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Background: The Bacteria Biotope (BB) task is a biomedical relation extraction (RE) that aims to study the interaction
between bacteria and their locations. This task is considered to pertain to fundamental knowledge in applied
microbiology. Some previous investigations conducted the study by applying feature-based models; others have
presented deep-learning-based models such as convolutional and recurrent neural networks used with the shortest
dependency paths (SDPs). Although SDPs contain valuable and concise information, some parts of crucial information
that is required to define bacterial location relationships are often neglected. Moreover, the traditional
word-embedding used in previous studies may suffer from word ambiguation across linguistic contexts.

Results: Here, we present a deep learning model for biomedical RE. The model incorporates feature combinations of
SDPs and full sentences with various attention mechanisms. We also used pre-trained contextual representations
based on domain-specific vocabularies. To assess the model’s robustness, we introduced a mean F1 score on many
models using different random seeds. The experiments were conducted on the standard BB corpus in BioNLP-ST'16.
Our experimental results revealed that the model performed better (in terms of both maximum and average F1
scores; 60.77% and 57.63%, respectively) compared with other existing models.

Conclusions: We demonstrated that our proposed contributions to this task can be used to extract rich lexical,
syntactic, and semantic features that effectively boost the model’s performance. Moreover, we analyzed the trade-off
between precision and recall to choose the proper cut-off to use in real-world applications.
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Background

Due to the rapid development of computational and bio-
logical technology, the biomedical literature is expanding
at an exponential rate [1]. This situation leads to difficulty
manually extracting the required information. In BioNLP-
ST 2016, the Bacteria Biotope (BB) task [2] followed the
general outline and goals of previous tasks defined in 2011
[3] and 2013 [4]. This task aims to investigate the interac-
tions of bacteria and its biotope; habitats or geographical
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entity, from genetic, phylogenetic, and ecology
perspectives. It involves the Lives_in relation, which is
a mandatory relation between related arguments, the
bacteria and the location where they live. Information
pertaining to the habitats where bacteria live is particu-
larly critical in applied microbiology fields such as food
safety, health sciences, and waste processing [2-4]. An
example relation between bacteria and their location in
this task is shown in Fig. 1.

In recent years, significant efforts have focused on chal-
lenging BB tasks. Several studies have been proposed
that incorporate feature-based models. TEES [5], which
adopted support vector machine (SVM) with a variety of
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represented by arrows; SDPs are indicated in blue

mycobacteria causing non-pulmonary disease in Queensland

Fig. 1 Example of the BB relation in a BB task. Bacteria “mycobacteria” and location “Queensland” are shown in blue, bold text. The dependencies are

features based on shortest dependency paths (SDPs), was
the best-performing system with an F1 score of 42.27% in
the BioNLP-ST’13 [4]. The VERSE team [6], which placed
first in BioNLP-ST’16 with an F1 score of 55.80%, uti-
lized SVM with rich features and a minimum spanning
dependency tree (MST). Feature-based models, however,
heavily depend on feature engineering, which sometimes
is limited by its lack of domain-specific knowledge [7].

Since 2014, deep learning (DL) methods have garnered
increasing attention due to their state-of-the-art perfor-
mance in several natural language processing (NLP) tasks
[8]. Unlike the feature-based models, DL models demand
less feature engineering because they can automatically
learn useful features from training data. Examples of
popular DL models that have successfully been applied
for biomedical relation extraction include Convolutional
Neural Networks (CNNs) [9-12] and Recurrent Neural
Networks (RNNs) [13, 14].

Other than feature-based models in the BB task, sev-
eral former studies using DL approaches have significantly
outperformed traditional SVM approaches. For example,
in BioNLP-ST’16, DUTIR [15] utilized CNN models to
achieve an F1 score of 47.80%; TurkuNLP [16] used mul-
tiple long short-term memories (LSTM) with SDPs to
achieve an F1 score of 52.10% and was ranked second in
the competition. DET-BLSTM [17] applied bidirectional
LSTM (BLSTM) with a dynamic extended tree (DET)
adapted from SDPs and achieved an F1 score of 57.14%.
Recently, BGRU-Attn [18] proposed bidirectional gated
recurrent unit (BGRU) with attention mechanism and
domain-oriented distributed word representation. Conse-
quently, it became the state-of-the-art DL system without
hand-designed features for the BB task with an F1 score of
57.42%.

Despite the success of DL in the past studies, there
are still several limitations to be considered. Although
SDPs have been shown to contain valuable syntactic fea-
tures for relation extraction [16-21], they still may miss
some important information. For example, in Fig. 1, the
word “in’; which should play a key role in defining the
relation between the bacteria “mycobacteria” and the
biotope “Queensland” is not included in SDP (represented

by blue lines) because there is no dependency path
between “in” and any entities. To overcome the limi-
tation of SDPs, some studies have used sequences of
full sentences to extract biomedical relations from texts
[22-24]. However, it is very difficult for DL models to
learn enough features from only sequences of sentences.
Instead of learning from full sentences, attention net-
works have demonstrated success in a wide range of
NLP tasks [25-31]. In addition, BGRU-Attn [18] first
used the Additive attention mechanism [29] for the BB
task to focus on only sections of the output from RNN
instead of the entire outputs and achieved state-of-the-art
performance. Other attention techniques such as Entity-
Oriented attention [30] and Multi-Head attention [31] still
have not been explored for this task. From the aspect
of word representation, traditional word-embeddings [32,
33] only allow for single context-independent representa-
tion. This situation can lead to word sense ambiguation
across various linguistic contexts [34]. Contextual rep-
resentations of words [35] and sentences [36] based on
language-understanding models addressed this problem
and achieved state-of-the-art performance on general-
purpose domain NLP tasks [35-39]. Nevertheless, [40]
has shown that the word-embedding models pre-trained
on a general-purpose corpus such as Wikipedia are not
suitable for biomedical-domain tasks. Finally, the training
process of DL approaches with many randomly initialized
parameters is non-deterministic—multiple executions of
the same model may not result in the same outcome.
To solve this issue and provide a statistical comparison
of models’ performances, [41, 42] reported the mean F1
score of the same model architecture initialized with dif-
ferent parameter settings (random seeds). This evaluation
metric indicates the average behavior of a model’s perfor-
mance and is more suitable for the biases and trends in
real-world applications [43]. However, the mean F1 score
had never been explored in prior studies of the BB task.
In this study, we propose a hybrid model between
an RNN and a feed-forward neural network such as a
CNN. We use the RNN to extract full-sentence features
from long and complicated sentences. We also apply the
CNN to capture SDP features that are shorter, more
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valuable, and more concise. In addition, because atten-
tion mechanisms have been proven to be helpful in the
BB task [18], we incorporate several kinds of attention
mechanisms—Additive attention, Entity-Oriented atten-
tion, and Multi-Head attention—into the model. Further-
more, we integrate domain-specific contextual word rep-
resentation into the model to provide word-sense disam-
biguation. Sentence representation was also introduced to
improve the full-sentence model by embedding sequence
sentence information from a pre-trained language under-
standing model. To address the uncertainty of a single run
model’s performance measured by the maximum F1 score,
we used the mean F1 score as an evaluation metric for
comparisons of the models.

