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Abstract 

Background: Microbial community simulations using genome scale metabolic net-
works (GSMs) are relevant for many application areas, such as the analysis of the human 
microbiome. Such simulations rely on assumptions about the culturing environ-
ment, affecting if the culture may reach a metabolically stationary state with constant 
microbial concentrations. They also require assumptions on decision making by the 
microbes: metabolic strategies can be in the interest of individual community mem-
bers or of the whole community. However, the impact of such common assumptions 
on community simulation results has not been investigated systematically.

Results: Here, we investigate four combinations of assumptions, elucidate how they 
are applied in literature, provide novel mathematical formulations for their simulation, 
and show how the resulting predictions differ qualitatively. Our results stress that dif-
ferent assumption combinations give qualitatively different predictions on microbial 
coexistence by differential substrate utilization. This fundamental mechanism is criti-
cally under explored in the steady state GSM literature with its strong focus on coexist-
ence states due to crossfeeding (division of labor). Furthermore, investigating a realistic 
synthetic community, where the two involved strains exhibit no growth in isolation, 
but grow as a community, we predict multiple modes of cooperation, even without an 
explicit cooperation mechanism.

Conclusions: Steady state GSM modelling of microbial communities relies both on 
assumed decision making principles and environmental assumptions. In principle, 
dynamic flux balance analysis addresses both. In practice, our methods that address 
the steady state directly may be preferable, especially if the community is expected to 
display multiple steady states.
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Background
Microbial communities perform essential functions in diverse environments such as 
the soil [1] and the human gut [2]. While the experimental characterization of com-
munity composition is relatively easy with metagenomics methods, this is not true for 
the analysis of functional metabolic interactions between community members [3]. 
The paradigm of constraint based modelling of metabolism with genome scale models 
(GSMs) [4] has therefore become increasingly popular for the analysis of microbial 
communities [5, 6]. For example, a recent GSM-based study stipulated that whether a 
microbial community is cooperative or competitive correlates strongly with the nutri-
ent abundance in its natural habitat [7].

Approaching community functions with GSMs requires two key ingredients: mod-
els and simulation methods. Models are no longer a main limitation because of the 
ease with which large, organism-specific and relatively predictive GSMs can be 
derived automatically from genome sequences [8]. However, the main simulation 
methods for GSMs such as flux balance analysis (FBA) [9] and stochastic sampling 
[10] were originally developed for single species, not communities.

In single-species FBA, a key assumption is that the simulated species optimizes its 
fitness (e.g., growth). This can be interpreted as a decision making problem where 
the organism needs to optimally control its (evolved) metabolic network. However, 
in co-culture, the degree to which one species reaches its objective may depend on 
the metabolic activity of all species, for example, when species compete for nutrients. 
Dynamic FBA (dFBA) explicitly accounts for nutrient concentrations and thereby for 
such interactions; it combines the FBA principle with iterations over time to reflect 
changing environmental conditions [11]. Recently, also scalable methods for dFBA 
simulation of communities have been proposed [12]. Yet, a drawback of dFBA is that 
it requires reliable knowledge on the form and parameters of uptake kinetics, or at 
least on how bounds on uptake kinetics depend on environmental conditions. This 
knowledge is hard to obtain and without it, the simulation results can be unreliable [5].

Incomplete information on uptake kinetics raises a new frontier in decision making for 
the simulation of interacting microbes in co-culture: the presence of multiple decision 
making entities with potentially conflicting objectives. For example, in d-OptCom, an 
influential method for dFBA of a community of GSMs, and in its metabolically station-
ary state sibling OptCom [13], decision making is modeled as a bi-level optimization 
problem. On one level, the community strives towards a fitness goal (high community 
biomass production) and on the other level each microbial species optimizes its own fit-
ness (growth rate). Abstractly, there are two types of decision makers, one making com-
munity decisions and one making decisions for individuals. Note that the existence of 
an apparent community decision maker is hypothetical—it could result from species co-
evolution [14, 15].

Because community and individual decision makers may follow contradictory strate-
gies, a principle for conflict resolution is needed. Some possibilities used for GSMs are: 
the community strategy takes precedence over individual decision makers [13], a com-
munity strategy must be Pareto optimal for the individual decision makers [16], and a 
community strategy must be a Nash equilibrium for the individual decision makers [17]. 



Page 3 of 22Theorell and Stelling  BMC Bioinformatics          (2023) 24:262  

In other methods, the emergence of multiple decision makers has stimulated the use of 
game theory for the analysis of microbial interactions [18].

Here, however, we emphasize an aspect of community modeling that is largely ignored 
in the corresponding literature: going from one to several microbial species, the inter-
pretation of the metabolically stationary state assumption in constraint-based modeling 
depends on the type of cultivation environment. The two main environments for culti-
vating microbes are (assumed) chemostat and batch processes. For FBA-based analy-
sis, their different concepts of metabolically stationary state lead to different models for 
decision making. In particular, assumptions on environment and decision making have 
fundamental impact on whether organisms in a community of GSMs can coexist or not, 
and at which quantitative microbial community composition.

