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Introduction
Proteins comprise amino acid (AA) sequences and fold into three dimensional (3D) 
structures. The native structure of a protein has the minimum free energy and it deter-
mines the function of the protein. The protein structure prediction (PSP) problem is to 
determine the native structure of a protein from its AA sequence. PSP is computation-
ally very challenging [1]. The challenge comes from the astronomically large conforma-
tional search space and the unknown energy function involved in the folding process [2].

Proteins have backbones or main chains comprising peptide bonds that connect C 
and N atoms of successive AAs. AAs all have three common atoms N, Cα , and C in 
sequence. Typically AAs can be of 20 types based on the uniqueness of the side chains 
that start from their Cα atoms. AA instances in a protein are called residues. Protein 
backbone structures can be represented by a series of dihedral angles φi , ψi , and ωi . 
These dihedral angles are defined respectively by every four consecutive atoms from 
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the sequence Ci−1 , Ni , Cα
i

 , Ci , Ni+1 , Cα
i+1

 . However, ω angles are 180◦ for majority pro-
teins [3]. AA side chains also have their own dihedral angles but they are out of scope 
of this work since they can be dealt with later once backbones are obtained. Never-
theless, protein backbone structures are important for both template-based and tem-
plate-free PSP [2, 4].

Besides the representation method discussed above, protein backbone structures can 
also be represented by Cα atoms since successive Cα atoms have almost the same dis-
tance. In this case, instead of φ , ψ , and ω , two other angles θ and τ are used. Note θ and 
τ are respectively a planner and a dihedral angle comprising respectively three and four 
consecutive Cα atoms. Since multiple residues are needed to define θ and τ , they could 
somewhat capture local structures.

In this work, we develop deep neural network (DNN) models to predict the back-
bone angles φ , ψ , θ , and τ for proteins. Protein backbone angle prediction (BAP) has 
achieved significant progress with the development of DNNs. Yet more accurate BAP is 
needed since errors in any angles in a protein has a cascaded effect on the entire protein 
structure.

In BAP, DNN variants such as stacked sparse auto-encoder neural networks [5], long 
short-term memory (LSTM) bidirectional recurrent neural networks (BRNNs) [6–8], 
Residual Networks (ResNets) [7], and DNN ensembles [7, 8] or layered iterations [9] 
have been used.

Input features used in BAP include very popular position specific scoring matrices 
(PSSM) generated by PSI-BLAST [5–7, 9–12]; 7 physicochemical properties (7PCP) [5–
7, 9, 11] such as steric parameter (graph shape index), hydrophobicity, volume, polaris-
ability, isoelectric point, helix probability, and sheet probability [13]; predicted accessible 
surface area (ASA) [5, 12]; hidden Markov model (HMM) profiles [7, 11, 14] produced 
by HHBlits [15]; contact maps [7]; and PSP19 [8].

Capturing local structures around and long range interactions between residues have 
been considered in BAP. Sliding windows [5, 6, 9, 12] around residues have been used 
in feature encoding to capture the local structures. On the other hand, entire protein 
sequences have been used as features [9, 11, 16] to capture long range interactions. Con-
volutional neural networks (CNNs) [8, 14] or LSTM-BRNNs [6, 7] have also been used 
to capture long range interactions.

For benchmark datasets, we refer to PISCES [17], SPOT-1D [7, 18], PDB150 [19] and 
CAMEO93 [20]. The first two are large with respectively 5.5K and 12.5K proteins and 
1.2M and 2.7M residues. The last two are small with 150 and 93 proteins respectively 
and are used in testing.

Proteins locally exhibit three major secondary structure (SS) types such as helices, 
sheets, and coils. This three-state classification can be extended to an eight-state classi-
fication. Essentially some SS types are associated with angle ranges. For example, helices 
and sheets have ranges of 20 for φ and ψ . Because of these narrow angle ranges, BAP 
could be essentially viewed as a classification problem via SS type prediction, although 
backbone angles are actually continuous valued. Unfortunately, coils have no ranges and 
they are about 40% of residues in an average protein [21]. So SS prediction essentially 
does not make BAP trivial. SS prediction has obtained significant progress via DNN 
models [8, 11, 22–26] and ab initio methods [27]. SSpro8 [28] achieves respectively 
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92% and 79% accuracy on proteins with or without homologs in the Protein Data Bank 
(PDB).