Results

We assessed the performance of our model as follows.
First, we compared our model with existing models in
terms of maximum and average F1 scores. Then, we eval-
uated the effectiveness of each contribution used by the
model: feature combination between full sentences and
SDP, attention mechanisms, contextual word representa-
tion, and contextual sentence representation. Here, we
discuss the overall experimental results of this proposed
model.

Performace comparisons with existing models

Maximum f1 score comparisons

Table 1 lists the maximum F1 score of our model com-
pared with those of prior studies. In the BB task [2],
each team evaluated the model on the test set using an
online evaluation service. Most of the existing systems
were based either on SVM or DL models. The SVM-based
baseline [5] was a pipeline framework using SVMs on
SDPs with an F1 score of 42.27%. Similarly, [6] proposed a
utilized SVM with rich feature selection that yielded an F1
score of 55.80%. Compared with SVM-based models, DL-
based models automatically learn feature representations
from sentences and achieve state-of-the-art performance.
For example, DUTIR [15] utilized a multiple-filter-widths
CNN to achieve an F1 score of 47.80%. TurkuNLP [16]
employed a combination of several LSTMs on the short-
est dependency graphs to obtain the highest precision
of 62.30% and an F1 score of 52.10%. BGRU-Attn [18]
proposed a bidirectional GRU with the attention mech-
anism and biomedical-domain-oriented word-embedding
to achieve the highest recall of 69.82% and an F1 score
of 57.42%. These results reveal that our proposed model
achieved the best performance in the official evalua-
tion (i.e., the highest F1 score: 60.77%). In contrast with
the previous state-of-the-art model (BGRU-Attn [18]),
our model achieved more balanced precision (56.85%)
and recall (65.28%). The results revealed that our model
could leverage both full-sentence and SDP models along
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with contextual representations to capture the vital lexi-
cal and syntactic features of given sentences. Therefore,
our model can combine the advantages of all contribu-
tions to achieve a good trade-off between precision and
recall, which resulted in its superior performance in the
BB corpus.

Mean f1 score comparisons

In this section, we compared our overall model’s perfor-
mance with other existing models in terms of mean F1
score. However, the source codes or the executables for
all previous models except VERSE [6] were not available.
In these experiments, we reimplemented two DL models:
TurkuNLP [16] as a baseline for the DL model and BGRU-
Attn [18] as a current state-of-the-art model. More details
of the reimplementation are provided in the Additional
file 1. Table 2 lists the results of our model compared
with these reimplemented DL models based on mean F1
scores. For TurkuNLP [16], every hyper-parameter was
strict with those provided in the original paper. We can
achieve the reimplemented maximum F1 score of 51.99%
compared with 52.10% that reported in the original paper
and mean F1 score of 46.18%. For BGRU-Attn [18], we
employed the model architecture and features based on
the original paper, including domain-oriented word repre-
sentations and dynamic extended trees (DET). However,
the original paper did not provide some parameters of
the model, such as the number of GRU’s hidden dimen-
sions, we empirically chose the best hyper-parameters
by cross-validation. After several attempts, our reimple-
mented BGRU-Attn model achieved the maximum F1
score of 55.54% compared with 57.42% as provided in
the original paper with the mean F1 score of 50.22%. In
Table 2, our model achieved the highest mean F1 score
of 57.63% and the lowest SD of 1.15. This finding indi-
cates that our model is more robust to randomness and
highly consistent in its performance. To provide a statisti-
cally significant comparison of our model’s performance,

Table 1 Performance comparison on maximum F1 score with
existing models

Methods Team F R P

SVM-based TEES [5] 42.27 38.35 61.61
VERSE [6] 55.80 61.50 51.00
DUTIR [15] 47.80 39.70 60.00
TurkuNLP [16] 52.10 4480 62.30

DL-based DET-BLSTM [17] 57.14 57.99 56.32
BGRU-Attn [18] 5742 69.82 48.76
Our model 60.77 65.28 56.85

The listed results derive from the corresponding papers. F: F1 score; R: recall; P:
precision. Our model used all of the proposed contributions (the results from the
last row in Table 6). The highest scores are highlighted in bold
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Table 2 Performance comparison on mean F1 score with
existing models

F1 score
Model

Mean SD Min Max
TurkuNLP [16] 46.18 4.64 35.07 51.99 (52.10)
BGRU-Attn [18] 50.22 2.79 43.05 55.54 (57.42)
Our model 57.63 1.15 54.41 60.77

These results derive from the model reimplementation of the existing model. Our
model used all of the proposed contributions (the results from the last row in

Table 6). The highest scores are highlighted in bold except for the SD. The F1 scores
in parentheses represent expected maximum scores that provided by the original
papers

we also performed a two-sample t-test with the hypoth-
esis that two populations (our model and a compared
model) were equal in terms of their mean F1 scores (null
hypothesis Hp). The results revealed that we rejected the
null hypothesis with a p-value less than 0.001 (or more
than 99.9% confidence). This fact implied that our model’s
mean F1 score was significantly better than that of other
models.