Because these dependencies have not yet been investigated systematically, we for-
mulate four methods for simulating metabolically stationary states, corresponding to 
combinations of batch and chemostat cultivation, and two different modes of micro-
bial decision making, distributed (rational agent) and centralized (rational community). 
In these formulations, we put a novel emphasis on what information (local/global) the 
decision makers have access to. The combination steady state batch/rational community 
resembles the community FBA (cFBA) formulation [19, 20]; the chemostat formulations 
applicable to GSMs are new. We demonstrate the qualitative differences between the 
approaches on two toy-examples, a prisoners dilemma (PD) model for decision making 
and a nutrient limitation model for coexistence. As expected, switching from rational 
agent to rational community, PD switches from defection to cooperation. For nutrient 
limitation, the four models yield qualitatively different results. Furthermore, using a 
novel numerical scheme to handle models of realistic size, we apply the chemostat mod-
els to investigate the impact of decision making on a syntrophic community of amino 
acid auxotrophic E. coli mutants [21]. Unexpectedly, distributed, rather than centralized, 
decision making opens up a larger array of possible cooperative solutions.

Results
Chemostat versus batch environment

In a chemostat as an open system, a fluid flow (dilution rate D) adds nutrients (inflow 
concentrations Cin ) and flushes out parts of the cultivation medium, keeping the cultiva-
tion volume constant (see Fig. 1a). A metabolically stationary state requires that meta-
bolic fluxes ( ν ), species abundances (X), and environmental nutrient concentrations (C) 
are constant over time (t). For the (non-zero) absolute microbial species abundances to 
be constant, the (specific) growth rates ( µ ) must be equal to the dilution rate D (hence-
forth called D-growth).

Assuming growth maximization, the growth rate depends on the environmental 
nutrient concentrations via uptake kinetic functions that determine the upper bounds 
of uptake fluxes. In turn, environmental nutrient concentrations depend on fluxes and 
species abundances. When kinetic functions increase monotonically with environ-
mental nutrient concentrations, negative feedback between biomass and nutrient con-
centrations inside the chemostat may give rise to nutrient-limited steady states [22]. 
Correspondingly, finding the steady-state biomass concentrations requires an explicit 
representation of extracellular substrate concentrations.
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In a batch process as a closed system, all nutrients are provided at the beginning of 
the cultivation and nothing is flushed out (Fig. 1b,c). In contrast to a chemostat, with 
growing biomass, environmental nutrient concentrations are not constant over time, 
leading to different growth phases. A modeled metabolically stationary state there-
fore refers to the relaxed condition that metabolic fluxes as well as growth rates are 
time-constant. This typically holds during the exponential growth phase, which is 
used experimentally to determine growth rates. Throughout this manuscript, we call 
such a system a steady state batch (or, for short, batch if it is clear from the context).

A steady state batch process has two important implications: First, extracellular 
nutrient conditions are not limiting. Specifically, the relevant environmental nutri-
ent concentrations are assumed to be in a regime where the kinetic functions deter-
mining the upper bounds of the growth limiting uptake fluxes are insensitive to the 
nutrient concentrations. Note that any system operating a metabolically stationary 
state under non-limiting extracellular nutrient conditions is equivalent to a steady 
state batch, without having to be a batch cultivation. Community models for such 
systems do not require a representation of environmental nutrient concentrations. 
Second, the relative species concentrations must be constant, implying that all spe-
cies with non-zero abundance grow at the same rate averaged over time (henceforth 
called community steady state). This allows to properly model inter species cross-
feeding of compounds and some GSM-based studies of communities apply com-
munity steady state [19, 20]. However, for non-interacting microbes in a batch, a 
community steady state will only occur if all concerned species have the exact same 
growth rate by chance, a situation that never happens in practice. Therefore, to sim-
ulate coexistence in a consortium, an explicit interaction between microbes, such 
as crossfeeding [20] or some form of agreement to grow at the same rate is manda-
tory. Other GSM-based methods do not impose a community steady state [13, 16, 
17], thereby implicitly assuming a non-closed system. Overall, thus, the assump-
tions on the environment—implying observability of nutrient concentrations or lack 
of observability—also have implications for models of decision making in FBA-type 
analyses.

Fig. 1 Cultivation systems and their implications for metabolically stationary state conditions. For definitions 
of mathematical variables, see Section Methods. a Chemostat as an open system in steady state. Black: 
time-constant entities; bold arrows: flows; normal arrows: metabolic fluxes; rounded rectangle: cell. b 
Dynamics in batch cultivation of cells with a phase of metabolically stationary state (constant specific 
growth rate, implying linear increase of the logarithm of the species concentration, insensitive to external 
concentrations) between dashed vertical lines. c Metabolically stationary state in the closed batch system 
(time-constant entities in black)
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Community models

To cover the two principal dimensions environment (chemostat vs batch) and decision 
making (rational agent vs rational community), we developed four models of microbial 
community growth at metabolically stationary state using metabolic networks. They are 
based on a general system of equations and differential equations governing the extracel-
lular metabolite concentrations C and the absolute (relative) species concentrations X 
(x) for chemostat (for batch). Importantly, the common model includes the network sto-
ichiometry as well as flux constraints. We assume intracellular (metabolically) stationary 
state as in FBA and dFBA [9, 23]. Then we impose assumptions about decision making 
that lead to the four specific models (see Methods for details).

