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Background
Accurate cancer classification is the key to understanding and selecting effective treat-
ments for this broad group of diseases. Typically, pathologists classify cancers using 
integrated morphologic, immunohistochemical, and/or targeted molecular analyses of 
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tion, an approach using activation gradients is developed to determine the attention of 
the networks to miRNAs that drive the clustering. Using this deep learning framework, 
we classify the neoplasticity status of held-out test samples with an accuracy of 91.07%, 
the tissue-of-origin with 86.36%, and combined neoplasticity status and tissue-of-ori-
gin with an accuracy of 84.28%. The topological maps display the ability of miRNAs to 
recognize tissue types and neoplasticity status. Importantly, when our approach identi-
fies samples that do not cluster well with their respective classes, activation gradients 
provide further insight in cancer subtypes or grades.

Conclusions: An unsupervised deep learning approach is developed for cancer clas-
sification and interpretation. This work provides an intuitive approach for understand-
ing molecular properties of cancer and has significant potential for cancer classification 
and treatment selection.
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tumor tissues. However, pathological diagnosis suffers from inter- and intra-observer 
variability [1]. Molecular analyses are becoming increasingly broad and/or “unbiased” 
due to the advent of -omics methodologies, including next-generation sequencing of 
cancer genomes and transcriptomes [2, 3].

microRNAs (miRNAs) are a class of small ( ∼ 22 nt) regulatory RNA molecules and 
cancer classificatory markers that are readily detectable through next-generation 
sequencing and other approaches [4–7]. In humans and many other species, miRNAs 
negatively regulate gene expression through molecular interactions between the miRNA 
seed sequence (nucleotide positions 2–8) and complementary sites in target genes [8]. 
However, these molecules are also excellent biomarkers due to their tractable number 
( ∼1200 are encoded within the human genome), abundance, cell-type and disease-stage 
specificity, and stability in tissue and blood samples [5, 9, 10]. In addition, certain miR-
NAs have been shown to act as oncomiRs or tumour suppressors based on the function 
of their target gene [11–13]. These molecules are, therefore, highly valuable biomark-
ers for cancer research. Similar to other -omics data, miRNA datasets suffer from the 
curse of dimensionality (i.e. number of variables exceed that of observations), and there 
is a pressing need for building computational approaches that accurately derive clinically 
useful information from large data.

Computational methods that can effectively handle the challenges associated with 
large-scale data have evolved greatly in the past decade [14, 15]. In particular, machine 
learning has undergone major transformations including development of deep learning 
approaches that directly derive informative attributes and representations of large-scale 
data from its raw form [16]. Traditional machine learning methods require carefully 
engineered features of the raw data, and hence domain knowledge, as the specificity of 
the engineered features plays a crucial role in the success of algorithmic solutions. In 
contrast, deep learning directly uses the raw data to capture informative attributes rep-
resentative of pathology or phenotypes of interest, making it well-suited to analyze com-
binatorial and complex relationships between miRNA expression and disease. However, 
there still exist certain limitations to miRNA-based deep learning for clinical implemen-
tation, including the current lack of interpretable methods [17]. In addition, to properly 
learn the features of raw data, deep learning performance depends on having a suffi-
ciently high number of samples within the dataset.

To date, microRNA-based machine learning has been used to diagnose, classify, prog-
nose, and stage various cancers with high accuracy [18–26]. Nanayakkara et al. [21] clas-
sify nine subtypes of neuroendocrine neoplasm using multiple layers of Support Vector 
Machines where each layer performs a specific classification task and they achieve an 
overall accuracy of 98%. Similarly, Ali et  al.  [18] achieve 95% accuracy in classifying 
kidney cancer subtypes using recurrent neural networks. The success of these studies 
demonstrates the potential role of miRNAs as cancer biomarkers. Most of these stud-
ies use supervised learning, requiring reliably labelled samples. Unsupervised learning 
is advantageous in finding similarities between samples based on characteristics (fea-
tures) of each sample, as opposed to learning class labels. Exploration of cancer signa-
tures using miRNA data and clustering techniques has been studied previously in the 
literature [27–31]. These studies have primarily focused on suggesting new cancer 
subtypes, or visualizing groups of already-known histological subtypes. Most of these 
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papers, however, still use supervised learning approaches for any classification task. Few 
papers have used unsupervised deep learning for cancer classification with microRNA 
data. Liang et  al.  [32] use unsupervised learning through a Deep Belief Network with 
mRNA, miRNA, DNA methylation, and clinical attributes to cluster subtypes of ovarian 
and breast cancers, and identify important biomarkers with a two sample t test. Pyman 
et al.  [33] use a mixed supervised and unsupervised deep model to classify neoplastic 
from non-neoplastic tissue. However, examination of fully unsupervised deep learn-
ing workflows for miRNA-based neoplastic tissue classification, along with quantitative 
approaches to study the underlying attention (i.e., identification of important/driving 
features of each sample) of the networks to miRNAs or samples is largely an under-
explored area.

