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Background
The impact of mutations on a protein can be different, depending on the nature of the pro-
tein and the type of mutation, but often they decrease the thermodynamic stability of the 
protein, thus promoting misfolding and/or aggregation [1]. Indeed, only a marginal gain 
in free energy is often associated with the correct three-dimensional structure of a protein 
compared to the misfolded states, and therefore this subtle balance can be altered even by 
a mutation that affects a single residue [2]. These phenomena are particularly evident in 
proteins associated with genetic disorders or other diseases that, through the mutation of a 
gene, determine the alteration of the corresponding protein, with loss of structure and pro-
tein function [3]. Thus, from a clinical perspective, the prediction of the effects of mutations 

Abstract 

Background:  Despite decades on developing dedicated Web tools, it is still difficult 
to predict correctly the changes of the thermodynamic stability of proteins caused by 
mutations. Here, we assessed the reliability of five recently developed Web tools, in 
order to evaluate the progresses in the field.

Results:  The results show that, although there are improvements in the field, the  
assessed predictors are still far from ideal. Prevailing problems include the bias towards 
destabilizing mutations, and, in general, the results are unreliable when the mutation 
causes a ΔΔG within the interval ± 0.5 kcal/mol. We found that using several predictors 
and combining their results into a consensus is a rough, but effective way to increase 
reliability of the predictions.

Conclusions:  We suggest all developers to consider in their future tools the usage 
of balanced data sets for training of predictors, and all users to combine the results of 
multiple tools to increase the chances of having correct predictions about the effect of 
mutations on the thermodynamic stability of a protein.

Keywords:  Protein mutations, Protein stability, Rare diseases, Predictions, Statistical 
analysis

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Marabotti et al. BMC Bioinformatics  2021, 22(Suppl 7):345 
https://doi.org/10.1186/s12859-021-04238-w

*Correspondence:   
amarabotti@unisa.it; angelo.
facchiano@isa.cnr.it 
1 Department of Chemistry 
and Biology “A. Zambelli”, 
University of Salerno, 
Fisciano, SA, Italy
3 CNR‑ISA, National Research 
Council, Institute of Food 
Science, Avellino, Italy
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-7077-4912
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04238-w&domain=pdf


Page 2 of 19Marabotti et al. BMC Bioinformatics  2021, 22(Suppl 7):345

on the stability of a protein is useful to identify therapeutic approaches for the treatment of 
diseases involving protein misfolding, such as the use of pharmacological chaperones [4]. 
These compounds either bind specifically to target proteins and stabilize their native con-
formation, or decrease the folding energy barriers, thereby promoting the transition of the 
misfolded forms into the native conformation [5].

The experimental assessment of the impact of a mutation on protein stability is not 
trivial, especially if hundreds of mutations are associated to a protein. Therefore, during 
the last three decades, dozens of computational methods have been developed to pre-
dict the alteration of the thermodynamic stability of a protein following mutations (for a 
recent and thorough review, see [6]). Their reliability has been questioned repeatedly by 
assessments performed in the past years [7–14], and, as a result, new methods have been 
developed more recently, which claim to overcome the limitations of the older meth-
ods [6]. Several new methods, which are often available online through Web servers, are 
based on different strategies, such as machine learning, which are supposed to produce 
more accurate results, but most have not been assessed by independent researchers.

In the past, we extensively used several of these methods to predict the impact of 
mutations on the stability of enzymes involved in the genetic disease galactosemia [15, 
16]), and we noticed that often their predictions were not in agreement with each other. 
Moreover, comparing their predictions with the ΔΔG of the mutation obtained experi-
mentally, we often found that the predictors were not fully reliable. In order to increase 
the reliability of our predictions, we performed an independent assessment of predic-
tors that have emerged as promising or more reliable in the last few years. Here, we 
describe the problems that we dealt with, the solutions that we adopted, the results that 
we obtained, and the take-home messages learned from this study.

Results
We evaluated five Web tools for the prediction of the effect of mutations on protein sta-
bility: DUET [17], INPS-3D [18], MAESTROweb [19], PoPMuSiC [12], DynaMut [20]. 
The most important features of each predictor are summarized in Table  1; for more 
details, the reader is referred to ref. [6] or to the original publications of the methods.

We collected a benchmark dataset of monomeric and multimeric proteins (Additional files 
13 and 14: S1 and S2 Files), with known values of ΔΔG associated with different mutations, 
starting from the dataset used by Vihinen and coworkers to develop their PON-tstab pre-
dictor [21], freely available in the VariBench benchmark database suite [22]. We predicted 
the change in stability of these mutant proteins and analysed the results of each predictor in 
order to determine their performance. As in this case the definition of both positive and neg-
ative predictions is arbitrary, we defined as positive predictions those mutations that caused 
a positive ΔΔG variation, and as negative predictions those mutations that caused a negative 
ΔΔG variation. We also separated those mutations that caused a ΔΔG variation ≤|0.5| kcal/
mol from those mutation that caused a ΔΔG variation >|0.5| kcal/mol. In fact, the predic-
tions for mutations with experimental ΔΔG variation in the range ± 0.5 kcal/mol are likely 
less reliable, because of their proximity to the experimental error [8]. The “Methods” section 
reports detailed information about the criteria used for creating the dataset and the statisti-
cal analysis used for the comparison.
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Analysis of the performance of stability predictors on the full dataset of monomeric 