For rational agent models, we assume that each cell is a decision making entity, using 
the extracellular concentrations as information to maximize its growth rate. As founda-
tion for its decision making, each cell uses local information, in this case the extracellu-
lar compound concentrations, as well as its own flux constraints. This assumption seems 
intuitive for microbial species that do not share an evolutionary history of interactions. 
In the CA model (where ’C’ stands for chemostat and ’A’ for agent), the capacity con-
straints depend on the extracellular concentrations C through uptake kinetics. For the 
BA model (where ‘B’ stands for steady-state batch), contrary to practice in parts of the 
GSM consortium literature [5], the extracellular metabolite concentrations are constant 
and unknown to the agents. Under these conditions, community steady state is virtually 
impossible (see Methods). The BA model is therefore of little practical relevance and we 
included it only for completeness.

The rational community models assumes that, through a time of coexistence, a com-
munity has learned to optimize its (D- or balanced-) growth rate while cooperating 
to create a favourable nutrient environment. Note that what the community wants to 
achieve through cooperation, and with it the formal community objective function, may 
vary. A biologically relevant community objective, so far not formulated as FBA objec-
tive, is that in many parasitic consortia, the parasite wants to optimize growth without 
killing the host, which needs cooperation [24]. Here, for simplicity and in line with the 
literature [5], we consider only the community objective of maximizing total biomass 
production.

For the rational community chemostat (CC) model, we assume that the community 
has knowledge of and power over the global cellular exchanges of compounds (see Meth-
ods). Since different community decisions may benefit different organisms (in terms of 
species abundances and other factors), having a range of community optimal strategies 
in terms of fluxes and extracellular concentrations, but given different species abun-
dances, it is not possible to know which strategy the community will settle for without 
detailed knowledge of the ‘negotiation’ process leading up to a decision. Thus, the step 
from rational agent to rational community is not about assuming full knowledge of how 
the community decides, but that actively influencing the extracellular metabolite con-
centrations is taken into account in its decision, while optimizing some assumed objec-
tive. In the steady state batch rational community (BC) case, since there is no explicit 
representation of the extracellular metabolite concentrations, the community decision 
maker can only take global constrains on uptakes by the community into account (see 
Methods).
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Importantly, the optimization problems involved in all models lend themselves to a 
symbolic reformulation via Karush Kuhn Tucker (KKT) [25] conditions for solving the 
models. When this approach is feasible (depending on model size), it has the advantage 
of identifying all optima. For larger chemostat models, we devised a numerical optimiza-
tion approach via a Mixed Integer Linear Program (MILP) formulation, for which effi-
cient solvers exist (see Methods for details).

Prisoners dilemma

As a first test for our community models, we used the metabolic network setting of the 
so-called called Prisoners Dilemma (PD) [26] game theory example from [17], which 
makes differences in conflict resolution mechanisms concrete. PD is a two player sym-
metric game with payoffs shown in Table  1. Mutual cooperation generates the largest 
overall benefit, but defection by one player yields a higher payoff for this player if the 
other player cooperates.

A biological PD may be yeast cells feeding off sucrose [17]. Sucrose is hydrolyzed to 
glucose and fructose extracellularly by the enzyme invertase. It is expected that produc-
ing and secreting invertase comes at a metabolic cost. However, it may also give a growth 
benefit, if being an invertase producer means that more sugars will be hydrolyzed close 
to the producer. If the cost is relatively high and the benefit relatively low, cheating by 
producing no invertase becomes a desirable strategy.
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Fig. 2 A PD microbial consortium [17]. The network is shown as a bipartite graph with metabolites 
(rectangles; red means extracellular) and reactions (diamonds). For turnover of a reaction, all its adjacent 
metabolites (indicated by edges) are used / produced jointly. Numbers next to edges are stoichiometric 
coefficients. The directionality of a reaction is determined by the arrows on the edges: arrows indicate 
products, and consequently arrows on both sides of a reaction denote bidirectionality. For example, tA,1 , the 
transport reaction of A in organism 1, is bidirectional. Likewise, the representation of µ1 , the growth reaction 
of organism 1, specifies that the reaction is uni-directional and uses one unit of Ac,1 and one unit of Bc,1 to 
produce biomass. The subscripts c and e denote intra- and extracellular compounds, respectively. Species 1 
and 2 (blue and brown symbols) can choose to crossfeed the compounds A and B to increase their yields by 
activating the reactions with the red dashed lines

Table 1 Generic prisoners dilemma payoff matrix (numbers unrelated to Fig. 2). The first and second 
number in the round brackets denote the payoffs for player 1 and 2, respectively.

Player 2 Player 1

Cooperate Defect

Cooperate (3, 3) (1, 4)

Defect (4, 1) (2, 2)
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An abstracted metabolic community version of PD is shown in Fig. 2. Species 1 and 
2 both have the capacity to produce metabolites A and B and need both to grow, but 
species 1 produces A and species 2 produces B at lower yield than the other. Thus, for 
the community, mutual cooperation (crossfeeding) will lead to the highest biomass yield, 
whereas for the individual species, the highest yield is obtained by not secreting any-
thing, while still being fed by the other species. The scenario, thus, requires conflict reso-
lution: it pits the community and individual decision makers against each other.