In this work, we present an end-to-end unsupervised method for representation learn-
ing and visualization of cancer and non-cancer samples using miRNA expressions from 
a large breadth of tissue types. In our approach, Deep Neural Maps (DNM) [34, 35] are 
used for representation learning in the form of autoencoders (AEs) to capture data man-
ifolds in the latent features that accurately represent the original data. The latent features 
are then fed to a Self-Organizing Map (SOM) with a 2D lattice to group together similar 
tissue types in the form of topology preserving maps. The unsupervised learning work-
flow eliminates the need for reliably labelled samples, and bases clustering entirely on 
the molecular properties of the data. In addition, we perform joint optimization between 
the AE and SOM, generating a latent space specifically tailored for better topological 
mapping. We use an independent set of labelled data for testing the performance of 
our approach for classification of tissue-of-origin and neoplasticity status. Importantly, 
we implement a method based on activation gradients to evaluate the attention of our 
network to individual features. Our work is the first to examine tissue stratification and 
classification across a wide range of cancers through fully unsupervised deep learning. 
The activation gradients are particularly well-suited for this, which help identify pre-
viously unexplored molecular drivers of various cancers. Our work, therefore, has the 
potential to discover new molecular classifications and properties of cancers, leading to 
better understanding of their origin, and the selection of targeted treatments.

Materials and methods
Data acquisition and preprocessing

In this study, we access sample hierarchy data (tissue-of-origin, neoplasticity status) and 
comprehensive miRNA expression profiles from 2026 neoplastic and 1659 non-neoplas-
tic tissue samples from an ongoing miRNA sequence curation and expression atlas pro-
ject at Queen’s University, Canada and The Rockefeller University, US. Parts of the atlas 
data are available, including breast tissue samples [36] and neuroendocrine tumours and 
matched healthy tissue from a number of organs [21]. In addition to tissue-of-origin and 
neoplasticity status, the sample hierarchy includes disease subtypes (e.g., ductal carci-
noma or triple-negative neoplastic breast tissue, melanoma or basal cell carcinoma of 
the skin, etc.), but are not considered in this study. miRNA expression profiles are qual-
ity controlled using an established data preprocessing approach [21], comprising miRNA 
expression normalization with total count scaling, removal of outlier samples with Inter-
quartile Range (IQR) method [37], and filtering of samples with less than one million 
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sequence reads. This results in a total of 984 miRNA features per sample. To facilitate 
computational method development, we also remove classes of combined tissue-of-
origin and neoplasticity status with less than 10 samples. Following data preprocess-
ing, miRNA expression profiles from 2524 samples are included in subsequent analyses 
below; sample ontology is depicted in Fig. 1 (created using [38]).

Deep Neural Maps

Our end-to-end unsupervised deep learning approach is shown schematically in Fig. 2 
(executed in Google Colaboratory [39]). First, we train an AE to represent the 984 
miRNA features of tissue samples as reduced latent features followed by topological 
mapping of these features to the lattice structure of an SOM. We pre-train the AE to 
closely recreate the original input using the reduced latent features, indicating accurate 
representations of the original miRNA profiles. The AE weights are then frozen and the 
latent features are mapped to a node on the SOM. During pre-training of SOMs, its 
weights are modified such that samples with similar features are represented by proxi-
mal nodes. Next, the AE and SOM weights are jointly fine-tuned to better tailor the AE 
latent space for specific topological mapping. After training, the ontology of the samples 

Fig. 1 Sunburst diagram depicting sample ontology. The outermost layer represents the neoplasticity 
status, and the innermost the tissue-of-origin. In the labels, + represents neoplastic tissue, and - represents 
non-neoplastic tissue. Wedge size is proportional to the number of samples (shown in brackets). Eight 
class labels [Bronchus and lung (62), Endocrine RS (57), Adrenal gland (20), Intestine (20), Lymph node (18), 
Testis (15), Small intestine (11), and Paraganglion (10)] are omitted due to small wedge size. In total, there 
are 22 unique classes of combined tissue-of-origin and neoplasticity as shown in the outer ring. Only 5 
tissues-of-origin contain both neoplastic and non-neoplastic samples (CSO Soft tissues, Breast, Skin, Pancreas, 
and Bronchus and Lung). CSO Soft tissues Connective, subcutaneous, and other soft tissues, Endocrine 
RS endocrine glands and related structures, Heart MP heart, mediastinum, and pleura, Hematopoietic RS 
hematopoietic and reticuloendothelial system
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indicating neoplasticity status and tissue-of-origin are used to evaluate if data from the 
same classes clustered together, and activation gradients of the networks are used to 
identify most informative miRNAs.

Autoencoder Pre-Training To reduce the dimensionality of the input features, the AE 
is pre-trained as follows. The weights for both the AE and SOM are randomly initialized 
between 0 and 1. The AE consists of three layers beginning with 984 inputs (correspond-
ing to the filtered miRNAs), and successively reduced number of units in the following 
layers to form a geometric series leading to the final latent layer. We use Mean Squared 
Error (MSE) between the input and output of the AE as the loss function, a small regu-
larization term, gradient descent with Adam optimization, a batch size of 64, and 3500 
epochs for training.