Effects analysis of each proposed strategy

In the following sections, we evaluate the effectiveness
of each contribution of our proposed model: combined
full-sentence and SDP models, attention mechanisms,
contextual word representation, and contextual sentence
representation (Tables 3, 4, 5 and 6). To overcome the vari-
ant problem in model evaluation, each experiment used
the mean F1 score for model selection and evaluation.

Influence of full-sentence and sDP features

Table 3 lists the mean F1 score of 30 DL models with dif-
ferent random seeds. The mean F1 score obtained from
the experiment indicated that the use of full-sentence
and SDP models together outperformed the separated
models. The data in Table 3 also demonstrate that CNN
achieved better performances than BLSTM when BLSTM
and CNN were separately applied to the full sentences and
SDPs, respectively. This result suggests that our model
effectively combines the SDP and full-sentence models
to extract more valuable lexical and syntactic features.

Table 3 The effectiveness of the application of full-sentence and
SDP features according to the mean F1 scores of 30 different
random seeds

Model F1 score
Fulls SDPs Mean sD Min Max
- CNN 43.79 3.39 37.02 51.82
BLSTM - 41.22 14.49 12.82 49.93
BLSTM CNN 45.96 2.87 42.09 52.19

All of the highest scores are highlighted in bold except for the SD
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Table 4 The effectiveness of the integrated attention
mechanisms according to mean F1 scores for 30 different
random seeds

Model b F1 score
Fulls SDPs Mean  SD Min Max
BLSTM CNN X 4596 287 4209 5219
BLSTM CNN v 4849 476 38.75 5540
BLSTM-Attn CNN v 49.02 362 4203 5651
BLSTM-EAttn CNN v 5024 372 43.14 5572
BLSTM-EAttn MAttn Vv 53.42 2.51 46.67 56.70

All of the highest scores are highlighted in bold except for the SD. The first-row
results derive from the best results of previous experiments (i.e,, the last row in
Table 3). Note: “PE” denotes positional encoding, “Attn” denotes the use of only
Additive attention, "EAttn” denotes the use of both Additive and Entity-Oriented
attentions, and “MAttn" denotes the use of Multi-Head attention

These features were generated not only from two different
sequences (full sentences and SDPs) but also two different
neural network structures (BLSTM and CNN).

Influence of attention mechanisms

After we measured the effectiveness of the full-sentence
and SDP features, we additionally explored the effects
of the Additive, Entity-Oriented, and Multi-Head atten-
tion mechanisms. The attention mechanisms were applied
to concentrate the most relevant input representation
instead of focusing on entire sentences. Table 4 lists the
productiveness of each attention mechanism integrated
into our full-sentence and SDP models. According to
[31], Multi-Head attention networks were first proposed
with the use of PE to insert valuable locality information.
Because Multi-Head attention networks were employed
with PE, we applied PE to CNN in order to fairly com-
pare the effectiveness of Multi-Head attention. The use
of the Additive attention mechanism improved the mean
F1 score by 0.53%. Entity-Oriented attention improved

Table 5 The effectiveness of domain-specific contextual word
representation according to the mean F1 scores of 30 different
random seeds

Pre-trained word model 1 score

Mean SD Min Max
PubMed word2vec 5342 2.51 46.67 56.70
general-purpose ELMo 54.30 3.61 42.76 56.51
random-PubMed ELMo 53.81 3.65 38.89 57.01
specific-PubMed ELMo 55.91 1.49 51.24 57.48

All of the highest scores are highlighted in bold except for the SD. The first-row
results derive from the best results of previous experiments (i.e,, the last row in
Table 4). Note: “PubMed word2vec” denotes the context-free word model,
"general-purpose ELMo" denotes the general-purpose contextual word model,
“random-PubMed ELMo" denotes the domain-general contextual word model
based on 118 million randomly selected tokens abstracts from PubMed, and
“specific-PubMed ELMo" denotes the domain-specific contextual word model
based on 118 million bacterial-relevant abstracts from PubMed
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Table 6 The effectiveness of the contextual sentence
representation by the mean F1 scores of 30 different random
seeds

) F1 score
Sentence representation
Mean SD Min Max
without 55.91 149 51.24 57.48
with 57.63 1.15 54.41 60.77

All of the highest scores are highlighted in bold except for the SD. The first-row
results derive from the best results of previous experiments (i.e,, the last row in
Table 5)

the average F1 score from 49.02 to 50.24%. These results
show that attention mechanisms might highlight influ-
ential words for the annotated relations and help reveal
semantic relationships between each entity. This approach
improved the overall performance of our model. Finally,
the stacks of Multi-Head attention networks were the pri-
mary contributor to our model. The experimental results
revealed that the proposed model using Multi-Head atten-
tion together with SDPs increased the mean F1 score by
3.18% compared with the proposed model using CNN.
Our proposed model used stacks of Multi-Head attentions
with residual connections instead of CNN.

Influence of domain-specific contextual word representation
Table 5 lists the effectiveness of our domain-specific, con-
textual word representation to our model after previous
contributions (combined features and attention mecha-
nisms). The contextual word representation (ELMo) was
proposed to provide word sense disambiguation across
various linguistic contexts and handle out-of-vocabulary
(OOV) words using a character-based approach. The
results in Table 5 reveal that every ELMo model out-
performed the traditional word2vec model. One possi-
ble explanation for this finding is that the ELMo model
uses a character-based method to handle OOV words
while word2vec initializes these OOV word representa-
tions randomly. The ELMo model can also efficiently
encode different types of syntactic and semantic informa-
tion about words in context and therefore improve overall
performance. The use of our proposed contextual word
model with a domain-specific corpus (specific-PubMed
ELMo) achieved the highest average F1 score of 55.91%.
This score represented an improvement by 2.49%, 1.61%,
and 2.10% compared with the score deriving from the
use of PubMed word2vec, general-purpose ELMo, and
random-PubMed ELMo, respectively. These improve-
ments reveal the importance of taking relevant informa-
tion into account when training contextual embedding
vectors. We also noted that the general-purpose ELMo
achieved slightly better performance compared with the
random-PubMed ELMo. However, the latter was pre-
trained on a biomedical-domain corpus; the size of the
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pre-trained corpus of the former (5.5 billion tokens) is sig-
nificantly larger than that of the latter (118 million tokens),
which resulted in the higher-quality word-embeddings
and better semantic representations.