To explore decision making in CA, CC and BC models of the metabolic PD system 
in Fig. 2, we were interested in whether, using a specific simulation model, the commu-
nity achieves a fitness bonus by utilizing crossfeeding or whether the organisms refuse to 
cooperate. Quantitative simulation results are shown in Table 2. Apart from these sym-
metric (non-zero) solutions, non-symmetric solutions where one species has zero abun-
dance occur. We do not consider these solutions without potential for cooperation here.

As expected, without a joint objective for the organisms, CA finds no crossfeeding. 
CC and BC find crossfeeding solutions, but these solutions differ. In CC, the secretion 
fluxes are greater than the uptake fluxes because some of the secreted material will be 
flushed out of the chemostat, rather than taken up by another organism. This gener-
ally makes crossfeeding in chemostats less attractive. For example, when increasing the 
flow rate D, the benefit of crossfeeding vanishes and CC switches to a solution without 
crossfeeding. In BC, void of an active out flush mechanism, all secreted material is taken 
up. Prior analyses of this PD focused only on conflict resolution mechanisms: the Nash 

Table 2 Flux values of PD simulations for CA, CC and BC

Variable names correspond to the named reactions and compounds in Fig. 2, identified by subscripts to ν for fluxes 
and to C for concentrations. For CA and CC simulations, we set the inflow nutrient concentration mixture to Cin,Ae = 0 , 
Cin,Be = 0 and Cin,Se = 10 . As capacity constraints, the uptake fluxes of both organisms, defined in the uptake direction, 
were assumed to be smaller than their respective extracelleluar concentrations, νtS ≤ CSe , νtA ≤ CAe , νtB ≤ CBe (organism 
subscripts on the fluxes omitted). For BC, we used the culture uptake bounds uAe = 0 , uBe = 0 and uSe = 10 . The flow rate 
was set to D = 0.5 except for the last column that used a higher flow rate, D = 1.2

Variable CA CC BC CC D = 1.2

CAe 0 0.5 0

CBe 0 0.5 0

CSe 1.5 1.13 3.6

X1 1.42 1.97 0.5 1.07

X2 1.42 1.97 0.5 1.07

νtS ,1 1.5 1.13 10 3.6

νtA ,1 0 0.5 5 0

νtB ,1 0 − 0.627 -5 0

νrA ,1 0.5 0 0 1.2

νrB ,1 0.5 1.13 10 1.2

νµ,1 0.5 0.5 5 1.2

νtS ,2 1.5 1.13 10 3.6

νtA ,2 0 − 0.627 − 5 0

νtB ,2 0 0.5 5 0

νrA ,2 0.5 1.13 10 1.2

νrB ,2 0.5 0 0 1.2

νµ,2 0.5 0.5 5 1.2
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equilibrium mechanism suggested in [17] results in no crossfeeding, whereas giving the 
community decision maker precedence [13] yields crossfeeding. Our results demon-
strate how, in addition, assumptions on the environment influence crossfeeding predic-
tions qualitatively as well as quantitatively.

Coexistence microbial consortium

In a chemostat with two supplied nutrients, coexistence of two distinct species may 
emerge if, depending on the supply concentrations, the species reach a state in which 
they are limited by different nutrients [27, 28]. This (potentially competitive) coexistence 
does not rely on direct interactions such as crossfeeding. For the CA, CC and BC mod-
els, we investigated under what circumstances coexistence emerges for the non-cross-
feeding metabolic network models in Fig.  3. There, both species need both externally 
supplied compounds Ae and Be to grow, but because of their different network stoichio-
metries, species 1 needs more of compound Ac and species 2 needs more of compound 
Bc.

For CA and CC, we varied the nutrient composition of the inflow, ( Cin,Ae ,Cin,Be ), lin-
early from (0, 10) to (10, 0). We set the flow rate D = 1 and the uptake flux limitations to 
twice the corresponding substrate concentrations ( νtA,i ≤ 2 · CAe and νtB ,i ≤ 2 · CBe ; sym-
bols defined in Fig. 3).