Self-Organizing Map Pre-Training The latent features of the AE are mapped to nodes 
on a 2D lattice. The weights associated with each node of the lattice are compared to 
an input sample from the AE using Euclidean distance. The node with the shortest dis-
tance to the input sample is labelled as the winning node, and the sample is topologically 
mapped to that location. During SOM pre-training, the weights of the winning node, 
and the weights of nodes surrounding the winning node (determined by a topologi-
cal neighbourhood function) are modified to become more like the input sample. This 
ensures that similar input samples will eventually be mapped close to each other when 
training is complete, preserving the topological structure in the data. SOM weights are 
updated using the difference between the input from AE and the current SOM weights, 
along with a small learning rate and a Gaussian neighbourhood function. A time-decay-
ing neighbourhood function is used to train the SOM; initially, the neighbourhood is 

Fig. 2 Schematics of the Deep Neural Map, including preprocessing, training, and post-processing. Samples 
are normalized, outliers are removed, and miRNAs are filtered. Preprocessed training data is the input to a 
3-layer symmetric Autoencoder (AE). Once pre-trained, the latent features of the AE are forwarded to the 
Self-Organizing Map (SOM), which is subsequently pre-trained. Following pre-training of the AE and SOM, 
joint fine-tuning is performed. Post-processing consists of identification of the attention of the AE to miRNAs 
through the activation gradient, and identifying samples that do not cluster with their respective class
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larger to group all similar samples together, and slowly it shrinks to fine-tune the exact 
location of similar samples to a certain node [34]. A learning rate of 0.005, batch size of 
64, and 1500 epochs are used for training the SOM.

AE and SOM Fine-Tuning Following pre-training the AE and SOM are jointly fine-
tuned. Both the AE and SOM weights are optimized to reduce the distance between 
the AE output and the winning node of the SOM. For this purpose, the distance of the 
AE output to the winning node is integrated into the AE loss function as a new term. 
The SOM weights are updated as explained previously. Joint fine-tuning is run for 1250 
epochs. Further details regarding the design, comparison to other methods, and avail-
able source code for DNMs can be found at the author’s Github: https:// github. com/ 
mpslxz/ DNM. In addition, the updated code for implementation using miRNA data, 
and the addition of activation gradients, can be found at https:// github. com/ emily kaczm 
arek/ miRNA- DNM.

Model evaluation

Data are divided into two mutually exclusive sets for training and testing. From the 2524 
data samples (1456 neoplastic and 1068 non-neoplastic), 1010 are used for testing and 
1514 are used for training. This represents a 40–60% split, respectively, ensuring gener-
alizability of the model while maintaining sufficient training samples to learn data char-
acteristics. In the data division, samples are stratified by combined neoplasticity status 
and tissue-of-origin class to ensure representation in both training and testing data. A 
further 20% of the training data are set aside as validation data for hyperparameter tun-
ing. Once the model is trained and parameters chosen using the training and validation 
data, we use the reserved test data to generate their latent embedding and map tissue 
samples to the nodes of the SOM lattice. This workflow is unsupervised and the models 
do not use sample labels at any stage of pre-training or joint optimization.

In order to evaluate model accuracy, the lattice is post-processed where each node is 
assigned a label of neoplasticity status and tissue-of-origin, determined by the majority 
of training samples mapped to that location. For nodes that do not have any samples 
mapped to them, or have a tie between two or more classes, no label is assigned. To 
determine accuracy, the label of each sample mapped to a certain node is compared to 
the label of the node. If the labels match, the sample is classified correctly. Otherwise, it 
is counted as a misclassification. It is important to note the SOM is a topology-preserv-
ing cluster method in itself, and the map can be interpreted without labels using pre-
viously developed boundary detection algorithms [40, 41]. We choose to interpret the 
maps by adding labels of the training data post-training, but no labels are ever utilized 
during model training.

The validation data are used for ablation studies and hyperparameter tuning. The 
number of training iterations for the AE, SOM, and joint optimization, and the latent 
size of the AE are chosen based on minimizing the reconstruction error (for the AE) or 
distance from the winning node (for the SOM) in the validation data.

miRNA activation gradient

We develop an approach for identifying the attention of the network to inputs and to 
detect the most informative miRNA in determining a sample’s neoplasticity status 

https://github.com/mpslxz/DNM
https://github.com/mpslxz/DNM
https://github.com/emilykaczmarek/miRNA-DNM
https://github.com/emilykaczmarek/miRNA-DNM
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and tissue-of-origin. This method is inspired by backpropagation, an approach used 
for model training in supervised learning to identify weights contributing to incorrect 
classification. Rather than the gradient of error, the gradient of activations across input 
nodes of the AE are calculated [33, 42]. For every weight connecting two nodes in the 
AE, a signed activation gradient can be calculated. The contribution of a specific input 
node to a latent node in the AE can be determined by the sum of the absolute values of 
the activation gradients for all weights connected to the input node. A distinct activation 
is produced in response to groups of samples (e.g. those from one tissue-of-origin and 
neoplasticity status) yielding “input activation gradients” per class. The miRNAs that 
contribute the most to the latent features of the AE for samples of a given tissue and 
neoplasticity status (i.e., those with highest activation gradient) are the most informative 
miRNAs to this class.