proteins

Since most of the predictors of protein stability are set to analyse single-chain proteins 
with single mutations, we first assessed their predictions on the full dataset of mono-
meric proteins (see “Methods” section). The results are shown in Table 2. Considering 
the data predicted for mutations with a ΔΔG value outside the range of the experimen-
tal error (Table 2, upper part), we found PoPMuSiC and INPS-MD to be the predictors 
with the highest number of true negatives (i.e. destabilizing mutations that are correctly 
predicted as destabilizing) and false negatives (i.e. stabilizing mutations that are wrongly 
predicted as destabilizing). Conversely, we found DynaMut to be the predictor with the 
highest number of false positives (i.e. destabilizing mutations that are wrongly predicted 
as stabilizing) and true positives (i.e. stabilizing mutations that are correctly predicted as 
stabilizing), and with the lowest MCC value. However, the MCC values appeared to be 
relatively poor for all the predictors, considering that MCC = 1 indicates the best pos-
sible prediction and 0 a random prediction. As expected, the predictions made on muta-
tions with a ΔΔG inside the range of the experimental error are poor (Table  2, lower 
part). In this case, PoPMuSiC gave the best result in terms of MCC, and INPS-MD and 
DynaMut gave the worst results. However, the MCC value appeared to be close to ran-
domness for all predictors used on this subset of mutations.

Figure  1 shows the ROC (Receiver Operative Characteristic) and PRC (Precision-
Recall Curve) calculated on the full dataset of monomeric proteins. Considering ROC, 

Table 2  General results from the assessment on the full dataset of monomeric proteins

True negative and true positive values have been considered as those predictions that correctly predicted a negative and a 
positive sign for destabilizing and stabilizing mutations, respectively

PoPMuSiC DynaMut DUET INPS-MD MAESTROweb

Values calculated for mutations causing a ΔΔG > |0.5|kcal/mol

True negative 424 270 413 422 399

False positive 19 173 30 21 44

True positive 44 80 64 49 62

False negative 58 22 38 53 40

Accuracy 0.86 0.64 0.88 0.86 0.85

True negative rate (specificity) 0.96 0.61 0.93 0.95 0.90

True positive rate (sensitivity) 0.43 0.78 0.63 0.48 0.61

Positive predictive value (precision) 0.70 0.32 0.68 0.70 0.58

Negative predictive value 0.88 0.92 0.92 0.89 0.91

MCC 0.47 0.31 0.58 0.50 0.50

Values calculated for mutations causing a ΔΔG ≤|0.5|kcal/mol

True negative 101 58 87 93 75

False positive 17 60 31 25 43

True positive 27 50 33 25 43

False negative 52 29 46 54 36

Accuracy 0.65 0.55 0.61 0.60 0.60

True negative rate (specificity) 0.86 0.49 0.74 0.79 0.64

True positive rate (sensitivity) 0.34 0.63 0.42 0.32 0.54

Positive predictive value (precision) 0.61 0.45 0.52 0.50 0.50

Negative predictive value 0.66 0.67 0.65 0.63 0.68

MCC 0.23 0.12 0.16 0.12 0.18
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4 out of 5 predictors (PoPMuSiC, DUET, INPS-MD, MAESTROweb) had similar per-
formances, both in terms of true positive rate (TPR, or sensitivity) and true negative 
rate (TNR, or specificity), on predicting the effects of mutations on monomeric proteins 
when the ΔΔG variation was outside the experimental error (panel A), with a slightly 
lower performance of MAESTROweb and PoPMuSiC compared with DUET and INPS-
MD. We found DynaMut to be the method nearest to the random dotted line, and its 
performance was worse than the other four methods analyzed. Considering PRC (panel 
B), we found that DUET had a slightly better performance in terms of positive predic-
tive value (PPV), in the range [0.25, 0.63] of TPR. Again, DynaMut had the worst per-
formance. The ROC for the monomeric subset inside the range of experimental error is 
shown in Fig. 1c. All of the five methods analyzed were very close to the random dotted 
line: as expected, these ΔΔG values could not be reliably predicted. The PRC for this 
subset is shown in Fig. 1d. Again, all five methods were very close to the random dotted 
line, with the rippled trends that do not show if a method is better than another.

Fig. 1  ROC and PRC for predictions made on the full dataset of monomeric proteins. Panels a, b show, 
respectively, the ROC and PRC for predictions made taking into account only those mutations with a ΔΔG 
value outside the range of the experimental error (number of positive elements is 102, number of negative 
elements is 443). Panels c, d show, respectively, the ROC and PRC for predictions made taking into account 
only those mutations with a ΔΔG value inside the range of the experimental error (number of positive 
elements is 79, of the negative elements is 118). TNR: True Negative Rate, TPR: True Positive Rate, PPV: Positive 
Predictive Value
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This qualitative evaluation was confirmed by the values of AUC for both curves 
reported in Additional file 10: Table S1, from which it appears that all the methods but 
DynaMut have a difference of < 7% for the AUC related to both ROC and PRC, calcu-
lated for the monomeric subset outside the range of the experimental error, whereas 
DynaMut has a difference of around 16–24%. The AUC values for the curves related to 
predictions for ΔΔG inside the range of experimental error are lower and similar for all 
predictors (Additional file 10: Table S1).

Since in many cases the PDB file of a monomeric protein contains more than one 
chain, we performed a check to determine whether the positive or negative signs of the 
predictions made on each chain were in agreement. The results are shown in Additional 
file 11: Table S2. We found that PoPMuSiC was the only predictor with identical results 
(both in sign and in value) for all multiple chains, whereas the other predictors show dif-
ferent results among the chains, indicating that they are influenced by subtle differences 
in the structures of the different chains. Nevertheless, the sign of the predictions was 
usually the same for the different chains for all predictors, although DynaMut showed 
the lowest agreement among the chains, especially for monomeric proteins with three 
chains in their PDB file.