Lacking a potential to crossfeed, CA and CC generated identical results. Figure 4a 
shows identical, horizontally mirrored, single-strain solutions, that is, solutions where 
only one species exists. The single-strain solution of species 1 starts flat at zero, which 
is a regime where the concentration of CAe is so low that species 1 cannot grow at the 
flow rate (D = 1) ; it is flushed out of the chemostat. After the zero regime comes a 
regime in which the growth rate of species 1 is limited by CAe and the concentration 
of species 1 increases linearly with Cin,Ae . This continues with increasing Cin,Ae and 
decreasing Cin,Be , until CBe becomes growth limiting, and the species concentration 
goes down linearly. A coexistence solution (CS) exists in one central regime, through-
out which species 1 is limited by CAe and species 2 is limited by CBe . At the concen-
tration mixture where the dark blue curve (CS) goes to zero and ends, the light blue 
curve (CS) touches the light green curve (SS). At this point, where the lower coexist-
ence solution goes to zero, the upper coexistence solution becomes a single-strain 
solution.
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Fig. 3 A coexistence microbial consortium of species 1 (blue) and species 2 (brown). Rectangles are 
metabolites and diamonds are reactions. Red rectangles are extracellular metabolites. The subscripts c 
and e denotes intra- and extracellular compounds, respectively. Numbers next to lines are stoichiometric 
coefficients
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For BC, we varied the culture uptake bounds uAe and uBe , which constrain the total 
uptake flux of the nutrients A and B of all consortium members together (see Methods 
for details). Specifically, we varied ( uAe ,uBe) linearly from (0, 1) to (1, 0). The individual 
community member’ uptake bounds were νtA,i ≤ 2 and νtB ,i ≤ 2 , where index i denotes 
the species. The main distinction from the chemostat scenario is that in BC, the single-
strain solutions are identically one (Fig. 4b), due to the relative species concentrations.

Despite the apparent similarity between CA and BC, the interpretation of the coexist-
ence solutions differs. For CA, a coexistence solution emerges without interspecies com-
munication, simply because, at the species level, the growth rates of species 1 and 2 are 
limited by the uptake rates of Ae and Be , respectively. This is a known result from che-
mostat modelling [22]. Thus, at their steady state concentrations, the species reach a self 
stabilizing equilibrium, where neither species can grow faster than the assumed D = 1.

In contrast, the growth rates of the species in the coexistence solution of BC  
(Fig. 4b) are not restricted by individual species uptake fluxes. Figure 4c shows for species 

Fig. 4 Coexistence results for the network in Fig. 3 for varying environmental conditions using CA, CC and 
BC. Abbreviations: SS - single-strain solution shows the value of a variable for one species, while the other 
species has zero biomass. CS - coexistence solution shows the value of a variable for one species, while for 
the other species, the value of the same variable is given by the other CS curve. a Species concentrations X 
for changing supply mixtures Cin in CA or CC; they yield identical solutions. b Relative species concentrations 
x for changing input flux mixtures u for BC. SS curves for the two species coincide. c Selected fluxes of species 
1 for changing input flux mixtures u for BC. d Same information as in (a), but only using CC and with an 
alternative objective function. e Same information as in (b), but with an alternative objective function
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1 (a horizontal mirror image of species 2) that the uptake flux νtA,1 always remains below 
its upper bound of 2. Instead, the growth rates are restricted by the global culture uptake 
bounds u. With regard to these constraints, the community steady state solutions, where 
the species grow at the same rate, are not the only solutions. As shown in Fig. 4c, in the 
coexistence solution, species 1 voluntarily grows at a rate that is lower than its maxi-
mal growth rate (CS max νµ,1 exceeds the take-all single-strain solution νµ,1 since it is 
operating at a lower relative species concentration). If the species did not communicate 
that growing at the same rate maximizes community biomass production, single species 
would claim more resources for themselves and break the metabolically stationary state. 
Thus, the coexistence solution we see is a result of the objective function.

To elucidate the dependence of the coexistence solutions of CC and BC on the com-
munity objective function, we changed the objective of CC and BC to maximizing the 
sum of growth rates, i νµ,iδ(Xi > 0) , rather than total community biomass produc-
tion, 

∑

i νµ,iXi ( Xi is replaced by xi in BC). Figure 4d-e shows that the changed objec-
tive function results in coexistence solutions that differ from the ones in Fig. 4a-b. This 
reflects the well-known impact of objective function choices on GSM-based predictions, 
and in addition underlines our arguments about the importance of assumptions on the 
environment.

Synthetic community of amino acid auxotrophic E. coli mutants

In an early example of engineered microbial communities, Wintermute and Silver [21] 
showed that E. coli mutants that are auxotrophic for single (different) amino acids would 
sometimes show co-growth in pairs in amino acid-free medium. This implies that the 
strains somehow supply each other with the required amino acid. This phenomenon 
termed syntrophy prompted follow-up contributions, both experimental [29] and theo-
retical [17, 30]. According to our quantitative criteria, 10 out of 91 of the strain pairs 
investigated by Mee et. al. [29] grew syntrophically (see Methods for details). Given that 
these synthetic communities require microbial interaction for growth, we chose them 
to test our approach on a biologically realistic example, with more realistic, larger-scale 
models. Specifically, we aimed to compare the decision making models in the chemostat 
setting.

We implemented an amino acid syntrophic community in the core model for E. coli 
model from the BIGG repository of metabolic network models [31] (model e_coli_
core with 72 metabolites and 95 reactions). This core model includes only the amino 
acids glutamine and glutamate. Since glutamine is derived from glutamate, glutamate/
glutamine deletion mutants would not make up a feasible syntrophic community. We 
therefore created an alanine/glutamine syntrophic community by adding alanine and 
its synthesis from glutamate to the core model. We denote the alanine and glutamine 
auxotrophic strains as ala-aux and gln-aux, respectively. To obtain solutions with and 
without co-growth, small amounts of alanine and glutamine were added to the simu-
lated medium, setting a dilution rate D = 0.1 (see Methods for details). Details about the 
specification of the syntrophic community model and the used simulation parameters 
are given in Additional file 1.