Analysis of multi‑class SOM nodes

For nodes on the SOM lattice that have samples from two or more classes mapped to 
them, further analysis is performed to identify the source of the apparent improper 
groupings. First, locations with multiple classes are identified. The activation gradient 
is used to determine the significant miRNAs in the specific samples mapped to these 
locations, as opposed to the average per-class activation described in the previous sec-
tion. We refer to the terminology as “sample-specific activation” and “class-average 
activation”, respectively. For example, if neoplastic breast, skin, and thyroid samples are 
mapped to one node, the specific samples are used to calculate sample-specific activa-
tions. Any miRNAs identified as highly activated in all three of the classes are noted 
and pursued through literature for known biochemical roles. We only study a subset of 
highly activated miRNAs and limit them to those contributing to a total of 75% of acti-
vation gradients in their corresponding class. In addition, any miRNAs that contribute 
highly to the class-average activations of these samples but do not appear in the sample-
specific activations are also studied.

Results
As mentioned in Methods, the Deep Neural Map is analyzed to determine its ability 
to topologically map similar samples to spatially proximal nodes, solely based on their 
molecular profile. Specifically, after unsupervised learning, labels are used to post-
process the SOM lattice with respect to the mapping of neoplastic and non-neoplastic 
samples, as well as the tissue-of-origin. We use accuracy as the quantitative metric to 
assess performance, calculated for neoplasticity status, tissue-of-origin, and combined 
neoplasticity status and tissue-of-origin on held-out test data, as well as sensitivity and 
specificity for the neoplasticity status of samples. We implement the miRNA activation 
gradient approach to identify miRNAs that have significant roles in mapping and strati-
fying the samples. We then study the clusters of samples in topological maps and calcu-
late an average activation for miRNAs per class. Comparison of the average activations 
between neoplastic and non-neoplastic samples from the same tissue-of-origin allows 
identification of potential cancer biomarkers. Lastly, nodes on the SOM that have mul-
tiple classes mapped to them are analyzed with the miRNA activation gradient to deter-
mine sources of errors in clustering.
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Classification accuracy

The topology maps representing the stratification of the data using the learned models 
are shown in Fig. 3 as heatmaps. Column (a) represents the heatmap of all neoplastic 
samples (training and test data separately), with the colour representing the density of 
samples mapped to each location. Column (b) shows the heatmap of all non-neoplastic 
samples mapped to the lattice. As seen, the neoplastic and non-neoplastic samples form 
clear clusters that are far apart in the lattice with centres of the clusters shown in red. 
Column (c) shows a subset of samples mapped to the SOM lattice but annotated with 
tissue-of-origin as well as neoplasticity status information. For simplicity we show the 
lattice with data from nine of the total tissue classes. In this column, circles represent 
non-neoplastic samples while rectangles are neoplastic, color corresponds to the tissue-
of-origin and the size of the marker is proportional to the number of samples of the 
classes mapped to that location. For instance, purple circles and squares show normal 
and cancer breast samples. For tissues where corresponding cancer or normal samples 
are not visible, they were mapped to locations with predominantly another tissue type 
and not assigned a node label. The results in the top and bottom row of Fig. 3 indicate 
that the models generalize well outside of the training data with the test data maps fol-
lowing similar patterns.

The DNM is able to cluster samples from the same class, i.e., same tissue type and 
neoplasticity status, with 84.24% accuracy as shown in Table 1. When examining only 
the classification of the neoplasticity status of samples, i.e., cancer and benign tissue, the 
accuracy increases to 91.07%, with sensitivity and specificity of 94.70% ( +/− 0.774) and 
92.97% ( +/− 0.801), respectively. However, the DNM can only cluster the tissue-of-ori-
gin of samples with an accuracy of 86.36%. This is subsequently compared to a Multi-
layer Perceptron (MLP), with corresponding accuracies shown in Table 1. The MLP has 

Fig. 3 SOM lattice showing mapping of all a neoplastic tissue, b non-neoplastic tissue, and c neoplasticity 
status and tissue-of-origin from nine selected tissues-of-origin for both training (top) and test (bottom) data. 
The x and y axes represent SOM coordinates. The color of the heatmaps indicates the density of samples in 
columns a, b. In column c, circles and squares represent non-neoplastic and neoplastic samples, respectively, 
with the size of the marker proportional to the number of samples of the classes mapped to that location. 
From columns a, b, the DNM is able to stratify neoplastic and non-neoplastic tissue through mapping to 
different areas of the SOM. Clear cluster-centers can be seen in both of these images in red. Column c shows 
clear clusters of similar tissue and neoplasticity status. Models generalize well to test data as seen from the 
top and bottom rows of the figure. In the legend, * indicates that these neoplastic tissue types consist of 
some/all neuroendocrine tumour samples
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highest accuracy for each of neoplasticty status, tissue-of-origin, and combined neoplas-
ticity status and tissue-of-origin. The DNM and MLP are each run 10 times, with the 
mean accuracy and standard deviation displayed in Table 1. Since the visualization of the 
SOM changes with each run due to random initialization, we present all results other 
than the classification accuracies (confusion matrix, visualization, activation gradients, 
and interpretation of misclassifications) corresponding to one of the ten trials. However, 
the results between trials did not have many differences (e.g., the miRNAs identified by 
the activation gradient largely remained constant throughout the repeated trials).