We also analysed the agreement among the different predictors for mutations on the 
monomeric dataset. The results are shown in Additional file 12: Table S3. As expected 
from the previous results, we found that DynaMut was the predictor that agreed least 
with the others, while the other predictors were in agreement for more than 80% of the 
predictions, with no significant differences among them.

In the database used for these analyses, the mutations to Alanine are about 5 times 
more frequent than the mutations to other types of residue (Additional file  14: File 
S2). We determined whether this unbalanced composition might represent a bias that 
affected the results of our assessment. Therefore, we created a subset of monomeric pro-
teins by including all mutations except Alanine, and we recalculated ROC and PRC on 
this subset. The results (Additional file 1: Figure S1) showed that the ROC and PRC cal-
culated for the subset of data without Alanine mutations were indistinguishable from 
the curves obtained for the entire dataset (Fig.  1a, b). In addition, the ROC and PRC 
calculated on the subset made up uniquely of monomeric proteins with mutations to 
Alanine are superimposable onto the general ROC and PRC (data not shown). Therefore, 
we concluded that the unbalanced composition of the dataset did not affect the results.

Another possible source of bias is the overrepresentation of mutations coming from a 
few specific proteins in the dataset. As shown in Additional file 14: File S2, three proteins 
each contributed more than 5% of the total mutations in the dataset of monomeric pro-
teins. We therefore excluded these proteins and re-calculated the ROC and PRC curves. 
Results are reported in Additional file 2: Figure S2. Results showed that only the perfor-
mance of DynaMut was remarkably improved in this subset.

In order to determine whether the size of the dataset affected the results, we per-
formed a bootstrap analysis (sampling with replacement) by increasing the size of the 
subsets from 100 to 700 mutations, and measured how this affected the AUC val-
ues of the ROCs. These results are shown in Additional file  3: Figure S3, in which 
we reported the results for the largest and the smallest subsets. The increase in the 
dimensions of the dataset depicts narrower curves, but without a remarkable shift 
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of their median value, indicating that even the smaller subset was of sufficient size to 
give reliable results, despite its spreader distribution. DynaMut remained the predic-
tor with the lowest AUC value in both subsets, followed by MAESTROweb, while the 
performances of the other methods were similar.

Analysis of the performance of stability predictors on a balanced dataset of monomeric 

proteins

Destabilizing mutations are overrepresented in the full dataset of monomeric proteins; 
thus, we calculated the performance of the predictors using a subset in which the num-
ber and the distribution of the ΔΔG of destabilizing and stabilizing mutations was well 
balanced (see Methods). The results are shown in Table 3. Using this dataset, we found 
that PoPMuSiC and INPS-MD had the highest number of true negative and false nega-
tive predictions, indicating that they are biased towards destabilizing mutations. A 
similar bias, although less evident, was also present for DUET and MAESTROweb. Con-
versely, DynaMut appeared to be more shifted towards stabilizing mutations, being the 
one with the highest number of true positive and false positive predictions.

Overall, we found that on the balanced dataset, considering the predictions for 
mutations with a ΔΔG value outside the range of the experimental error (Table  3, 
upper part), the performance of all of the predictors except DynaMut were less 

Table 3  General results from the assessment on the balanced dataset of monomeric proteins

True negative and true positive values have been considered as those predictions that correctly predicted a negative and a 
positive sign for destabilizing and stabilizing mutations, respectively

PoPMuSiC DynaMut DUET INPS-MD MAESTROweb

Values calculated for mutations causing a ΔΔG >|0.5|kcal/mol

True negative 94 52 89 95 86

False positive 8 50 13 7 16

True positive 44 80 64 49 62

False negative 58 22 38 53 40

Accuracy 0.68 0.65 0.75 0.71 0.73

True negative rate (specificity) 0.92 0.51 0.87 0.93 0.84

True positive rate (sensitivity) 0.43 0.78 0.63 0.48 0.61

Positive predictive value (precision) 0.85 0.62 0.83 0.88 0.79

Negative predictive value 0.62 0.70 0.70 0.64 0.68

MCC 0.40 0.31 0.52 0.46 0.46

Values calculated for mutations causing a ΔΔG ≤|0.5|kcal/mol

True negative 65 35 57 64 47

False positive 15 45 23 16 33

True positive 27 50 33 25 43

False negative 52 29 46 54 36

Accuracy 0.58 0.53 0.57 0.56 0.57

True negative rate (specificity) 0.81 0.44 0.71 0.80 0.59

True positive rate (sensitivity) 0.34 0.63 0.42 0.32 0.54

Positive predictive value (precision) 0.64 0.53 0.59 0.61 0.57

Negative predictive value 0.56 0.55 0.55 0.54 0.57

MCC 0.17 0.07 0.14 0.13 0.13
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satisfactory compared to the previous unbalanced dataset. In particular, the accu-
racy decreased consistently for PoPMuSiC (from 0.86 to 0.68), DUET (from 0.88 to 
0.75), INPS-MD (from 0.86 to 0.71), and MAESTROweb (from 0.85 to 0.73), while 
it was nearly  unchanged for DynaMut (from 0.64 to 0.65). The true negative rate 
and the negative predictive value decreased for all methods, while the true positive 
rate was unchanged. On the contrary, the positive predictive value increased for all 
methods. Consequently, the MCC calculated for this dataset was lower for all of the 
predictors except DynaMut, which was essentially unaffected by the introduction of 
a more balanced dataset. This different trend of DynaMut is better shown in Fig. 2, 
where we compared the results of the different predictors versus the distribution of 
the real experimental values. In the full dataset, all predictors have a shift towards 
negative values, when compared to experimental values (Fig. 2a). Conversely, in the 
balanced dataset (Fig. 2b), all methods but DynaMut were still shifted to negative val-
ues. Finally, even in this balanced dataset, when the ΔΔG was inside the range of the 
experimental error (Table 3, lower part), the predictions of all of the Web tools were 
close to randomness, as indicated by MCC values close to 0.