We can characterize and analyze the CC and CA models in the two-dimensional bio-
mass concentration space of steady-state solutions. The governing principle is that, at 
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any point in this space, the strains are growing as fast as they can—either individually or 
as a community for CA and CC, respectively. If that means growing faster or slower than 
D = 0.1 , no feasible solution ensues. Thus, solutions are only found for non-growing 
strains (zero biomass) or strains that have a biomass concentration for which the supply 
of some extracellular metabolite limits the growth rate to 0.1. For our models, the strains 
may either be limited by the supply of the amino acid for which they are auxotrophic, or 
by the glucose supply.

For CC, Fig.  5a shows the minimal residual absolute constraint violations when fix-
ing the biomass concentrations to a regular grid. Sometimes, the MILP solver hit its 
imposed time limit, introducing irregularities to the otherwise smooth color field. Relax-
ing the constraint on the biomass concentrations, each solution in Fig. 5a was used as a 
starting point for an iterative optimizer that minimized constraint violations, giving the 
solutions in Fig. 5b (see Methods for details).

This results in four distinct solutions in biomass concentration space that have signifi-
cantly lower residual than the other solutions and can be expected to be feasible. Three 
solution involve no actual communities: The trivial solution, for which no strain grows 
and two single-strain solutions where one strain is zero and the other strain grows, 
limited by the supply of the amino acid it depends on. Lastly, the upper right coexist-
ence solution is no longer limited by amino acids, but instead by glucose. The metabolic 
exchange fluxes in Fig. 5c show that, by crossfeeding, the cooperating strains generate as 
much amino acids as they need, as long as they have glucose.

Fig. 5 Syntrophic community in a chemostat with rational community model. (a)–(b): Maximal constraint 
violation and position in X space for 2500 starting points from a linearly spaced grid [0, 1] × [0, 1] . a shows 
the minimal residuals found by the MILP solver. b shows (final) constraint violations after using each point 
in (a) as a starting point for minimizing the residual with the Levenberg-Marquardt algorithm (MILP + LM). 
Violations smaller than 10−8 are truncated to 10−8 . c: Exchange of extracellular metabolites on a per strain, 
per solution basis. The values are net metabolite exchanges, scaled with the biomass concentration of the 
respective strain. Negative values means uptake. Only solutions with violations below 10−8 are shown
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The corresponding results for CA (Fig. 6b) include the trivial solution (no biomass), 
the two single-strain solutions and the coexistence solution of CC. In addition, we find 
a band of solutions in which all points in X space have a feasible coexistence solution. 
Despite that CA has no explicit mechanism for cooperation, many of the solutions in 
the band feature amino acid crossfeeding. As a consequence of this, ala-aux achieves a 
higher biomass concentration than in its single-strain solution.

The apparent crossfeeding emerges because of glucose excess; the strains may allo-
cate glucose wastefully without compromising their own growth rate (objective in CA) 
since amino acid availability limits the growth rate. One such wasteful glucose alloca-
tion strategy is to secrete amino acids, leading to crossfeeding. The location of a coop-
erative solution in the solutions band depends on two phenomena: First, crossfeeding, 
in which a strain supplies the other strain with the amino acid it cannot produce, but 
also, second, competition, in which a strain partly depletes an amino acid for the other 
strain. Figure 6c shows that, in all coexistence solution where the biomass concentration 

Fig. 6 Syntrophic community in a chemostat with rational agent model. (a)–(b): Maximal constraint violation 
and position in X space for 2500 starting points, as in Fig. 5ab. c: Exchange of extracellular metabolites on a 
per strain, per solution basis as in Fig. 5c. Negative values mean uptake. d: Extracellular glucose concentration 
on a per solution basis. The color scale is truncated upwards to make the gradient visible
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of gln-aux is higher than in its single-strain solution, ala-aux secretes glutamine (cross-
feeding). Analogously, when gln-aux biomass is lower than in its single-strain solution, 
ala-aux consumes gln (competition). Switching the roles of the strains, the same holds 
when ala-aux is higher and lower than its single-strain solution biomass concentration.

Finally, the solution band in Fig. 6b is limited by an upper and a lower diagonal. The 
upper diagonal corresponds to a glucose limitation. As seen in Fig. 6d, at the diagonal, 
the extracellular glucose concentration approaches the value 1.58, the lowest concentra-
tion at which the cells can still maintain the growth rate 0.1 (approximately, see Addi-
tional file  1). The lower diagonal corresponds to a competition limit; below it, even if 
the strains compete maximally for amino acids, at least one of them will still grow faster 
than D = 0.1 . Hence, multiple solutions for coexistence can be explained by the inter-
play of different mechanisms, together with decision making afforded by the internal 
degrees of freedom afforded by the metabolic network.