The confusion matrix depicting the classification results for joint neoplasticity status 
and tissue-of-origin is in Fig. 4 as a heat map. As seen, the diagonal of the matrix is dark 
indicating a large proportion of correctly classified samples. There are a high number 
of misclassifications between non-neoplastic and neoplastic skin tissue (green square), 
and between neoplastic breast tissue and other classes (orange rectangle). In addition, 
classes that do not have a majority of samples at any SOM node (resulting in no ‘actual’ 
nodes of that label) are highlighted (red squares). From the confusion matrix, non-neo-
plastic tissue is generally misclassified less frequently than neoplastic tissue.

miRNA activation gradient

A summary of the results from the implemented miRNA activation gradient is shown in 
Fig. 5. Ten combined neoplasticity status and tissue-of-origin classes are displayed, cho-
sen specifically to show the difference between neoplastic and non-neoplastic activation 
of tissue from the same origin. To simplify the analysis, the top five miRNAs identified 
by the activation gradient for each class are chosen. The activations of those miRNAs 
are depicted for both neoplastic and non-neoplastic samples of a tissue class. In other 
words, for each pair of neoplastic and non-neoplastic tissue, activations from a mini-
mum of five miRNAs are shown. This enables direct comparison of miRNA activations, 
where differences between neoplastic and non-neoplastic tissue can lead to identifica-
tion of potential biomarkers. All classes share 4–5 similar highly activated miRNAs, 
shown at the bottom of the columns in Fig. 5. Moving upwards, several unique miRNAs 
are seen, which are specific to neoplasticity status and/or tissue-of-origin.

Analysis of multi‑class SOM nodes

Samples that are mapped to nodes with two or more class labels are examined. The 
miRNA activation gradient is used to determine the similarities between informative 
miRNAs in these samples. Figure 6 identifies the nodes in the SOM lattice with more 
than one class mapped to them. Nodes with multiple neoplastic-class samples mapped 
to them are shown in Fig. 6a, and those with multiple non-neoplastic-class samples are 

Table 1 Classification accuracy of Deep Neural Map and Multi-Layer Perceptron for both combined 
and individual neoplasticity status and tissue-of-origin of samples

The standard deviation of 10 trials is shown in brackets

Trial Combined neoplasticity status and 
tissue‑of‑origin

Tissue‑of‑origin Neoplasticity status

DNM 84.28% (1.48) 86.36% (1.58) 91.07% (0.93)

MLP 93.28% (0.16) 95.23% (0.14) 96.26% (0.14)
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shown in Fig.  6b. Non-neoplastic samples cluster together with fewer misclassifica-
tions than neoplastic samples. Only nine nodes in the lattice have two classes of non-
neoplastic tissue. Locations on the lattice that have representatives from two classes are 
likely transition nodes between two distinct spatial clusters. Multi-class node analysis is 
thus confined to nodes with three or more classes. Four nodes (highlighted in green in 
Fig. 6a) with at least three classes are examined further with the miRNA activation gra-
dients. These results are shown in Table 2. The location of the node (matched to Fig. 6a) 
and classes mapped to them are in the first two columns, with the number of samples in 
each class shown in brackets. Key miRNAs shared between all sample-specific activa-
tions are shown in column 3, while those different between class-average activations and 
sample-specific activations are shown in column 4. Arrows are used in columns 3 and 4 
with a miRNA if all sample-specific activations of that miRNA are above or below their 
respective class-average. For example, in the first row, all sample-specific activations 
of miR-375 are higher than the class-average activation of this miRNA for each of the 
neoplastic small intestine, pancreas, and bronchus and lung classes. Therefore, miR-375 

Fig. 4 The confusion matrix of classification of samples for combined tissue-of-origin and neoplasticity 
status, in test data. The colour of each square is proportional to the number of samples classified as the label 
of that square. The diagonal of the matrix is dark, indicating a high number of correctly classified samples. 
Non-neoplastic classes generally have fewer misclassifications. A number of neoplastic skin tissue samples 
are misclassified as non-neoplastic skin tissue (green). Multiple classes are predicted to be neoplastic 
breast tissue (orange). Three classes are identified in red as not having any nodes assigned them. Above, + 
represents neoplastic tissue, and − represents non-neoplastic tissue
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has its activation trend in this node shown with an up arrow. However, for miR-7, the 
sample-specific activations in those three classes are mixed between being either higher 
or lower than their respective class-average activations. Therefore miR-7 does not have 