Analysis of performance of stability predictors on full and balanced datasets of multimeric 

proteins

The performance of the different predictors on the full dataset of multimeric proteins, 
considering only the mutations outside the range of the experimental error, is shown 

Fig. 2  Box-plot of the distribution of the experimental and predicted ΔΔG values for the full dataset (a) and 
the balanced dataset (b) of mutations for the monomeric proteins. Cyan: distribution of the experimental 
ΔΔG; orange: predictions by PoPMuSiC; grey: predictions by DynaMut; yellow: predictions by DUET; blue: 
predictions by INPS-MD; green: predictions by MAESTROweb
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in Table 4, upper part, and Additional file 4: Figure S4. The performance of the predic-
tors worsened slightly compared with the results obtained for the monomeric dataset, 
but there was no significant difference between the predictions made by MAESTROweb, 
which has a specific input option for multimeric proteins, and the other predictors. 
The analysis of the predictions based on the balanced dataset (Table 4, lower part, and 
Additional file  5: Figure S5) led to the same conclusions as those obtained from the 
monomeric dataset: all predictors except DynaMut were biased towards destabilizing 
mutations, while DynaMut still had the worst performance in terms of MCC values.

Analysis of performance of predictors on the full and balanced datasets of monomeric 

and multimeric proteins using a consensus of predictors

The MCC obtained for each predictor on our different subsets was still far from the 
ideal value of 1. In the past, we applied an empirical consensus method to the analy-
sis of our Galactosemia Protein Dataset by attributing a classification to the mutants 
("more stable"/"less stable") based on the consensus of at least two out of the three 
(2/3) selected methods [15]. In order to determine whether this empirical procedure 
improved the performance of the available predictors, we assessed the reliability of 
the consensus of the predictors for attributing an effect (destabilizing or stabilizing) 
on the mutants in all of our datasets. We analysed the results of the consensus both 

Table 4  General results from the assessment on the datasets of multimeric proteins

True negative and true positive values have been considered as those predictions that correctly found a negative and a 
positive sign for destabilizing and stabilizing mutations, respectively. Data have been reported only for mutations causing 
a ΔΔG energy variation outside the range of the experimental error, in the full and the balanced datasets of multimeric 
proteins

PoPMuSiC DynaMut DUET INPS-MD MAESTROweb

Values calculated for the full dataset of multimeric proteins

True negative 131 96 127 135 125

False positive 11 46 15 7 17

True positive 21 30 25 14 22

False negative 24 15 20 31 23

Accuracy 0.81 0.67 0.81 0.80 0.79

True negative rate (specificity) 0.92 0.68 0.89 0.95 0.88

True positive rate (sensitivity) 0.47 0.67 0.56 0.31 0.49

Positive predictive value (precision) 0.66 0.39 0.63 0.67 0.56

Negative predictive value 0.85 0.86 0.86 0.81 0.84

MCC 0.44 0.30 0.47 0.35 0.39

Values calculated for the balanced dataset of multimeric proteins

True negative 36 21 31 35 31

False positive 2 17 7 3 7

True positive 21 30 25 14 22

False negative 24 15 20 31 23

Accuracy 0.69 0.61 0.67 0.59 0.64

True negative rate (specificity) 0.95 0.55 0.82 0.92 0.82

True positive rate (sensitivity) 0.47 0.67 0.56 0.31 0.49

Positive predictive value (precision) 0.91 0.64 0.78 0.82 0.76

Negative predictive value 0.60 0.58 0.61 0.53 0.57

MCC 0.46 0.22 0.38 0.29 0.32
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of three out of five (3/5) predictors, and of two out of three (2/3), checking in the lat-
ter case all possible combinations and selecting those that obtained the best MCC. 
The results are shown in Table 5. In general, we found that the MCC resulting from 
the consensus of the predictors was higher (both in full and in balanced datasets), 
compared to the MCC values calculated for every single predictor. In addition, the 
consensus of 3/5 predictors performed better in the full dataset of monomeric pro-
teins, whereas the consensus of 2/3 predictors performed better in the balanced data-
set of monomeric proteins and in the full dataset of multimeric proteins. In the case 
of the balanced dataset of multimeric proteins, both consensus performed as well as 
the method with the highest MCC value (PoPMuSiC).

Discussion
It is not a trivial undertaking to measure the effect of point mutations on the thermo-
dynamic stability of a protein on a large scale. Many computational methods have been 
developed to predict the ΔΔG associated with protein mutations, and most of them are 
freely available via Web interfaces and provide their predictions quickly (from a few 

Table 5  Consensus of the predictors

True negative and true positive values have been considered as those predictions that correctly found a negative and a 
positive sign for destabilizing and stabilizing mutations, respectively. Data have been reported for mutations causing a ΔΔG 
energy variation outside the range of the experimental error, in the full and the balanced datasets of both monomeric and 
multimeric proteins
a Results obtained using DynaMut, DUET and INPS-MD
b  For the full dataset, results obtained using PoPMuSiC, DUET and MAESTROweb
c  For the balanced dataset, results obtained using PoPMuSiC, DUET and INPS-MD