Influence of contextual sentence representation

In order to use sentence embeddings as fixed features
from the pre-trained BERT, [36] suggested that the
best-performing method involved concatenating the fea-
ture representations from the top four 768-dimensional
BLSTM hidden layers of the pre-trained model. How-
ever, we found that it was better to sum up the last four
768-dimensional hidden layers into the 768-dimension
sentence embedding. This situation may have been due
to the small training dataset. The addition of contex-
tual sentence representation from the fine-tuned BERT
model improved the mean F1 score by 1.68% (Table 6).
The results suggest that the fine-tuned BERT model could
enhance the full-sentence model to encode crucial contex-
tual representations of long and complicated sentences.

Discussion

Our proposed model can take advantage of the pro-
posed contributions in order to construct rich syntactic
and semantic feature representations. Our model signifi-
cantly outperforms other existing models in terms of both
mean F1 score (57.63%; SD = 1.15%) and maximum F1
score (60.77%). The mechanisms that largely support sta-
ble performance include the Multi-Head attentions and
domain-specific contextual word representation, which
are responsible for mean F1 score increases of 3.18% and
2.49%, respectively. A possible advantage of Multi-Head
attention compared with CNN is the ability to determine
the most relevant local feature representations from mul-
tiple subspaces to the BB task based on attention weights.
In addition, domain-specific contextual word represen-
tation is beneficial to the proposed model for capturing
contextual embeddings from a bacterial-relevant corpus.
The box-and-whisker plot in Fig. 2 shows the mean F1
score distribution of the existing DL models and our
final proposed model (blue boxes). The boxplot illus-
trates the performance of our model after incrementally
adding each of the main contributions (grey boxes). The
mean F1 score of each model is shown as a line. The
blue boxes indicate the comparison of our final model
and two reimplemented TurkuNLP [16] and BGRU-Attn
[18]. The mean F1 score of our model was 57.63%, which
exceeds that of the TurkuNLP and BGRU-Attn mod-
els by 11.45% and 7.41%, respectively. In other words,
our proposed model generally achieves better perfor-
mance in terms of both mean and maximum F1 scores.
Furthermore, the inter-quartile range of our proposed
model is much smaller than that of other DL mod-
els. This finding demonstrates that the performance of
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TurkuNLP

BGRU-Attn

Our contribution #1
(BLSTM-CNN)

Our contribution #2
(+Attns)

Our contribution #3
(+specific-PubMed ELMo)
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(+sentence representation)

-

0.4618
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Fig. 2 Box-and-whisker plot of average F1 score distributions of the deep-learning-based relation extraction models on the BB task. The comparison
between our model and existing deep-learning-based models is shown in blue; the improvement of our model after adding each of the proposed
contributions is shown in grey. Note: “Attns” denotes the use of integrated attention mechanisms

our model is more robust and suitable for real-world
applications.

For binary classification problems, F1 score is a com-
mon metric for evaluating an overall model’s perfor-
mance because it conveys both precision and recall into
one coherent metric. In some applications, however, it
is more important to correctly classify instances than
to obtain highly convergent results (i.e., high precision).
On the other hand, some other applications place more
emphasis on convergence rather than correctness (high
recall). We experimented with using a frequency cut-off
to explore how the probabilities output by the model
function as a trade-off between precision and recall.
Figure 3 shows the precision-recall curve (PRC) of our

proposed model. When applied to real-world scenar-
ios, users of the model are responsible for choosing the
right cut-off value for their applications. For example,
in semi-automated text-mining applications for knowl-
edge management researchers never want to miss any
bacteria-biotope relations. As a result, models with a
high recall will be chosen to prescreen these relations.
On the other hand, automated text-mining applications
for decision support systems will require more precise
relations. In Fig. 3, our model with the default (0.5) cut-
off value achieved an F1 score of 60.77% with balanced
56.85% recall and 65.28% precision. With a cut-off of
0.025, our model achieved the highest recall at 70.54%
with 50.11% precision and an F1 score of 58.59%. With
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Fig. 3 The precision-recall curve for our proposed model showing the trade-off between the true positive rate and the positive predictive value for

this cut-off value, our model outperformed the existing
highest-recall model (BGRU-Attn [18]) by both 0.72%
recall and 1.35% precision. Similarly, the line plot shown in
Fig. 3 shows that our model with a 0.975 cut-off achieved
the highest precision (72.60%), recall (46.90%) and F1
score (56.99%). This model also outperformed the exist-
ing highest-precision model (TurkuNLP [16]) by 10.30%
in precision and 2.10% in recall.

To determine the factors that adversely affected the per-
formance of our proposed model, we manually analyzed
the correct and incorrect predictions from a development
set compared with other existing models. We found that
the proposed model could detect true negatives (TNs)
better than other reimplemented models. This finding
arose mainly because full-sentence features boosted the
model’s ability to predict an entity pair as a false relation.
For example, the sentence “Rickettsia felis was the only
entity_1 found infecting fleas, whereas Rickettsia bellii
was the only agent infecting ticks, but no animal or human
entity_2 was shown to contain rickettsial DNA!, where
SDP are shown in bold, was predicted to be a false relation
by our model. Other models predicted this sentence to be
a true relation because of the word “shown” in the SDP.
In addition, we found that false positives (FPs) were gen-
erally caused by the complex and coordinate structures of
full sentences. A complicated sentence and a long distance
between two entities can lead to relation classification

failures. Examples of these adverse effects include the sen-
tences “The 210 isolates with typical LPS patterns (119
Ara- clinical, 13 Ara- soil, 70 entity_1 entity_2, and 8
reference National Type Culture Collection strains) also
exhibited similar immunoblot profiles against pooled sera
from patients with melioidosis and hyperimmune mouse
sera” and “Testing animal and human sera by indirect
immunofluorescence assay against four rickettsia antigens
(R. rickettsii, R. parkeri, R. felis, and R. bellii), some opos-
sum, entity 2, horse, and human sera reacted to entity_1
with titers at least four-fold higher than to the other three
rickettsial antigens” In each of these sentences, the SDPs
are highlighted in bold.