Predicted SS types have been used as features in deep learning for BAP [5, 9, 12, 29]. 
Features in general in deep learning only implicitly capture problem characteristics and 
the neural network model then attempts to establish the unknown input-output relation 
but again very implicitly. Also, any machine learning method strives to achieve general-
ity over the training examples and consequently loose accuracy in the process. While 
generic artificial intelligence (AI) methods could be adapted to a range of problems eas-
ily, they usually suffer from the loss of explicit problem specific knowledge. So explicit 
exploitation of any available knowledge is of great importance in AI. This could actually 
bridge the gap between the generality of the approach with the specificity of the prob-
lem. Inspired by this AI interest, we attempt to explicitly exploit predicted SS knowl-
edge in BAP. To be more particular, for BAP, we train separate deep learning models for 
each SS category. This restricts the generalisation only within the specific class of train-
ing examples and thus compensates the loss of generalisation by exploiting specialisation 
knowledge in an informed way.

We name our new BAP method as Simpler Angle Predictor for Secondary Structures 
(SAP4SS), which has DNN models similar to a very recent BAP method named SAP [30]. 
Like SAP, our new method SAP4SS has simpler DNN models than what other recent 
methods such as OPUS-TASS [8] and SPOT-1D [7] have. SAP4SS uses the same fully 
connected neural network (FCNN) architecture as SAP does while OPUS-TASS and 
SPOT-1D use ensembles of LSTM-BRNNs and ResNets. SAP4SS has more features than 
SAP but fewer features than OPUS-TASS and SPOT-1D. While SAP has been trained 
on all residues, SAP4SS has separate DNN models for residues that belong to separate 
3-state SS types.

On well-known benchmark datasets, SAP4SS obtains mean absolute error (MAE) val-
ues 15.59, 18.87, 6.03, and 21.71 respectively for φ , ψ , θ , and τ predictions. As a result, 
SAP4SS significantly outperforms existing state-of-the-art methods SAP, SPOT-1D and 
OPUS-TASS: the differences in MAE are from 1.5 to 4.1% compared to the best known 
results. The SAP4SS program along with its data is available from the website https:// 
gitlab. com/ mahne wton/ sap4ss.

Related works
Recent backbone angle prediction methods include ANGLOR [12], SPIDER [5], SPI-
DER2 [9], SPIDER3 [6], RaptorX-Angle [29], DeepRIN [19], NetSurfP-2.0 [14], SPOT-
1D [7], OPUS-TASS [8], and SAP [30].

ANGLOR [12] predicts φ and ψ angles separately, by utilising neural networks and 
support vector machines (SVM) [31] respectively. SPIDER [5] applies a stacked sparse 
auto-encoder deep neural network for predicting θ and τ angles. SPIDER2 [9] uses three 
iterations of the SPIDER-type models. SPIDER3 [6] applies a bidirectional recurrent 
neural networks (BRNN) with predicted backbone torsion angles, predicted second-
ary structures, and predicted solvent accessibilities as input. The predicted features are 
reused to train the BRNN iteratively for four times. RaptorX-Angle [29] employs a com-
bination of clustering and deep learning for predicting φ and ψ values. DeepRIN [19] 
utlises deep residual inception network to predict φ and ψ values. NetSurfP-2.0 [14] 

https://gitlab.com/mahnewton/sap4ss
https://gitlab.com/mahnewton/sap4ss
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employs large Long Short-Term Memory (LSTM) networks in BRNNs to predict φ and 
ψ angles.

SPOT-1D uses an ensemble of 9 LSTM-BRNN and ResNets with input features PSSM, 
HMM, 7PCP, and contact maps. The contact maps are from SPOT-Contact [18] and are 
used in a sliding window fashion. However, SPOT-1D also uses entire proteins at a time 
as input. SPOT-1D predicts all four types of backbone angles. The output angles are pre-
dicted as trigonometric ratios. OPUS-TASS predicts only φ and ψ angles with ensembles 
of DNNs having CNN, LSTM, and Transformer [32] layers. It has an input feature PSP19 
[33] that classifies residues into rigid-body blocks. OPUS-TASS introduces a new con-
strained feature CSF3 [34] to describe backbone structures. OPUS-TASS uses a multi-
task learning strategy [35]. SAP predicts all four types of backbone angles using a simple 
FCNN with sliding windows, 8-state SS predictions, PSSM, and 7PCP input features.

Methods
In this section, we describe the deep learning models used in SAP4SS and the datasets 
used in experiments. These are similar to those used in SAP [30] but SAP4SS has addi-
tional input features and have separate DNN models for SS types.