Monomeric proteins Multimeric proteins

3/5 methods 2/3 methodsa 3/5 methods 2/3 
methodsb, c

Values calculated for the full dataset

True negative 426 407 134 133

False positive 17 36 8 9

True positive 63 73 22 24

False negative 39 29 23 21

Accuracy 0.90 0.88 0.83 0.84

True negative rate (specificity) 0.96 0.92 0.94 0.94

True positive rate (sensitivity) 0.62 0.72 0.49 0.53

Positive predictive value (precision) 0.79 0.67 0.73 0.72

Negative predictive value 0.92 0.93 0.85 0.86

MCC 0.64 0.62 0.50 0.53

Values calculated for the balanced dataset

True negative 92 87 36 36

False positive 10 15 2 2

True positive 63 73 21 21

False negative 39 29 24 24

Accuracy 0.76 0.78 0.69 0.69

True negative rate (specificity) 0.90 0.85 0.95 0.95

True positive rate (sensitivity) 0.62 0.72 0.47 0.47

Positive predictive value (precision) 0.86 0.83 0.91 0.91

Negative predictive value 0.70 0.75 0.60 0.60

MCC 0.54 0.57 0.46 0.46
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minutes to a few hours) [6]; thus, they are easy to use for "naïve users" in the field of bio-
informatics. Nevertheless, several evaluations made in the last few years have questioned 
their reliability [7–14]. For this reason, we decided to perform a new assessment, start-
ing from a “naïve user” perspective, to the prediction of whether a particular mutation, 
or set of mutations, might destabilize a particular protein. From our recent overview 
of the predictors that are currently available [6], we selected five Web server tools with 
the aim of testing structure-based predictors, representative of the different approaches 
developed to cope with the abovementioned issue, freely accessible to the users, and 
which allow calculating many mutations in a reasonable time. Moreover, considering 
that several assessments in the past have raised the question of whether many predic-
tors are biased towards destabilizing mutations, we specifically addressed this issue by 
creating a subset of balanced mutations, upon which we evaluated the performance of 
the different predictors. Results on the balanced dataset indicate worse performances of 
the predictors, suggesting that the abundancy of destabilizing mutations in unbalanced 
datasets might mask the bias of the predictors towards destabilizing mutations.

Comparing our results with those obtained 10 years ago by Khan and Vihinen [8] in 
an assessment that used the same metrics, it is evident that the performance of the most 
recent predictors is generally improved, but the road towards the full reliability of their 
predictions is still long and winding. Indeed, although the accuracy and true negative 
rate are greatly improved, the true positive rate remains unchanged with respect to the 
older statistics. The MCC calculated for most of the methods available 10 years ago was 
close to 0, indicating that most of the predictions were close to randomness, and the best 
performing method showed an MCC of 0.27 [8]. In this study, the highest MCC value 
obtained by the best performing method is 0.58, twice that value, but it is still far from 
the ideal value of 1.

The results we obtained on the balanced dataset (Table  3) show that destabilizing 
mutations are better predicted than stabilizing ones by all predictors except DynaMut. 
Interestingly, we found that this tool had the highest number of true positives predic-
tions (i.e. stabilizing mutations correctly predicted to have a stabilizing effect) in all the 
tested conditions. However, it was also the one with the highest number of false positive 
predictions (i.e. destabilizing mutations wrongly predicted to have a stabilizing effect) 
and this is the reason for its poor results in terms of MCC in all tested datasets.

Most of available tools are not able to predict the effect of concurrent mutations on 
the different chains of a multimeric protein. Therefore, the predictions have to be made 
for a single subunit at a time. Thus, it is difficult to derive an overall result for the whole 
protein, as the developers do not supply any indication on how to use their predictors in 
this case. To address this issue, we tested whether the prediction of the ΔΔG variation 
on the whole protein obtained with MAESTROweb (the only tool able to manage mul-
timeric proteins) was comparable with the sum of the ΔΔG values of the single subunits 
predicted by the same tool. We calculated a correlation coefficient of 0.728, therefore we 
deduced that summing up the predictions of the ΔΔG variation of the single subunits 
was an acceptable approximation to evaluate the effect of concurrent mutations on the 
stability of a multimeric protein. The results obtained on multimeric proteins for all pre-
dictors (Table 4) show that MAESTROweb does not outperform the other tools, despite 
it has been tailored to manage also multimeric proteins.
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When the experimental ΔΔG value of a mutation is close to the experimental error 
(± 0.5 kcal/mol) [8], all the tools return essentially random predictions for this mutation. 
It is worth noting that the predictors currently associate a binary output (destabilizing/
stabilizing) to the predicted ΔΔG value, with two negative consequences: 1. in the "twi-
light zone" of the experimental error, the risk of having an unreliable prediction is very 
high; 2. the naïve user is misled by the interpretation of the real effect of the mutation. 
Indeed, a ΔΔG value of − 0.01 kcal/mol measured for a mutation means that the stability 
of the protein is unchanged, but these predictors would classify such a result as a "desta-
bilizing effect". Therefore, we advise all users to look with caution at the predictions for 
which the ΔΔG values fall within the range of the experimental error, and we suggest all 
developers to define the effect of a mutation on the stability of the protein as "uncertain" 
when its predicted ΔΔG falls within the range ± 0.5 kcal/mol.

Finally, using the results of single predictors to perform an in-house consensus pro-
cedure, we obtained predictions with an increased reliability compared with the single 
best performing method. This solution provides a sort of compensation in the predic-
tions, which allows overcoming the problems of every single method. Moreover, even 
the single best performing method in our assessment in terms of MCC value (DUET) is, 
in its turn, a consensus method. Therefore, based on our experience, we advise all users 
to be unsatisfied with a single prediction, and to combine the results of multiple tools to 
increase the chances of having a correct prediction about the effect of a mutation on the 
thermodynamic stability of a protein.