Limitations of our model

One of the most important limitations of our model is
that it cannot extract inter-sentence relations between the
bacteria and the biotopes. Hence, all true inter-sentence
relations become false negatives. Inter-sentence relation
extraction is much more challenging because it requires a
more nuanced understanding of language to classify rela-
tions between entities in different sentences and clauses
characterized by complex syntax [44—46]. Because the
size of our BB dataset is quite small, it is very diffi-
cult for DL models to learn sufficient high-quality fea-
tures for the target tasks. However, this challenging task
is left for future work. Furthermore, there is a large
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repertoire of biomedical literature and domain resources
that are freely accessible and can be used as unlabeled
data for semi-supervised learning and transfer learning
methods [47-49].

Application to other tasks

Since our proposed model automatically learns the fea-
tures from the context of any two entities, this model
architecture can be applied to other biomedical RE tasks,
such as DDI extraction task. In this section, to show the
model’s generalization to other tasks, we evaluated our
proposed model to the DDIExtraction 2013 corpus [50].
Unlike BB task [2], DDI extraction is a multi-class relation
extraction task. The DDI dataset contains four DDI types:
Advice, Mechanism, Effect, and Int. The detailed statistics
of the DDI dataset are listed in Table 7.

To apply our proposed model to the DDI corpus, there
are three steps to adjust from the proposed model to the
BB corpus. First, for the pre-training corpus of contextual
word representations (specific-PubMed ELMo), the word
“drug” was used as a keyword, instead of the bacteria men-
tion. Second, the DDI corpus was used to fine-tune the
pre-trained contextual sentence model (BERT), instead of
the BB corpus. Third, the best hyper-parameters for the
DDI task were chosen using 5-fold cross-validation on the
training and development data.

Table 8 lists the maximum F score (micro) of our
proposed model compared with other previous models
for the DDI corpus. Similar to the BB corpus, most of
the existing models were based on either SVM or DL
approaches. The experimental results revealed that our
proposed model could achieve the highest overall F score
of 80.3% and the highest recall of 83.0%. These results
show that our model can combine the advantages of
every contribution to achieve the highest F score in the
leaderboard of both BB and DDI tasks.

Conclusions

We have presented a DL extraction model for the BB
task based on a combination of full-sentence and SDP
models that integrate various attention mechanisms. Fur-
thermore, we introduced a pre-trained, contextual, word-
embedding model based on the large bacteria-relevant

Table 7 Statistics of a DDI dataset

DDl type Train Dev Test
Mechanism 1054 263 301
e Effect 1349 336 359
Positive instances
Advice 660 164 220
Int 139 37 95
Negative instances False 19015 4753 4363
Total instances 22227 5553 5338
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Table 8 Performance comparison (maximum F score) with
existing models on the DDI corpus

Methods Team F R p
Uturku [51] 594 499 73.2

SVM-based FBK-irst [52] 65.1 65.6 64.6
RAIHANI [53] 71.1 68.7 73.7
Liu-CNN [9] 69.8 64.7 75.7
MCCNN [54] 70.2 65.3 76.0
TEES-CNN [55] 735 67.6 80.5
Joint AB-LSTM [13] 71.5 65.0 74.5

DL-based Char-RNNs [42] 721 65.9 80.0
Hierarchy RNN [14] 729 718 74.1
Recursive NN [56] 735 69.6 778
Attn-BLSTM [30] 77.3 76.8 784
Our model 80.3 83.0 776

The listed results derive from the corresponding papers. F: F score (micro); R: recall;
P: precision. The highest scores are highlighted in bold

corpus and fine-tuned contextual sentence representa-
tion. These embeddings encouraged the model to effec-
tively learn high-quality feature representations from
pre-trained language modeling. We evaluated our pro-
posed model based on maximum and mean F1 scores.
The experimental results demonstrated that our model
effectively integrated these proposed contributions. The
results showed that we could improve the performance
of relation extraction to achieve the highest maximum
and average F1 scores (60.77% and 57.63%, respectively).
Our proposed model significantly outperformed other
state-of-the-art models. Additionally, our model is more
robust to real-world applications than the previous RE
models. Furthermore, our model can achieve the best per-
formance in the DDI task which can ensure the model’s
generalization to other tasks and strengthen our proposed
contributions.

Despite our model exhibiting the best performance on
the BB task, some challenges remain. In particular, inter-
sentence relations between bacteria and location entities
have not been taken into account by any existing deep-
learning-based models; this situation is likely due to insuf-
ficient training data. In the future, we plan to develop a
new approach to increase the quantity and quality of lim-
ited training data for the target task using transfer learning
and semi-supervised learning methods.

Methods

In this section, we describe the proposed DL model for
extracting BB relations from the biomedical literature
(Fig. 4).



Jettakul et al. BMC Bioinformatics (2019) 20:627

Text preprocessing

We used the TEES system [5, 16] to run the pipeline of the
text preprocessing steps. Tokenization and part-of-speech
(POS) tagging for each word in a sentence were gener-
ated using the BLLIP parser [57] with the biomedical-
domain model. The dependency grammar resulted from
the BLLIP was further processed using the Stanford con-
version tool [58] to obtain the Stanford dependencies (SD)
graph.