Input features

Like SAP, for each residue, we consider the following features: 8-state SS prediction by 
SSpro8 [28] where the prediction is encoded as a one-hot vector as shown in Fig. 1; 20 
features from PSSM profile generated by three iterations of PSI-BLAST [10] against the 
UniRef90 sequence database updated in April 2018; and 7PCP. Moreover, for each resi-
due, in SAP4SS, we additionally consider 20 residue-substitution features from HMM 
profile generated by HHblists [36] and 1 feature for ASA predicted by SPOT-1D [7]. 
These make at most 56 features for each residue but we evalute their effects on the pre-
diction accuracy by using and not using HMM and ASA features. To capture local struc-
tures around each residue, like SAP, we consider sliding windows of size W where ⌊W /2⌋ 
residues are after and ⌊W /2⌋ residues are before a given residue. Although some BAP 
methods based on recurrent neural networks (RNN) and CNNs use entire proteins at a 
time, we do not do so since the effects of very long range interactions are not clear from 
distance based molecular dynamic forces. For each residue, for a given window size W, 
we thus have up to 56W input features. Based on SAP’s reported experimental results, 
for SAP4SS, we consider window sizes 5 and 9 only. Nevertheless, these input features 
are encoded either by using [0, 1] range based (shown in (1)) or Z-score based (shown 
in (2)) normalisation methods before feeding to the DNNs. In (1), xmin and xmax are the 
minimum and maximum values in the training set for the feature which x is coming 
from. In (2), µ and σ are the mean and standard deviation of the values in the training set 
for the feature which x is coming from. Both in (1) and (2), x′ is the encoded value.

Fig. 1 Encoding of 8-state SS predictions by SSPro8 using one-hot vectors. Exactly one bit in each bit string 
of length 8 has 1 in it and the other 7 bits are 0s
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Predicted outputs

For each residue, SAP4SS predicts four angles φ , ψ , θ , and τ where θi angle is defined by 
C
α
i−1

 , Cα
i

 , and Cα
i+1

 while τi is defined by Cα
i−1

,Cα
i

 , Cα
i+1

 , and Cα
i+2

 . Like SAP, SAP4SS pre-
dicts the angle values directly. To ensure the periodicity of [−180◦, 180◦] of the predicted 
angles, 360◦ is subtracted from or added to any angle value greater than 180◦ or less than 
−180

◦ respectively.

Loss functions

We use MAE as the loss function in the DNN models. We calculate absolute error 
AE = min(D, |360− D|) where D = |P − A| , P is a predicted angle, and A is the actual 
angle for a residue. The mean is taken over the AEs for all residues. We ignore the angles 
at the beginning or at the end of the proteins, since they are not defined. The AE deals 
with the angle perodicity issue and is used in validation and testing as well.

Neural networks

We follow the same neural network architecture and implementation of SAP. In sum-
mary, we use an FCNN with 3 hidden layers, each having 150 neurons. Different num-
bers of layers have been experimented by SAP; so we do not run similar experiments 
again. The number of input features to the FCNN will depend on using and not using of 
HMM and ASA features and the window size. The Python-based FCNN implementa-
tion uses Keras library, SGD optimiser with momentum 0.9, and kernel initialiser 
glorot_uniform. The learning rate is initially 0.01. Then, with three successive itera-
tions having no improvement in the loss functions, the learning rate gets reduced by a 
factor of 0.5 until reaches 10−15 . For the input and hidden layers, the activation function 
is sigmoid while it is linear for the output layer. NVIDIA Tesla V100-PCIE-32GB 
machines are used to run the programs.

Benchmark datasets

In this study, we use datasets SPOT-1D [7, 18], PDB150 [19], and CAMEO93 [20]. Our 
training and validation proteins come from SPOT-1D while testing proteins come from 
all three datasets. SPOT-1D dataset has proteins that were culled from PISCES [17] on 
Feb 2017 with the constraints of resolution ( < 2.5A

◦ ), R-free < 1 , and a sequence iden-
tity cutoff of 25% according to BlastClust [10]. SPOT-1D also has proteins that were 
released between January 01, 2018 and July 16, 2018 and resolution < 2.5A