Conclusions
The web tools used in this work perform surely better than the predictors assessed about 
10 years ago, although improvements are still needed. As take home messages, this work 
suggests on an hand to developers to consider the needs of training their predictors on 
balanced datasets and evaluating carefully the cases with very low impact on the ther-
mostability, and on the other hand to users to compare results from different predictors 
to obtain more reliable evaluations.

Methods
Web tools assessed for the prediction of protein stability

After a careful evaluation of the different approaches available to predict the impact of 
the mutations on the thermodynamic stability of a protein [6], we selected the following 
predictors to perform our assessment: DUET [17] (http://​biosig.​unime​lb.​edu.​au/​duet/), 
a web tool combining two other complementary predictors (named SDM and mCSM), 
previously developed by the same research group, in a consensus predictor; INPS-3D 
[18] (https://​inpsmd.​bioco​mp.​unibo.​it/​inpsS​uite/​defau​lt/​index​3D), a machine-learning 
method tailored to address the problem of anti-symmetric property; MAESTROweb 
[19] (https://​pbwww.​che.​sbg.​ac.​at/​maest​ro/​web), the only Web server able to manage 
both multimeric proteins and compound heterozygous multiple mutations; PoPMuSiC 
(https://​soft.​dezyme.​com/​query/​create/​pop; accessible to registered users only, freely 
available for academic users), a method formed by a linear combination of statisti-
cal potentials, the coefficients of which depend on solvent accessibility of the mutated 
residue. The new version of this predictor, developed by Pucci and coworkers in 2018 

http://biosig.unimelb.edu.au/duet/
https://inpsmd.biocomp.unibo.it/inpsSuite/default/index3D
https://pbwww.che.sbg.ac.at/maestro/web
https://soft.dezyme.com/query/create/pop
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and called PoPMuSiCSym [12] has been tailored to correct the bias toward destabiliz-
ing mutations by imposing physical symmetries under inverse mutations; however, the 
version of the predictor executed by the Web server is called “PoPMuSiC”. Finally, Dyna-
Mut [20] (http://​biosig.​unime​lb.​edu.​au/​dynam​ut/) is one of the most recent Web servers 
developed, based on a quite original approach in which Normal Mode analysis is per-
formed to take into account the contribution of protein flexibility.

These predictors were selected because they are freely available online and they are 
representative of the different approaches developed during the last few years [6]. More-
over, PoPMuSiC was selected because it appears to be the best tool available from the 
last extensive comparison made by Pucci et al. [12], and DUET because it is among the 
most popular stability predictor servers (as per Google Scholar citations). The other 
three predictors are more recent and were not previously assessed by researchers dif-
ferent from their developers. In particular, INPS-MD was selected because its authors 
stated that they carefully designed the training set for its development, to overcome the 
bias for destabilizing mutations [18]. Finally, DynaMut was selected because it is very 
popular (as per Google Scholar citations), and MAESTROweb for its unique ability to 
manage multimeric proteins.

In order to predict the change in protein stability, all of these tools require: (a) the 
structure of the wild-type protein in PDB format; (b) the specification of the missense 
mutation that the user wishes to study; (c) the protein chain involved in the mutation. 
As output, each tool provides the predicted ∆∆G value of the mutant compared with 
the wild type protein, and a binary classification of the mutation (either stabilizing or 
destabilizing) based on the sign of the predicted ∆∆G value. A negative sign for this 
value is associated with destabilizing mutations for DynaMut, DUET and INPS-MD, 
whereas PoPMuSiC and MAESTROweb associate a negative sign to stabilizing muta-
tions. In order to standardize this binary output and make the statistical analyses easier, 
we inverted the sign of the output of PoPMuSiC and MAESTROweb in our statistical 
evaluations.

We defined arbitrarily as positive predictions those mutations associated to a posi-
tive ∆∆G sign and as negative predictions those mutations associated to a negative ∆∆G 
sign. As this assumption can affect non-symmetric evaluations such as ROC and PRC 
curves, we report under Additional files 6 to 9: Figures S6 to S9 the results of ROC and 
PRC curves obtained when the opposite choice is applied, i.e., positive predictions are 
associated to negative ΔΔG predictions.

Dataset used for the assessment

To create the reference dataset for our assessment, we started from the benchmark 
dataset of proteins used by Vihinen and coworkers to develop their PON-tstab predic-
tor [21], freely available at the VariBench database suite [22] (http://​struc​ture.​bmc.​lu.​
se/​VariB​ench/​stabi​lity.​php; Dataset 5). This dataset, extracted from ProTherm [23], is 
probably the best curated resource of its kind currently available, but it still shows limi-
tations due to its redundancy in terms of protein families, to its compositional bias in 
terms of type of mutations included, to an imbalance between destabilizing and stabiliz-
ing mutations and to the quality of the reference structures indicated [6]. To overcome 
these limitations, we created a “reference standard dataset”, extracting only high-quality 