We then used Dijkstra’s algorithm to determine the
SDPs between each pair of entities: bacteria and biotope.
The SDPs represented the most relevant information and
diminished noises by undirected graph (Fig. 1). An entity
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pair was neglected if there was no SDP between the enti-
ties. While the dependency paths only connect a single
word to others within the same sentence (intra-sentence),
there are some cross-sentence (inter-sentence) associa-
tions that can be very challenging in terms of the extrac-
tion task. In order to compare with other existing works
[5, 15—-18], only intra-sentence relations were considered.

To ensure the generalization of the models, we followed
the protocol of previous studies [17, 18] that blinded the
entities in a sentence. The bacteria and location mentions
were replaced by “entity_1” and “entity_2” respectively.
For example, as shown in Table 9, we can generate two BB
relation candidates (termed “instances”) from a sentence

Output (Softmax)
Dropout

1
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embedding / / /X
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Fig. 4 The overall architecture of our proposed model with the combined full-sentence and SDP models, together with various attention
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Table 9 Bacteria-biotope relation candidates (instances) in a
sentence after entity blinding

Entity pair Bacteria-biotope relation candidate after
entity binding
(Helicobacter Long-term entity_1 infection and the devel-

pylori, gastric) opment of atrophic gastritis and entity_2

cancer in Japan.

(Helicobacter
pylori, Japan)

Long-term entity_1 infection and the devel-
opment of atrophic gastritis and gastric can-
cerin entity_2.

The bacteria and location mentions are highlighted in bold italics and italics,
respectively

“Long-term Helicobacter pylori infection and the devel-
opment of atrophic gastritis and gastric cancer in Japan,
where the bacteria and location mentions are highlighted
in bold italics and italics, respectively. After entity blind-
ing, we converted all words to lowercase to simplify the
searching process and improve text matching.

Input embedding representations

The input representations used in our model were divided
into full-sentence and SDP features. Let {w1, ws, ..., w,,}
and {s1,s2,...,s,} denote the full sentence and SDPs of
a sentence that are represented by different embeddings.
Each word w; in a full sentence was represented by word
vector, POS, and distance embeddings. Each word s; in
the SDP was represented by word vector, POS, and dis-
tance embeddings together with positional encoding (PE).
The detailed embeddings used in our model are explained
below.

For a full sentence in the RNN model, word-embedding
was a 200-dimensional word vector, the pre-trained
biomedical word-embedding model [59], built from a
combination of PubMed and PMC texts using Word2Vec
[32]. Part-of-speech embedding was initialized ran-
domly at the beginning of the training phase.

Distance embedding [18, 60] is derived from the rela-
tive distances of the current word to the bacteria and loca-
tion mentions. For example, in Fig. 1, the relative distances
of the word “in” to bacteria “mycobacteria” and location
“Queensland” are —4 and 1, respectively. To construct the
distance embedding D(/) for each relative distance, every
dimension d(/) of the distance embedding is initialized as
in Eq. 1, where [ is the relative distance and s refers to the
maximum of the relative distances in the dataset. All d(/)
dimensions form the distance vectors [dist;, disty], which
represent the distance embeddings D(/) of the current
word to the bacteria and location mentions, respectively.

l
d() = tanh ) (1)

For SDP in the CNN model, we used PE [31] to
inject some information about the absolute position of
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the words in the sentence. The PE vectors were ini-
tialized by sine and cosine functions of different fre-
quencies; these functions embed information based on
their relative position. Because PE has the same dimen-
sion as the word-embedding, we can sum these two
vectors.

In summary, the overall input embedding representa-
tion for a word w; in full sentences is z; = [w}"" d. Wf s,
distl
12
overall input embedding representation is z; = [w}"" d 4

WfE ; Wi'ms ; W;ﬁStl ; qulistzl’

w ; w;ﬁm]. Similarly, for a given word s; on the SDP the

A dL model based on full sentences and sDPs

Full-sentence model

We employed BLSTM [61] to learn global features from
full sentences. The BLSTM can be used to encode the
sequential inputs both forward and backward, and it has
been shown to outperform one-way LSTM in many stud-
ies [13, 60-63]. Given a full sentence of M tokens, {zi,
22, -..,2ZM}, at the t-th time step, the BLSTM takes the
current input representation (z;), previous hidden state
(hs—1), and previous memory cell (c;—1) as its inputs to
generate the current hidden state (/;) and memory cell
(¢;). For BLSTM, the forward LSTM output (hi) and the

backward LSTM output (h]lZ) are concatenated into /i =
h};; h,lz.

SDP model

The multiple-filter-widths CNN model [64] was proposed
for the SDP model to learn local features from SDPs. For
a given SDP sequence of N tokens, {z1,22,...,2zn}, letz; €
9K be the k-dimensional input embedding vector corre-
sponding to the i-th word in the sequence. The CNN takes
an input sequence of length N to generate the feature map
(¢;) by convolutional filters and max pooling operations.
Compared with LSTM, the CNN model is expected to be
better at extracting high-quality features from short and
concise SDPs [65].

Attention mechanisms

Attention mechanisms are motivated by how human pays
visual attention to different words in a sentence. The main
idea of attention mechanism is to assign attention score
(alignment score), which can be either trainable [29, 31]
or non-trainable parameters [66]. Each of these atten-
tion mechanisms has recently been successfully applied to
biomedical relation extraction tasks [14, 18, 30]. In this
work, we proposed to use a combination of three atten-
tion mechanisms—Additive for extracting sentence-level
features, Entity-Oriented for extracting word-level fea-
tures, and Multi-Head for extracting local features from
SDPs—because each attention was proposed to focus on
the different information levels. Figure 4 shows how these
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attention mechanisms are integrated into our proposed
DL model.