Fig. 5 Comparison of the most activated miRNAs, identified by the activation gradient for neoplastic and 
non-neoplastic tissues of the same origin. Tissue classes all share 4–5 highly activated miRNAs, seen in the 
bottom of each column. Near the top of each column, unique miRNAs are seen which can distinguish 
neoplasticity status and/or tissue-of-origin. In the labels, + represents neoplastic tissue, and − represents 
non-neoplastic tissue

Fig. 6 Heatmaps showing nodes with two or more neoplastic classes (a) or non-neoplastic classes (b) 
mapped to them. The x and y axes represent SOM coordinates. Non-neoplastic samples have fewer 
misclassifications. Nodes with two classes are likely transition nodes between two clusters on the SOM. 
Multi-class node analysis is thus limited to nodes with three or more classes. Four of these nodes (green, a) 
are examined in Table 2
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a consistent trend in all samples mapped to that node and is shown without an arrow. 
miRNAs without an arrow are still important shared properties of the samples mapped 
to the same location, but common activation trends are not shared between them.

Discussion
While comprehensive molecular characterization will transform our understanding 
of cancer, advanced computational methods are also needed to generate insights from 
high-dimensional datasets. To address this need, we develop a novel approach using 
DNM for end-to-end unsupervised representation and visualization of neoplastic and 
non-neoplastic tissue samples that allows their molecular properties to directly deter-
mine their similarity. Briefly, our approach involves mapping a topological distribution 
of neoplastic and non-neoplastic samples to an SOM, identifying samples that do not 
cluster with their class, and using activation gradients to better understand the mecha-
nistic significance of select miRNAs. Combining the identification of misclassified sam-
ples on the SOM lattice and the interpretation of the significance of miRNA profiles in 
their representation, leads to better understanding of cancer. In particular, samples that 
do not cluster well with others with similar ontology are analyzed for differences in their 
miRNA expression. This has the potential to reveal biomarkers shared between cancers 
of different origin, and possible targeted treatment options that are patient-specific.

Comparative Approaches and Ablation Study DNM provides an unsupervised 
approach for visualizing data clusters based on their inherent properties. Compari-
sons to other well-known visualization techniques have been reported previously in 
Pesteie et  al.  [34]. As opposed to Principal Component Analysis (PCA) [43] which 
reduces dimensionality linearly, the DNM is non-linear. Compared to t-distributed 
Stochastic Neighbor Embedding (t-SNE) [44] and Uniform Manifold Approxima-
tion and Projection (UMAP, Fig.  7) [45], our solution fine-tunes the latent space in 

Table 2 Analysis of nodes with more than two classes, corresponding to the two areas circled in 
green in Fig. 6

The first two columns show the lattice nodes and classes mapped there, with the number of samples in each class shown 
in brackets. The third column shows highly-activated key miRNAs shared between the sample-specific activations (within 
the top 75% of contributing miRNAs per class). The final column displays key miRNAs common between class-average 
activations, but not found within any of the sample-specific activations. Up (or down) arrows represent any miRNAs where 
all sample-specific activations of that miRNA are higher (or lower) than their respective class-average value

Location Classes Shared miRNAs Shared miRNAs 
in class‑average 
activations

[10,0]  Neoplastic small intestine (3),
Neoplastic pancreas (1),
Neoplastic bronchus and lung (2)

miR-375 ↑ , miR-7,
miR-26a, let-7f,
let-7a ↓

[11,0] Neoplastic small intestine (4),
Neoplastic pancreas (4),
Neoplastic bronchus and lung (3)

miR-375, miR-7,
miR-26a, let-7a,
let-7f ↑

[12,0] Neoplastic adrenal gland (6),
Neoplastic pancreas (1),
Neoplastic paraganglion (5)

miR-7 ↑ , miR-375,
let-7a, miR-26a,
let-7f

[9,12] Neoplastic connective, subcutaneous,
and other soft tissues (9),
Neoplastic skin (1),
Neoplastic breast (1)

miR-21 ↑ , miR-26a ↓,
miR-199a-3p ↑

miR-125b ↓
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DNMs to provide better topological mapping and low reconstruction error by inte-
grating the SOM and AE losses. In addition, our solution can embed data into a larger 
latent space than t-SNE and UMAP, preserving the topological structures among data 
points. This allows the optimization of the latent space, preventing the loss of impor-
tant features. We experiment with various dimensions of the AE and hyperparam-
eters for achieving the best reconstruction error, and try the range of 10–40 for the 
latent space. The AE loss decreases while the latent space grows to 25 and increases 
afterwards. We also notice that as the loss increases, samples of the same class are 
more dispersed on the lattice, showing the importance of optimizing the latent size. 
This highlights one of the advantages over traditional visualization techniques; the 
SOM is able to map higher dimensional features in two dimensions while preserv-
ing the topology. The lower error using a latent space of 25 indicates that UMAP 
and t-SNE may lose important information during feature reduction, leading to less 
refined clusters.

