in the precision of estimation of efficiency and
gene expression ratio without increasing the workload.
According to our analysis, 2–5 individual fluorescence
readings from each amplification curve can be taken dir-
ectly for the estimation of reaction efficiency. Six ampli-
fication curves from only six wells (which is three times
less than required for calibration curve analysis) can
provide 50–200 individual pairwise E determinations,
enabling much more extensive statistics. This signifi-
cantly reduces the workload necessary for achieving high
precision.
Another advantage of Pairwise Efficiency is that it re-

lies on actual fluorescence readings rather than implied
data. It has been previously pointed out that the estima-
tion of efficiency by the means of a calibration curve, as
required by MIQE guidelines, is based not on existing,
but rather on implied data: “the data from a tube is dis-
continuous; fluorescence is measured at the end of each

cycle, and there is no such thing as a fluorescence after a
fractional number of cycles as implied by the continuous
functions [that the classical Cq approach involves]” [25].
We agree with this point of view. One of the advantages
of Pairwise Efficiency is that it is based on the analysis of
actual fluorescence readings produced after each cycle,
and does not rely on fractional cycles.
Finally, Pairwise Efficiency can be distinguished from

other approaches because it allows the elimination of
outlier values during the process of calculating the effi-
ciency, and not at the end, as is the case in other
methods. For example, the MIQE guidelines require that
the efficiency be estimated from the slope of the calibra-
tion curve, and considers efficiency value E to be the in-
dicator of the robustness of the assay. In cases in which
the E value exceeds the theoretical maximum of 100%, it
is taken to be the result of reaction inhibition in one of
the wells, generally meaning that the entire assay needs
to be repeated or redesigned [5]. In contrast, because
Pairwise Efficiency provides more than 150 individual E
determinations for a single replica of the calibration
curve, it makes it possible to apply both the distribution
analyzes for normality and the appropriate statistical in-
struments for eliminating outliers. In this respect, Pair-
wise Efficiency strongly differs from the classical
methods where one or two “outlier” wells would often
require the user to re-perform the entire experiment. In

Table 3 Comparison of the accuracy between Pairwise Efficiency and the standard calibration curve method based on a chosen
standard

Wells Conc. Efficiency F0 Ratio (PE) Error (%) Ratio (Ct) Error (%)

A1-A6 100 ng 0.73130 0.00800 1 N/A 1 N/A

A7-A12 100 ng 0.76200 0.00780

B1-B6 100 ng 0.77170 0.00660

B7-B12 100 ng 0.77230 0.00710

C1-C6 50 ng 0.83530 0.00280 2.513 20% 2.47 19%

C7-C12 50 ng 0.79550 0.00290

D1-D6 50 ng 0.81870 0.00290

D7-D12 50 ng 0.82390 0.00300

E1-E6 12 ng 0.75780 0.00060 8.519 6% 12.73 37%

E7-E12 12 ng 0.68420 0.00110

F1-F6 12 ng 0.72470 0.00090

F7-F12 12 ng 0.70420 0.00100

G1-G6 3 ng 0.76180 0.00020 35.455 10% 57.41 44%

G7-G12 3 ng 0.66870 0.00020

H1-H6 3 ng 0.72810 0.00020

H7-H12 3 ng 0.66640 0.00020 Aver error: 12% 33%

The efficiency of amplification of Actin beta was determined using Pairwise Efficiency or the standard calibration curve method (for standard method E values see
Additional file 1: Table S3). The known dilution ratio (differences between DNA template concentrations) were used as a reference. 100 ng was taken as 1, and
thus all diluted samples should have yielded the following values: 2 (for 50 ng), 8 (for 12 ng) and 32 (for 3 ng). The error values in determining the correct ratios
were lower than those calculated by standard method. The average error for Pairwise Efficiency was equal to 12%, while the average error for standard method
was equal to 33%
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Pairwise Efficiency, not only can we obtain more than
150 data points from a single dilution set (six wells), but
replication of the calibration curve three times could po-
tentially increase this number up to 2556 (72 fluores-
cence readings, all in cross-pairwise relationships). This
allows the use of powerful statistical instruments, and
represents a marked advantage over other methods.
Overall, our new method, Pairwise Efficiency, allows a

nearly two-fold increase in the precision of efficiency es-
timation and a 2.3-fold increase in the precision of the
gene ratio estimation (Table 2 and Results). Further re-
finements to our approach, such as testing the applica-
tion of different fitting and regression methods, can be
explored. We hope that Pairwise Efficiency will become
a useful tool for the community and that our efforts will
stimulate further investigations in improving the reliabil-
ity of qPCR determinations.

Conclusion
To summarize, we have developed a new combinatorics-
based method, Pairwise Efficiency, for data analysis in
RT-qPCR procedure. Pairwise Efficiency takes advantage
of the availability of fluorescence data, introduces a new
formula for efficiency calculation by pairwise combina-
tions, and allows to create an array of E values to enable
statistical analysis. As a result, the application of Pair-
wise Efficiency nearly doubles the precision in qPCR
efficiency determinations compared to standard calibra-
tion curve method, when applied to serial dilutions. Our
work makes an example of what can be achieved in RT-
qPCR field through combinatorics, and suggests that
further applications of combinatorial treatment of data
may benefit the qPCR field in general.
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