A technical observation is that the solutions band in Fig. 6b contains two kinds of 
solutions: those located on a regular grid and irregularly placed ones. The regularly 
located solutions correspond to Fig.  6a; they were found as feasible already by the 
MILP solver and directly transferred. The red points of Fig.  6a were handed to the 
Levenberg-Marquard solver, aiming at lowering their residuals, while relaxing the 
requirement of staying on the grid (see Section Methods). In this step, the solutions 
migrate across biomass concentration space. Some solutions reach acceptable residu-
als ( < 10−8 ) inside the solutions band, but typically not on the grid points.

Discussion
Our study draws heavily on the long tradition of chemostat community models that 
take the extracellular environment into account [22, 27]. Key results of chemostat 
analysis are that, with constant nutrient concentrations in the feed, competing species 
may coexist under D-growth, if they are limited by different nutrients [28]. This ena-
bles models with (potentially multiple valid) coexistence states originating from both 
crossfeeding and differential nutrient limitations [32]. However, these models do not 
incorporate intracellular metabolic networks with degrees of freedom in establishing 
fluxes, and thus no decision making. dFBA and related approaches incorporate both. 
However, the benefit of compute-intensive calculation of transient metabolic states by 
dFBA is questionable: To be accurate, it requires explicit uptake kinetics to represent 
species interactions via the extracellular environment. If only metabolically steady 
states are requested, which is often the case [14, 17], how to deal with multiple steady 
states using dFBA is unclear. The present work aims to combine the two worlds of 
chemostats and FBA/GSMs, to capture all potential steady states without computing 
transient states.

To incorporate FBA models in the chemostat community model framework, we 
accounted for the fundamentally game theoretic problem of multiple decision mak-
ers [18]. In line with previous proposals for community modeling, we explored two 
flavors: rational agent and rational community. For our rational community models, 
we allowed the community to optimize both its shared metabolism and the environ-
mental nutrient concentrations to achieve a community objective. However, we did 



Page 14 of 22Theorell and Stelling  BMC Bioinformatics          (2023) 24:262 

not explicitly optimize the species concentration variables. This acknowledges that, 
if different species concentrations favor different species, and thereby yield multiple 
optima in terms of fluxes and nutrient concentrations, we do not know which opti-
mum the community would choose.

One would expect that a community’s decision depends on the overarching frame-
work and on the particular objective imposed. For example, by maximizing biomass 
production of the community, crossfeeding emerges in the PD scenario. However, 
our community models demonstrate that also environmental variables play a role. 
For example, by increasing the flow rate in the chemostat, the benefit of crossfeeding 
decreased, so that rational communities abolished crossfeeding. This phenomenon 
might be relevant for the gut microbiome, where the significance of other aspects of 
flow has been investigated [33].

Our models also suggest that coexistence in batch (BC) relies on a different mech-
anism than in chemostat (CA and CC). In BC, the community steady state is not 
a consequence of nutrient limitations caused by community growth. Coexistence 
requires agreement to coexist in the community, without any external enforcement 
mechanism, contrary to the chemostat models. Agreement without enforcement 
may amount to forced altruism, a modelling artifact discussed in detail in the con-
text of PD by Chan et. al. [20]. The emergence of forced altruism in terms of coex-
istence at community steady state, rather than in terms of crossfeeding, is to our 
knowledge a new perspective that may be relevant for future community simulation 
methods.

For the amino acid auxotrophic mutants, a surprising result was that the non-
cooperating chemostat model CA found many more cooperative solutions than the 
chemostat model CC that enforces cooperation. Specifically, we found a band of 
cooperative and competitive solutions in biomass concentration space. The emer-
gence of this band depended on the strains being amino acid, rather than glucose 
(energy) limited, leaving the models many degrees of freedom even when maximizing 
their growth rate.

Experimentally, 10 (out of 91) pairs of single amino acid deletion mutants showed 
syntrophic growth [29]. Our results suggest that the mutants do not crossfeed amino 
acids in a targeted way based on the partners’ needs, but instead both secrete an 
array of amino acids. Co-growth would then occur spontaneously when the arrays of 
secreted amino acids happen to include the auxotrophies of both mutants. A hypo-
thetical mechanism for secretion of amino acids in this case is that, when a mutant 
strain reaches a synthetic amino acid starvation, lacking an evolved regulatory 
response, some amino acids may start enriching. To validate such predictions experi-
mentally, one needs metabolomics data for amino acid deletion mutants growing 
under starvation for the respective amino acid. Unfortunately, only one correspond-
ing experiment is available in the literature, and this analysis of histidine auxotrophic 
E. coli measured only intracellular metabolomics [34]. The dataset is uninformative 
for our amino acid secretion hypothesis, and conclusions on the subject require tar-
geted experimentation.
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The most important methodological finding for the synthetic community is that 
CA yields multiple non-trivial solutions in biomass concentration space. The band 
of stationary solutions implies that, approaching the problem with a dFBA chemo-
stat model directly, one of the stationary states found here will be reached. Which 
state dFBA finds will depend on the initial state, but also on which FBA solutions the 
dFBA algorithm chooses in each update step, acknowledging that the FBA problem 
may have several distinct solutions. Hence, a single dFBA simulation is in itself of lit-
tle value and using dFBA to uncover the full solution band seems difficult compared 
to CA.