http://biosig.unimelb.edu.au/dynamut/
http://structure.bmc.lu.se/VariBench/stability.php
http://structure.bmc.lu.se/VariBench/stability.php
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reference proteins from VariBench. At the purpose, we first discarded: 130 mutations for 
which a reference structure was not cited in ProTherm; three proteins for which a dis-
crepancy was present between the mutations reported in the sequence and the structure 
(e.g. mutation in the sequence not corresponding to the position of the mutation in the 
structure); several proteins for which the reference structure was obtained by NMR; one 
protein in which only the Cα trace was present in the reference structure; one protein 
in which 19 mutations involve a residue included in a missing segment in the structure. 
We also discarded several proteins for which the quality of the structure was judged 
unsatisfactory, when evaluated in accordance with the following criteria: resolution, 
R free/R value difference, Ramachandran outliers, sidechain outliers, normalized real-
space R-value (RSRZ) outliers, geometric quality of the chain [24]. Finally, we discarded 
several proteins in which the reference (wild type) structure contained some mutations. 
The group of mutations of phage T4 lysozyme represented a particular case. The two ref-
erence structures for this protein indicated in the original dataset were 2LZM [25] and 
1L63 [26]. Both of which are considered as wild type proteins, but 1L63 is the structure 
of the so-called “pseudo wild type “ or “cysteine-free lysozyme”, in which Cysteine 54 and 
Cysteine 97 were replaced by Threonine and Alanine, respectively, in order to disrupt 
the existing disulfide bridge between these two residues [27]. Comparing the mutations 
reported in the PON-tstab dataset and their reference in the literature, we kept in our 
“reference” dataset only those mutations for which we identified the reference lysozyme 
used for the experimental determination of ΔΔG.

Our final “reference standard” dataset for benchmarking includes 48 proteins, of which 
10 are homodimeric, 1 is homotetrameric and the others are monomeric, according to 
the information of their biological assembly, derived from the indications in RCSB PDB 
database [28], from the literature associated to each structure and from visual inspection 
to solve ambiguities. In some cases, the multimeric proteins show only one chain in the 
PDB file: in these cases, we reconstructed the biological assembly by means of Make-
Multimer.py tool, available at http://​watcut.​uwate​rloo.​ca/​tools/​makem​ultim​er/. On the 
other hand, many monomeric proteins show more than one (identical) chain in their 
PDB file: in these cases, we decided to submit each chain independently for the predic-
tion. For the monomeric proteins with more than one chain in their PDB files, we calcu-
lated the predictions separately for each chain, and then we averaged the value of ΔΔG 
for each mutation and predictor. For multimeric proteins, only MAESTROweb allows to 
calculate directly the effect of mutations on a protein composed by more than one chain. 
Therefore, we performed the prediction by using the appropriate settings for multimeric 
prediction available on the Web server, whereas for the other predictors we performed 
the predictions separately for each chain, and then summed the value of ΔΔG for each 
mutation and predictor.

Our reference dataset contains the effects of 1024 mutations introduced in the 48 pro-
teins selected. We considered 585 mutations as “destabilizing” (ΔΔG < -0.5  kcal/mol), 
168 as “slightly destabilizing” (−  0.5 ≤ ΔΔG < 0  kcal/mol),  103 as “slightly stabilizing” 
(0 < ΔΔG ≤ 0.5 kcal/mol), 147 as “stabilizing” (ΔΔG > 0.5 kcal/mol), and we also included 
in the dataset 21 mutations with ΔΔG = 0. Mutations affecting monomeric proteins are 
759, mutations affecting multimeric proteins are 265.

http://watcut.uwaterloo.ca/tools/makemultimer/
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From these data, it appears that the distribution of mutations with ΔΔG < 0 and 
ΔΔG > 0 is unbalanced; in particular, mutations with ΔΔG < 0 are three times those with 
ΔΔG > 0. Therefore, we derived two subsets of mutations, one for monomeric and one 
for multimeric proteins, well balanced for the distribution of ΔΔG, by keeping all sta-
bilizing mutations and selecting an equal number of destabilizing mutations. The crite-
ria to balance the dataset were: (1) ΔΔG distribution: we divided the dataset into ΔΔG 
ranges (in absolute value), and selected for each ΔΔG range an equal number of desta-
bilizing and stabilizing mutations; (2) mutant protein: for each ΔΔG range, we selected 
destabilizing mutations coming from the same protein, or at least coming from proteins 
from the same structural family, as identified by the CATH code [29]; (3) type of muta-
tion: for each ΔΔG range, we selected a balanced number of mutations of the same type 
(e.g. a mutation replacing a hydrophobic residue by a negatively charged one). These two 
subsets were used to assess the bias of the predictors towards destabilizing mutations.

The original dataset, the reference dataset and the two balanced subsets are provided 
as Additional file 13: File S1. A detailed analysis of our reference dataset composition 
in terms of type of proteins, type of mutations, distribution according to experimen-
tal ΔΔG, residue distribution, contributions of different proteins, structural features is 
reported in Additional file 14: File S2.

As reported in Table 1, the datasets used for training all the predictors include, or are 
derived, from the so-called "S2648 dataset", made of 2648 different point-mutations 
(602 stabilizing and 2046 destabilizing) across 131 globular proteins with experimentally 
determined structures and impact on protein stability, extracted from ProTherm (freely 
available at the VariBench database suite [22] (http://​struc​ture.​bmc.​lu.​se/​VariB​ench/​
stabi​lity.​php; Dataset 10). This dataset was originally developed in 2009 to train a previ-
ous version of PoPMuSiC and therefore is less curated than the one we used to assess 
the performances of the predictors. Our dataset includes 28 proteins (out of 48) and 641 
mutations (out of 1024) in common with the S2648 dataset (Additional file  14: File 2 
details also this information). However, as we pointed out previously, in our dataset all 
chains included in the PDB files of the 28 proteins were taken into account, whereas only 
the first chain of the PDB file was taken as reference in S2648 dataset. Moreover, in our 
dataset multimeric proteins were considered in their quaternary assembly, whereas in 
the S2648 dataset all proteins were treated as monomeric. For these reasons, our dataset 
cannot be considered truly overlapping the S2648 dataset.