◦ , R-free 
< 0.25 , and 25% sequence identity cutoff w.r.t. those structures released prior to 2018. 
PDB150 dataset has proteins released between February 1, 2019 and May 15, 2019. For 
each PDB150 protein, PSI-BLAST [10] was applied against the whole CullPDB [17] data-
set with e-value smaller than 0.005. The CAMEO93 dataset contains proteins released 

(1)x
′ =

x − xmin

xmax − xmin

(2)x
′ =

x − µ

σ
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between February 2020 and March 2020. We use SSpro8 [28] to generate SS predictions. 
So we perform 25% sequence similarity checking of training, validation, and testing pro-
teins w.r.t. SSpro8’s training proteins. Moreover, as is done in SAP, we have performed 
additional filtering to deal with sequence mismatch between data source files and hav-
ing discontinuity in proteins’ amino acid or secondary structure sequence. Also, we have 
excluded some proteins that cannot be dealt with by OPUS-TASS and have included 
large parts of some proteins that have discontinuity. After all these, we have 61 and 55 
proteins left in PDB150 and CAMEO93 data sets respectively. Since these are consider-
ably small numbers, we combine these with the testing proteins from SPOT-1D. Table 1 
shows the numbers of proteins in each of the training, validation, and testing datasets.

SS specific DNNs

We use 3-state SS predictions made by SSpro8 [28]. These are denoted by coils, helixes, 
and sheets. We then categorise residues in the training proteins based on the three types. 
For each of the three types, we then train a separate DNN on the residues that belong 
to that SS type. For testing, based on which of the three SS types a residue belongs to, 
we use the particular DNN for the SS type. Table 2 shows the distribution of the resi-
dues over the SS types: the top part shows the Dictionary of Protein Secondary Struc-
ture (DSSP) based actual classifications and the bottom part shows the predicted 
classifications.

Results
We compare various SAP4SS settings to find the best setting for each of the three SS 
types and for each of the four angle types. We then compare the performances of the 
best settings with that of the current state-of-the-art predictors. We also analyse the 
results in various ways.

Determining best settings

We consider SAP as our base line setting in which 8-state SS predictions, PSSM, 
and 7PCP are used as input features and an FCNN with 3 hidden layers as the DNN. 
For SAP4SS, we consider ASA and HMM as two other types of features. For input 
encoding, we consider either range based or Z-score based encoding and for win-
dow size, we consider either 5 or 9. We, therefore, have 16 SAP4SS settings for each 
of the three SS types. Each SAP4SS setting is denoted by a name AHIW where A ∈ 
{Y, N} denotes whether ASA is used or not, H ∈ {Y, N} denotes HMM features are 
used or not, I ∈ {R, Z} denotes whether range based or Z-score based input encod-
ing is used, and W ∈ {5, 9} denotes the window size. For example, a setting YNR5 
denotes ASA is used, HMM features are not used, range-based input encoding is 
used, and window size used is 5. Figure 2 shows the validation and testing perfor-
mances of total 16 SAP4SS settings for each type of backbone angles and for each 
type of 3-state SS classes. From the charts in the figure, the best settings as shown in 
Table 3 are selected putting more emphasis on the testing performances and break-
ing ties with a view to reducing the total number of best settings. Notice that the 
testing performances in the charts are often worse than the validation performance 
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and for the selected best settings the differences are up to 2.68 for τ and coils. This 
is explainable since our testing set is diverse as it include proteins from SPOT-1D, 
CAMEO93, and PDB150 datasets.

For the best settings, we perform 10-fold cross validation to check the robustness 
of the selected models. The variations in the performances of the 10-fold runs are 
statistically not significant; so we do not show them.

Hence forth, for further experiments, we use the best settings in Table  3 as the 
final SAP4SS method and compare it with existing such methods.

Fig. 2 Validation and testing performances in MAE (y-axis) of total 16 SAP4SS settings (x-axis) for each type of 
backbone angles and for each type of 3-state SS classes

Table 1 Numbers of proteins and residues in training, validation, and testing datasets. The testing 
set comprises 1205, 61, 55 proteins from SPOT-1D, PDB150, CAMEO93 test sets respectively

Datasets Training Validation Testing Total

Proteins 6721 667 1321 8709

Residues 1,670,605 165,530 306,608 2142,743
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Comparison with existing predictors

We compare SAP4SS’s performance with that of SPOT-1D [7], OPUS-TASS [8], and 
SAP [30] on our 1321 testing proteins. As described in Section titled Benchmark Data-
sets, the testing proteins are from SPOT-1D, PDB150, and CAMEO93 datasets.