Additive attention

The Additive attention focuses on sentence-level informa-
tion. It was first used by [29] to improve neural machine
translation and recently applied to the BB task [18]. The
idea of Additive attention is to consider all LSTM hid-
den states with different attention weights when deriv-
ing the context vector. The context vector depends on
the sequence of hidden states {/, ko, ..., hg}. Each hid-
den state contains information about the whole input
sequence with a strong focus on the parts surrounding
the i-th word. The context vector (c) was computed as a
weighted sum of these hidden states (/;) as in Eq. 2. The
attention weight (a;) of each hidden state (%) was then
computed as in Eq. 3. The additive attention assigned a
score (a;) to the pair of input at position i, which was
parameterized using a feed-forward network with a sin-
gle hidden layer. The model was then jointly trained with
other parts of the model. The attention score function
is shown in Eq. 4, where v, is the weight matrix to be
learned.

k
c=Y aih (2)
i=1
exp(score(h;))

a; = , fori=1,..,K (3)
l ]K:l exp(score(h;))

score(h;) = v;r tanh(#;) (4)

Entity-Oriented attention

Based on the state-of-the-art relation extraction for Drug-
Drug Interaction (DDI) task [30], Entity-Oriented atten-
tion mechanism can determine which words in the spe-
cific sentences are the most influential for the relationship
between a pair of entities using a similarity score. To
focus on word-level information, this attention mech-
anism was applied after our word-embedding layer to
quantify the concentration of word-level information.
Figure 5 exhibits an example of how Entity-Oriented
attention weights were computed. We exploited two sim-
ilarity scores (S}, S?) which were computed by inner
product similarity of the current word-embedding vector
(w;) and the j-th entity word-embedding (e;), j € {1,2}
as in Eq. 5. Then, both similarity scores were averaged
and scaled by the square root of word-embedding dimen-
sionality (m) as in Eq. 6. The attention weight (a;) for
each word was computed by a softmax function over
the similarity scores of all M words in a sentence as
in Eq. 7.

S =w-e), jeil,2) (5)
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Multi-Head attention

Multi-Head attention was used as the major component
in Transformer model [31] for the encoder-decoder net-
works. The attention mechanism in Transformer model
was interpreted as a way of computing the relevance of
a set of values (context vector representations) based on
some keys and queries. The encoder part of the model
used word-embeddings in a sentence for its keys, val-
ues, and queries. The decoder part, in contrast, used
the word-embeddings in a sentence for its queries and
the encoder’s outputs for its keys and values. Similar
to [67], we employed the Multi-Head attention as the
encoder to generate attention-based representation from
SDP embeddings. Self-attention used in the Multi-Head
attention is a mechanism to compute a representation for
each word in SDP. This attention relates different posi-
tions of a single sentence to compute a representation of
each word in a sentence. The self-attention purpose is to
combine the interpretation of other relevant words into
the current word representation.

The Multi-Head attention used multiple attention-
weighted sums instead of a single attention. Figure 6
shows how we computed the Multi-Head attention fea-
tures of three attention heads (%1, 4y, h13) based on three
Scaled Dot-Product attentions, similar to [31]. For each
head, we applied different learnable weights (W, Wy, and
W,) to the same SDP embedding (z;) of length N to obtain
query (g;), key (k;), and value (v;) as in Eq. 8. More gen-
erally, these vectors (g;, k;, and v;) represented the SDP in
different vector spaces. In Eq. 9, the attention score was
calculated based on the key and query, then scaled by the
square root of word-embedding dimensionality (). The
attention weight (a;) was computed by applying a soft-
max function to its corresponding attention score as in
Eq. 10. The context vector (c;) was generated by apply-
ing an element-wise multiplication of the attention weight
with the value as in Eq. 11. In order to obtain each atten-
tion head feature (%;), the context vector from each word
in SDP of length N was concatenated as in Eq. 12.

A number of the attention heads exhibit behaviors that
seem related to the sentence structure. The empirical
results of the former study [68] showed that the Multi-
Head attention worked more efficiently than the usual
Single-Head attention in the context of relation extrac-
tion. Figure 7 represents how we generated two differ-
ent context vectors from two attention heads based on
self-attention mechanism. Each attention head can learn

to encode SDP features by detecting different orders of
individual words in the sentence. Hence, each attention
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head produced the different context vector based on its
self-attention weights. Similar to Transformer model, we
employed a stack of Multi-Head attentions with residual
connections and positional encodings, as shown in Fig. 4.

(i kisvi) = @W,],zW,, zW]) 8)
ke
score(h;) = q\l/ﬁ(l 9)
h
j= SRGoreh) ey g N (10)
>_j=1 exp(score(h;))

N
¢ = Z vid; (11)

i=1
hi =[c1;¢0; ..5¢N] (12)

Contextual representations

The choice of how to represent words or sentences poses a
fundamental challenge for NLP communities. There have
been some advances in universal pre-trained contextual
representations on a large corpus that can be plugged into

a variety of NLP tasks to automatically improve their per-
formance [35, 36]. By incorporating some contextualized
information, these representations have been shown in
[35-39] to alleviate the problem of ambiguation and out-
perform traditional context-free models [32, 33]. In this
study, we propose two contextual embedding models pre-
trained on a biomedical corpus of words and sentences.

Contextual word representation

The contextual word vector used in our proposed model
was generated by ELMo [35]. ELMo learned word rep-
resentations from the internal states of a bidirectional
language model. It was shown to improve the state-of-the-
art models for several challenging NLP tasks. Context-free
models such as Skip-gram [32] and GloVe [33] generate a
single word representation for each word in their vocab-
ulary. For instance, the word “cold” would have the same
representation in “common cold” and “cold sensation”
[34]. On the other hand, contextual models will generate
a representation of the word “cold” differently based on
context. This representation can be easily added to our
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proposed model by reconstituting the 200-dimensional
word vectors with the new pre-trained contextual word
vectors. Currently, the ELMo model, pre-trained on a
large general-purpose corpus (5.5 billion tokens), is freely
available to use [35]. However, [40, 69] showed that
domain-irrelevant word-embedding models pre-trained
on large, general-purpose collections of texts are not suffi-
cient for biomedical-domain tasks. Therefore, we present
a domain-specific, contextual, word-embedding model
pre-trained on a bacterial-relevant corpus. Inspired by
the relevance-based word-embedding [70], the corpus
to pre-train our proposed contextual word-embedding
model included relevance-based abstracts downloaded
from PubMed, which contain only sentences with bac-
terial scientific names from the BB task (118 million
tokens). To evaluate the effectiveness of our proposed
domain-specific, contextual, word-embedding model, we
compared it with the contextual model pre-trained on
randomly selected abstracts from PubMed with the
same number of tokens. All of the pre-trained mod-
els were fine-tuned with the BB dataset in order to
transfer learned features from the pre-train models to
our task.