DNM Clustering and Accuracy The DNM is able to effectively discriminate between 
neoplastic and non-neoplastic tissues. Distinct clusters of tissue samples are formed, 
corresponding to these designations, on opposite sides of the lattice in Fig. 3a, b. This 
suggests that cancers of different tissue-origins share sufficient miRNA features that 
are specific to neoplasticity. This observation has been previously reported in the lit-
erature, e.g., miR-21 is shown to be up-regulated in many cancers [46]. This is fur-
ther seen by the high accuracy of classifying neoplastic and non-neoplastic samples 
(Table 1). The DNM also results in distinct clusters of samples when examining com-
bined neoplasticity and tissue-of-origin, shown in Fig.  3c. The presence of distinct 
clusters of tissues-of-origin demonstrates the known ability of miRNAs to be used for 
tissue typing [9]. The DNM is able to map the held-out test data to similar locations 
as their respective classes seen during training and generalizes well to unseen data. 
The DNM accuracy is next compared to a supervised MLP. The MLP outperforms 
the DNM in all three classification tasks. The MLP uses the labels of each sample 
during training, whereas the DNM uses only similarity measures to identify classes. 
While two samples may have the same neoplasticity status and tissue-of-origin, the 
true miRNA dysregulation and/or molecular properties may differ largely, leading 
to misclassifications. The motivation behind the DNM is to identify the most simi-
lar samples based purely on molecular properties, and analyze samples that do not 

Fig. 7 UMAP visualization of test data, displaying the same classes as the DNM in Fig. 3. In this figure, circles 
and squares represent non-neoplastic and neoplastic tissue, respectively. In the legend, * indicates that these 
neoplastic tissue types consist of some/all neuroendocrine tumour samples
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cluster well with their respective class, leading to better understanding of individual 
patient samples. This is performed by analyzing samples mapped to specific nodes, as 
opposed to analyzing clusters of multiple nodes. Samples at the same nodes are the 
most similar to each other; it is therefore expected that these would be samples from 
the same class. Those that differ from the expectation are potentially abnormal sam-
ples which should be further analyzed. While these are called ‘misclassifications’, they 
may represent samples with unusual miRNA dysregulation.

DNM Misclassifications Our method allows the further exploration of misclassified 
samples quantitatively. A large number of neoplastic skin samples are misclassified as 
non-neoplastic skin (Fig. 4, green), which is also shown through their proximal mapping 
in Fig. 3c. Looking at the class-average activation gradients, these two classes have many 
similarly activated miRNAs (Fig. 5), resulting in challenges determining class differences. 
An additional issue contributing to such challenges is that skin samples obtained for 
pathology contain multiple different cell types, leading to varying molecular signatures.

Multiple classes of tissue were wrongly mapped to nodes labeled as neoplastic breast 
(Fig. 4, orange). Neoplastic breast samples share some of their most activated miRNAs 
(e.g. miR-21, miR-26a) with numerous classes, seen in Fig. 5. In addition, miRNA expres-
sion is more varied within neoplastic tissue due to differing cancer grade and subtypes 
[31, 47], which may contribute to more misclassifications. This is further seen through 
the high number of multi-class neoplastic nodes shown in Fig. 6a compared to the num-
ber of non-neoplastic multi-class nodes in Fig. 6b. The low number of non-neoplastic 
multi-class nodes displays the stable expression of healthy tissue and acts as a positive 
control for the DNMs (Fig. 6).

A challenge we face is that for classes with low number of samples and heterogenous 
cell types, e.g. neoplastic intestine tissue (intestine samples share smooth muscle fea-
tures with other soft tissues), the DNM is not able to map them to designated nodes. 
Instead they are often misclassified as other classes they may share features with (Fig. 4, 
red). Through identifying these misclassifications, it is possible to further study molecu-
lar similarities between known classes or discover new shared signatures.

Discovery of Cancer Biomarkers The miRNA activation gradients provide a novel 
approach for proposing potential cancer biomarkers and molecular drivers through 
comparison of neoplastic and non-neoplastic activation for the same organ. From Fig. 5, 
in all classes except pancreatic tissue, miR-21 has higher activation in neoplastic than 
non-neoplastic tissue. This difference suggests miR-21 could be an important biomarker 
for discriminating neoplastic and non-neoplastic tissue in these organs. We then exam-
ine the initial normalized expression of miR-21 in these tissues in Fig. 8, which indeed 
shows a difference in expression between neoplastic and non-neoplastic tissue in each 
organ. In addition, miR-21 is a known oncomiR for certain cancers shown to have upreg-
ulated expression, which has been linked to overtargeting of genes that prevent metas-
tasis and apoptosis [46, 48]. Many other potential biomarkers in Fig. 5 have also been 
reported in the literature. For example, miR-143 has lower activation in neoplastic bron-
chus and lung, breast, and skin tissue compared to its respective non-neoplastic activa-
tions. miR-143 is a known tumour-suppressor, and its down-regulation has already been 
linked to many cancers [49]. Further, let-7b has lower activation in neoplastic bronchus 
and lung, which is a known tumour-suppressor and has been shown to target KRAS. 
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The KRAS gene is often mutated in lung cancer, which can prevent binding of let-7b to 
the target site (preventing mRNA degradation), and downregulate let-7b through fur-
ther downstream complications of upregulated KRAS [50]. This is a key example of how 
computation meets biology and identifies important parts of entire regulatory networks. 
While our proposed approach can be used to identify potential cancer biomarkers, a 
knowledge of miRNA tissue specificity is essential to prevent the misidentification of tis-
sue-specific markers as cancer biomarkers [9]. For example, miR-1 appears to have low 
activation in neoplastic soft tissue samples. This is likely due to how the tissue samples 
were collected. miR-1 is a known muscle tissue marker; during sample collection, the 
non-neoplastic samples likely contained muscle tissue, whereas the neoplastic samples 
collected tissue only from the tumour. The heterogeneity of sample collection must be 
considered when examining potential miRNA biomarkers. In addition, while activation 
partly reflects the expression of a miRNA, its purpose is to highlight the attention of the 
deep learning model to this particular marker.