Table 4 shows the MAE values for various angles as predicted by SAP4SS and existing 
state-of-the-art methods for residues of various 3-state actual SS types. SAP4SS is better 
than the existing methods in all cases, except in φ angles for sheets. To see the relative 
improvements in MAE values obtained by SAP4SS compared to the existing methods, 
we compute improvement =

2nd Best MAE− SAP4SS MAE

SAP4SS MAE
 (positive value) where 

SAP4SS obtains the best performance and improvement =
Best MAE− SAP4SS MAE

SAP4SS MAE
 

(negative value and hence degradation) where SAP4SS is outperformed. From the table, 
we see the improvements could be more than 6% and in 8 out of 12 cases, more than 1%.

Table 5 shows the MAE values for angles as predicted by various methods. SAP4SS 
performs better than the existing methods in all four types of angles. We compute the 
relative improvement using the same formula as described before and see that SAP4SS 
obtains more than 1.5% and less than 4.1% improvement in the MAE values.

To check the correlations between the actual angles and the angles predicted by 
SAP4SS and the existing methods, we compute Spearman rank correlation coefficients 
and show them in Table  6. As we see, SAP4SS obtains the best positive coefficients 
among all the methods compared.

To check the statistical significance of the differences in the AE values for various 
methods, we perform Analysis of Variance (ANOVA) method and for 95% confidence 
level, we see that at least one method is significantly different from other methods. So 

Table 2 Distribution of protein residues over 3-state secondary structure types

SS type Training Validation Testing

Residues Percent Residue Percent Residue Percent

Using SS types of residues as in DSSP files

Helix 637,203 38.14 61,814 37.34 116,691 38.06

Sheet 383,140 22.93 38,401 23.20 68,975 22.50

Coil 650,262 38.92 65,315 39.46 120,942 39.45

Using SS types of residues as predicted by SSpro8

Helix 637,996 38.19 61,925 37.41 116,568 38.02

Sheet 384,423 23.01 38,723 23.39 69,303 22.60

Coil 648,186 38.80 64,882 39.20 120,737 39.38

Table 3 The best SAP4SS settings for SS types and angle types

SS type Angle types Best setting

Helix φ,ψ , θ , τ YYR9

Sheet φ, θ , τ YYR9

ψ YYZ9

Coil φ, θ YYR5

ψ , τ YYR9
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as a posthoc analysis technique, we then perform Tukey’s Honest Significant Differ-
ence (HSD) to check pairwise difference with 95% confidence level. From the results, 
we see that the null hypothesis is not rejected only for predictions of φ values by 
OPUS-TASS and SAP. For other angles and other pairs of methods, the differences are 
significant. Figure 3 shows the 95% confidence intervals for the AE values for various 
methods. Any overlapping e.g. for φ for OPUS-TASS and SAP denotes the difference 
is not significant while non-overlapping intervals indicate significant differences.

Table 4 MAE values for various angles as predicted by various methods for residues of various 
3-state actual SS types in our1321 testing proteins

The emboldened values are the best values over the methods compared

SS-type Residues Method φ ψ θ τ

Helix 116,691 SPOT-1D 7.51 11.77 3.36 11.99

OPUS-TASS 7.10 11.02

SAP 6.36 8.14 2.60 9.00

SAP4SS 6.31 8.08 2.53 8.73
Improvement 0.79% 0.74% 2.77% 3.09%

Sheet 68,975 SPOT-1D 16.43 17.85 8.19 23.47

OPUS-TASS 15.93 17.29

SAP 17.22 16.68 8.32 24.44

SAP4SS 16.48 15.69 7.95 22.58
Improvement − 3.34% 6.31% 3.02% 3.94%

Coil 120,942 SPOT-1D 24.85 37.63 9.28 40.27

OPUS-TASS 24.33 36.78

SAP 24.65 31.99 8.48 35.03

SAP4SS 24.18 31.30 8.37 34.09
Improvement 0.62% 2.20% 1.31% 2.76%

Table 5 MAE values for angles as predicted by various methods for 306608 residues in 1321 test 
proteins

The emboldened values are the best values over the methods compared. Residues are not categorised using SS types

SS-type Residues Method φ ψ θ τ

All 306,608 SPOT-1D 16.30 23.25 6.76 25.56

Three OPUS-TASS 15.83 22.49

Types SAP 15.96 19.39 6.19 22.60

SAP4SS 15.59 18.87 6.03 21.71
Improvement 1.54% 2.76% 2.65% 4.10%

Table 6 Spearman rank correlation coefficients for the association between actual angles and 
angles predicted by various methods