Contextual sentence representation

Our contextual sentence embedding was constructed by
BERT [36]. BERT represents words based on a bidirec-
tional approach and learns relationships between sen-
tences. Hence, BERT representation unambiguously rep-
resents both words and sentences. However, due to the
limited computational resource to pre-train BERT using
our biomedical corpus the available pre-trained BERT on
general-purpose corpus was adopted and fine-tuned with
the BB task.

Training and classification

The output layer used the softmax function [71] to clas-
sify the relationship between pairs of bacteria and biotope
mentions. The softmax layer takes the output of BLSTM
for full-sentence feature, the output of Multi-Head atten-
tion networks for SDP feature, and the sentence embed-
ding from BERT as its inputs (Fig. 4). These inputs are
fed into a fully connected neural network. The softmax
layer’s output was the categorical probability distribution
over each class type (c) as in Eq. 13.

p(cls) = softmax(Wy - s + bo) (13)
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where Wy and by are weight parameters and s is the
feature representation of sentences. For the binary classi-
fication, we used the cross-entropy cost function (/(6)) as
the training objective as in Eq. 14.

J(0) = —(ylog(p) + (1 — y)log(1 — p))

where y is the binary indicator (0 or 1) if the class label is
correct for each predicted sentence and p is the predicted
probability. Additionally, we applied Adam optimization
to update the network weights with respect to the cost
function.

(14)

Data

Training and test datasets

The dataset provided by the BB task [2] of BioNLP-
ST’16 consists of titles and abstracts from PubMed with
respect to reference knowledge sources (NCBI taxon-
omy and OntoBiotope ontology). All entity mentions—
Bacteria, Habitat, and Geographical—and their interac-
tions were manually annotated from diverse-backgrounds
annotators. Each bacteria-biotope pair was annotated as
either a negative or positive Lives_in relation. The rela-
tions can be defined as inter-sentence and intra-sentence.
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In our study, we also followed previous studies [5, 15—
18] in simply excluding inter-sentence instances from
the dataset. This procedure resulted in the removal of
107 and 64 annotated instances from the training data
and development data, respectively. Table 10 lists the
statistics of the preprocessed BB dataset used in our
experiments.

The pre-training corpus of contextual word representations
In order to get the proposed domain-specific word-
embeddings (specific-PubMed ELMo), we pre-trained
ELMo on the bacterial-relevant abstracts downloaded
from the PubMed database. These specific abstracts con-
tain roughly 118 million words that use all of the bacteria
names that are noted in the BB dataset as keywords. An
example keyword is the bacteria mention “mycobacteria”
(Fig. 1). Furthermore, we pre-trained another domain-
general word-embeddings (random-PubMed ELMo) on
randomly selected PubMed abstracts with a similar cor-
pus size to evaluate the performance of the domain-
specific model. To reduce the memory requirement of
both pre-training models, we only used the words in
the training, development, and test sets to construct the
vocabularies.

Hyper-parameter setting

We used the Pytorch library [72] to implement the model
and empirically tuned the hyper-parameters using 3-fold
cross-validation on the training and development data.
After tuning, the dimensions of the contextual word-
embedding (ELMo), context-free word-embedding, POS
embedding, distance embedding, and sentence embed-
ding (BERT) were 400, 200, 100, 300, and 768, respectively.
The dimension of PE was set to either 200 or 400 for
the context-free or contextual word-embeddings, respec-
tively. The hidden unit number of BLSTM and the filter
number of CNN were 64. The convolutional window sizes
were 3, 5, and 7. For the Multi-Head attention mecha-
nism, we used three stacks of Multi-Head attentions with
respect to the residual connections; the number of heads
for each stack was 2. Before the output layer, we applied a
dropout rate of 0.5 to the concatenation of full-sentence,
SDP, and sentence-embedding features. The mini-batch
was set to 4, and a rectified linear unit (ReLU) was used as

Table 10 Statistics of a preprocessed BB dataset

Train Dev Test
Avg.word in SDPs 4.81 4.86 4.58
Avg.word in full sentences 27.22 29.92 28.12
Positive instances 248 173
Negative instances 275 332
Total instances 523 505 532
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our activation functions. We set the learning rate to 0.001
for Adam optimization with early stopping based on the
development data. As a result, the epoch number varied
depending on this early stopping. From our experiments,
we found that the optimal epoch number would be in a
range between 3 and 5. To avoid model convergence issue,
we used different parameters for the model with only
full-sentence features, denoted as “full-sentence” in the
“Influence of full-sentence and sDP features” section. The
dropout rate was set to 0.1, and the hidden unit number of
LSTM was 32.

Evaluation metrics

For our model, the final results on the test dataset were
evaluated using the online evaluation service provided by
the BB task of the BioNLP-ST’16 [2]. Due to the removal
of inter-sentence examples, any inter-sentence relations in
the test dataset that counted against our submission were
considered to be false negatives.

As discussed above, different parameter initializations
(or random seeds) can affect the model’s performance, an
evaluation of a single model several times tends to result
in performance convergence. To alleviate this problem, we
reported the mean F1 score instead of only the maximum
F1 score reported by previous studies [5, 6, 15-18]. To
calculate the mean F1 score, we built 30 models as sug-
gested by [41]. These models were trained using the same
architecture but with different random seeds. Then, we
evaluated the F1 score of each model on the same test set
using an online evaluation service. With these F1 scores,
we then calculated the minimum, maximum, mean, and
standard deviation (SD) to assess the robustness of the
model. In this study, we used the mean F1 score as the
main evaluation metric; the maximum F1 score was still
used to compare with other previously used models.
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