Criteria and statistical analysis used to perform the assessment

As our main goal was to assess if predictors correctly identify those mutations that 
destabilize or stabilize the protein of interest, we evaluated whether the sign of the ΔΔG 
predicted by the different tools was in agreement with the sign of the experimental 
measure associated to the same mutation.

In our assessment, we evaluated the performance of the predictors separately for those 
mutations with a ΔΔG value comparable to the experimental error made to measure 
ΔΔG variation (between − 0.5 and 0.5 kcal/mol [8]), and for mutations with a ΔΔG value 
falling outside this range.

http://structure.bmc.lu.se/VariBench/stability.php
http://structure.bmc.lu.se/VariBench/stability.php
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To evaluate the consensus as a possible method to improve the performances of the 
predictors, we tested the agreement of 3 out of 5 predictors, and 2 out of 3 by testing all 
possible combinations of 3 predictors.

The statistical measures used to assess the performances of the predictors were: 
accuracy (closeness of the measurements to a specific value), sensitivity (recall, or true 
positive rate), specificity (selectivity, or true negative rate), precision (positive predic-
tive value), negative predictive value, and Matthew’s Correlation Coefficient (MCC). 
Sensitivity and specificity depict the Receiver Operating Characteristic (ROC) curve, 
whereas precision and sensitivity depict the Precision-Recall curve (PRC) most suitable 
for unbalanced datasets. The Area Under the Curve (AUC) for both curves is the per-
formance value used for the comparison of the various prediction methods [30]. All the 
analyses on the prediction performances for the five methods were carried out in R lan-
guage, with the confusion matrix values calculated with the precrec package [31], and 
the curves graphed with the help of the ggplot2 package [32].

In order to evaluate the robustness of our results compared with the size of our data-
set, we evaluated the performance of the monomeric dataset outside the range of the 
experimental error, in order to determine: (a) whether the size of our dataset is sufficient 
to reach a stable value of AUC (ROC) for all five methods of prediction; (b) whether 
it was possible to reach similar AUC values with a smaller dataset, which can be used 
as novel benchmark. For this purpose, we proceeded by following the technique of 
bootstrap:

1.	 The dataset was divided into 100 subsets (iterations) by resampling with replace-
ment, with different dimensions, from 100 to 700 mutations in steps of 100, with a 
total of 700 subsets;

2.	 The procedure for the extraction of the AUC values was applied on all the subsets, 
with the storage of the results;

3.	 The density functions for the AUC values were plotted, separated for subset size and 
prediction method.

Abbreviations
AUC​: Area Under the Curve; MCC: Matthew’s Correlation Coefficient; NMR: Nuclear Magnetic Resonance; PDB: Protein 
Data Bank; PRC: Precision-Recall Curve; ROC: Receiver Operative Characteristic; TNR: True negative rate, or specificity; TPR: 
True positive rate, or sensitivity.
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Additional file 1: Fig. S1. ROC and PRC for predictions made on the full dataset of monomeric proteins deprived of 
mutations to Ala. Panels (A) and (B) show the ROC and PRC, respectively, for predictions made taking into account 
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kcal/mol) (number of positive elements is 81, number of negative elements is 260). TNR: True Negative Rate, TPR: True 
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Additional file 3: Fig. S3. AUC curve density obtained taking into account only those mutations outside the range 
of the experimental error, with a dataset of 100 (panel A) and 700 mutations (panel B), randomly extracted from the 
full dataset of monomeric proteins.

Additional file 4: Fig. S4. ROC and PRC for predictions made on the full dataset of multimeric proteins. Panels (A) 
and (B) show the ROC and PRC, respectively, for predictions made on multimeric proteins, taking into account only 
those mutations outside the range of the experimental error (number of positive elements is 45, number of negative 
elements is 142). TNR: True Negative Rate, TPR: True Positive Rate, PPV: Positive Predictive Value.

Additional file 5: Fig. S5. Box-plot of the distribution of the experimental and predicted ΔΔG values for the 
full (panel A) and balanced (panel B) datasets of mutations for the multimeric proteins. Cyan: distribution of the 
experimental ΔΔG; orange: distribution of ΔΔG predictions for PoPMuSiC; grey: distribution of ΔΔG predictions for 
DynaMut; yellow: distribution of ΔΔG predictions for DUET; blue: distribution of ΔΔG predictions for INPS-MD; green: 
distribution of ΔΔG predictions for MAESTROweb.

Additional file 6: Fig. S6. ROC and PRC curves obtained as for Fig. 1 by considering negative ΔΔG predictions as 
positives.

Additional file 7: Fig. S7. ROC and PRC curves obtained as for Additional file 1: Figure S1 by considering negative 
ΔΔG predictions as positives.

Additional file 8: Fig. S8. ROC and PRC curves obtained as for Additional file 2: Figure S2 by considering negative 
ΔΔG predictions as positives.

Additional file 9: Fig. S9. ROC and PRC curves obtained as for Additional file 4: Figure S4 by considering negative 
ΔΔG predictions as positives.

Additional file 10: Table S1. Quantitative values of AUC calculated for the full dataset of monomeric structures.

Additional file 11: Table S2. Consensus among the sign of predictions made on monomeric proteins with more 
than one chain in their PDB file.

Additional file 12: Table S3. Consensus among the sign of predictions made on monomeric proteins among the 
different predictors. Values are expressed as percentage.

Additional file 13: File S1. Reference monomeric and multimeric datasets. Data sheets report the original PON-
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with predictions, the balanced datasets.

Additional file 14: File S2. Analysis of the composition of the full datasets
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