The emboldened values are the best values as the higher the coefficients the better the correlation

Method φ ψ θ τ

SPOT-1D 0.722 0.758 0.779 0.515

OPUS-TASS 0.741 0.767

SAP 0.731 0.773 0.810 0.518

SAP4SS 0.745 0.780  0.818 0.532
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Comparison on protein length groups

We group our testing proteins on their numbers of residues and then compare the MAE 
values of SAP4SS, SAP, OPUS-TASS, and SPOT-1D for each group. For convenience of 
comparison, in Table 7, MAE values for SAP4SS are shown and for other methods, rela-
tive MAEs are computed and shown in �% columns (formula shown in the caption of 
the table). As we see, SAP4SS outperforms the other three methods in all cases except 
one (OPUS-TASS in φ for length group 301–400).

Correct prediction per protein

We compare SAP4SS with SAP, OPUS-TASS, and SPOT-1D on the percentages of pro-
teins having certain percentages of angles correctly predicted within given threshold 
MAE. The threshold MAE values are 6 ◦ and 12◦ ; in SAP and SPIDER, multiples of 6 ◦ 
have been used as thresholds and the lowest MAE is about 6 ◦ for one angle e.g. θ . The 
percentages of angles are varied from 0 to 100% with step 10%. Figure  4 shows these 
results. We see that with higher percentages of proteins having the same percentages of 
angles within thresholds, SAP4SS outperforms in all angles in both threshold levels.

Protein structure generation

With the φ and ψ angles predicted by various methods compared, we generate the pro-
tein structures for a number of proteins. From our 1321 proteins, we take only the whole 
proteins but not the domains. Then, we create a subset named alpha proteins taking 
34 proteins that have at least 60% helix residues. Similarly, we create a subset named 
beta proteins taking 19 proteins that have at least 60% sheet residues. While generat-
ing the protein structures ω angles are assumed to be 180◦ and C-N peptide bonds are 
assumed to have length 1.33Å. The bond angles and bond lengths are usually standard 

Fig. 3 95% confidence intervals of AE values (y-axis) for various methods (x-axis)
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within different residues of the same amino acids over native structures of various pro-
teins. Using the standard bond angles and bond lengths, we could build each amino acid 
residue from scratch. However, we take an alternative way, in which we take one residue 
for each amino acid from native structures of some other known proteins and build a 
residue library. Each of the 20 residues in the library essentially has coordinates for up 
to Cβ atoms; note necessary bodily translation and rotation operations are performed to 
establish local coorindate systems. Concatenating these residues, using each residue as 
many times as we need for the given protein, we first create a linear chain for a protein 
and then apply the predicted φ and ψ angles on each residue to get the generated con-
formation. Figure 5 shows the RMSD values for various methods for the alpha and beta 
proteins. The performances are clearly far from a reasonable target of 6Å and any com-
parison with large RMSD values is merely indicative. Nevertheless, we see that SAP4SS 
has shown comparable performance with respect to other methods in both alpha and 
beta proteins. In this context, note that SAP4SS and SAP use sliding windows to capture 
local interactions while OPUS-TASS and SPOT-1D use entire proteins to capture global 
interactions.

Conclusion
In this paper, we improve accuracy of backbone angle prediction for protein structures. 
Machine learning methods loose accuracy in the process of achieving generality over the 
training proteins. We aim to supplement our deep learning method with specific knowl-
edge about secondary structure types. Using predicted secondary structure types, we 
categorise residues and then train separate deep learning models for each category. This 
essentially restricts the generalisation process within the specific category. Our method 
named SAP4SS obtains mean absolute error values of 15.59, 18.87, 6.03, and 21.71 

Fig. 4 Percentages of proteins (y-axis) having certain percentages of angles (x-axis) with AE within threshold 
6 (T6) and 12 (T12) degrees. The lower the threshold, the better the results

Fig. 5 RMSD values (y-axis) of protein structures (x-axis) generated using φ and ψ angles predicted by various 
methods. In the charts proteins are sorted in the x-axis based on their lengths
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respectively for four types of backbone angles φ , ψ , θ , and τ . These are 1.5–4.1% bet-
ter than predictions made by the current state-of-the-art prediction methods. SAP4SS 
along with its data is available from https:// gitlab. com/ mahne wton/ sap4ss.
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