Multi-Class Node Interpretation—Case 1 To further examine misclassified samples we 
study multi-class nodes of the SOM lattice that have three or more classes mapped to 
them. Upon analysis of nodes [10,0], [11,0], and [12,0] (Fig. 6a, green, and Table 2), it is 
found that the apparent misclassifications at the nodes are the result of neuroendocrine 
tumour samples. Neuroendocrine tumours (NETs) are a rare form of cancer that develop 
within the neuroendocrine cells of numerous different organs [51]. In the dataset we use, 
NETs are present in a total of 8 of the 17 tissue types (adrenal gland, bronchus and lung, 
endocrine and related structures, pancreas, paraganglion, skin, small intestine, and thy-
roid gland). However, the NETs are only annotated in the disease subtype, which we do 
not consider in this study. Calculating sample-specific activation gradients at these three 
nodes indicates shared features of miR-375 and miR-7, which are specific to NETs [21]. 
Upon closer evaluation of the disease subtypes of the samples, every sample mapped 
to these nodes is indeed a NET. Therefore, although these samples are from different 
organs and have distinct molecular profiles, the DNM is able to identify signatures spe-
cific to NETs, and map these samples to the same location.

Fig. 8 Boxplot displaying the RF normalized expression of miR-21 for four tissues-of-origin with both 
neoplastic and non-neoplastic tissue samples. The initial expression of this miRNA is examined after the 
activation gradients identified it as significant for classification of tissue-of-origin and neoplasticity
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Since miRNAs specific to NETs are significantly represented in our data, we analyze 
the remainder of NETs and found that while these samples cluster with other samples 
from their respective tissue-of-origin, the majority also cluster together at the bottom 
of the SOM (Fig.  3c). Using class-average activation gradients we also identify that 
both neoplastic pancreas and neoplastic bronchus and lung have high activation of 
miR-375, with neoplastic pancreas having miR-7 as well (Fig. 5).

Multi-Class Node Interpretation—Case 2 Node [9,12] shown in Fig. 6 and Table 2, 
represents samples from soft tissue, breast and skin cancers. We calculate sample-
specific activation gradients for these cases and compare them with their correspond-
ing class-average activations. We found that several shared miRNAs in these samples 
have significantly higher or lower activations when compared to class-averages. 
Selected shared features include high activation of miR-21 and miR-199a-3p, and low 
activation of miR-26a and miR-125b. These miRNAs are known oncomiRs (miR-21, 
miR-199a-3p) and tumour suppressors (miR-26a, miR-125b), and also identified by 
our models as significant contributors to abnormal sample clustering [12, 52, 53]. It is 
possible that all these samples are those of higher grade or aggressiveness compared 
to others from their respective class in the data. We hypothesize that it is possible to 
use the SOM maps to identify potential higher grade tumours or other abnormalities 
in patient-specific samples, a likely valuable tool for experimental cancer biologists.

Conclusion
Cancer classification is an important step to determine proper treatment and 
improve prognosis. The use of miRNAs as cancer biomarkers is becoming increas-
ingly common; however, the understanding of the role of miRNAs in cancer can still 
be improved. In this study, we present an end-to-end unsupervised solution that can 
stratify tissue types using miRNA expression data. A Deep Neural Map is created, 
showing clusters of tissue-of-origin and neoplasticity status of samples. In addition, a 
method based on the activation gradient of the AE network is implemented to deter-
mine the miRNAs contributing most to the stratification of each class. Importantly, 
this method is applied to study misclassifications on the Deep Neural Map. In under-
standing the irregular miRNA expression of misclassified samples, better patient-
specific classification and treatment can be determined. Future work will include 
experimenting with other architectures of the Deep Neural Map that incorporate 
different autoencoders and distance metrics. A cost-sensitive penalty factor could 
be incorporated in attempt to minimize misclassifications. In addition, the top miR-
NAs identified from the activation gradients should be used as input to a DNM model 
as opposed to all miRNAs, to determine the effect on clustering. We also hope to 
extend this work to include other types of data such as mRNA, genome sequencing, 
and mass spectrometry for proteins, particularly in cases where potential biomarkers 
are underexplored. This can lead to further insight on associations and similarities 
between tissue samples as well as the process of gene dysregulation, and how each of 
these molecules interact with each other (i.e., pathway analysis).
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