A topic we only touched upon is the effect of the specific objective function choices on 
model predictions, which is a central one for GSM analysis. We believe that the qualita-
tive results of PD are relatively robust to changes in the community objective, such as 
switching to a sum of growth rates objective. Contrarily, for the coexistence example, 
we saw that changing the community objective function gave a new set of coexistence 
states.

Lastly, in the chemostat literature [27], stability of stationary solutions of ODEs is a 
central topic, which we did not address. If we assume that the microbial species can 
make decisions and actively uphold a state or an equilibrium, exactly what stability 
means in this scenario may need additional theoretical attention. Such concepts may be 
important to evaluate resistance of microbial communities to invasion by pathogens.

Conclusions
The analysis of GSMs has become a standard approach for the in-silico exploration of 
microbial communities. The step from simulating a single species, to simulating a com-
munity, however, adds challenges in terms of microbial decision making, but also with 
regard to how the cultivation environment is modelled. We expect that our results on 
applications ranging from prototypical game theory scenarios to realistic communities 
illustrate the importance of considering decision making and environment jointly.

Methods
General consortium models

The organisms in all the considered environment and decision making scenarios are rep-
resented by steady state constraint based models. The vector of metabolic fluxes (reac-
tion rates) of microbial species i is denoted νi ∈ R

nνi . One element of each flux vector 
νi is the (specific) growth rate νµ,i . Modelling reactions between nS intracellular com-
pounds at constant concentrations, intracellular stationary state introduces a stoichio-
metric matrix Si ∈ R

nS×nνi for which it holds that

Furthermore, for some matrix Ai ∈ R
nA×nνi and a vector bi ∈ R

nA , the fluxes have capac-
ity constraints

(1)Siνi = 0, ∀i .

(2)Aiνi ≤ bi, ∀i .
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In case the index i corresponds to an uptake reaction, bi may be a function of the extra-
cellular concentrations of the metabolites that the reaction takes up.

For the chemostat, we are interested in the steady state of the extracellular com-
pound concentrations C ≥ 0 ∈ R

nC (we denote dimensionalities of variable x by nx ) 
and the organism concentrations X ≥ 0 ∈ R

nX (see also Fig. 1). We consider a system 
with constant and equal inflow and outflow rates (dilution rate) D. The inflow has nutri-
ent concentrations Cin ∈ R

nC . The matrix Ti ∈ R
nC×nνi maps reactions to exchanges of 

extracellular compounds. Assuming that compounds and cells are flushed out at a rate 
proportional to their concentrations, the dynamics of C and X are described by:

For steady state, we consider the case where the left-hand sides of the system of ordi-
nary differential equations (ODEs) Eqs. (3-4) are zero and Eqs. (1-2) hold. In contrast, in 
steady state batch, the extracellular compound concentrations are assumed to have no 
influence on the fluxes. To avoid infinite uptakes, flux exchanges with the environment, 
modeled by changes in C in Eq. (3), are captured by a vector of culture uptake bounds, 
u ∈ R

nC . The species concentrations X are exchanged for the relative species concentra-
tions x. The change to relative species concentrations allows them to stay constant over 
time under community steady state. To represent community steady state, a community 
growth rate ν⋆µ is introduced. In combination, the steady state batch system is then:

We use these formulations of chemostat and batch in metabolically stationary state to 
introduce four models. For ease of comparison, all model equations, plus extra informa-
tion such as Karush Kuhn Tucker (KKT) [25] conditions used for solving the models, 
can be seen side-by-side in Additional file 1: Table S3.

Rational agents models

Based on the assumption that each organism adjusts its fluxes to optimize its growth 
rate, and denoting variables resulting from the optimization problem with hat notation 
ν̂i , the chemostat (CA) model is:

(3)
dC

dt
=D(Cin − C)−

∑

i

TiνiXi

(4)
dXi

dt
=Xi(νµ,i − D), ∀i .

(5)

u−
∑

i Tiνi · xi ≥ 0
Siνi = 0, ∀i
Aiνi ≤ bi, ∀i

xi(ν
⋆
µ − νµ,i) = 0, ∀i
∑

i xi = 1 .

(6)

D(Cin − C)−
∑

i Tiν̂i(C)Xi = 0
Xi(D − ν̂µ,i(C)) = 0, ∀i

C ,X ≥ 0
ν̂i(C) = argmax

νi∈R
nνi

νµ,i, ∀i

s.t. Siνi = 0, ∀i
Aiνi ≤ bi(C), ∀i .
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Note that without implementing a concentration dependency of the capacity constraints 
via b(C), the optimization problem is independent of the substrate and organism con-
centrations. This means that the modeled cells do not adapt their growth to changes in 
extracellular nutrient concentrations (no negative feedback possible). In most cases, this 
will imply that no solution will fulfill the D-growth requirement and only the trivial solu-
tion X = 0 will be feasible.

Correspondingly, the steady state batch rational agent (BA) system is:

In this formulation, the rational agent assumption does not include the global equations 
(first lines) in the optimization problem. Furthermore, since the extracellular substrate 
concentrations are assumed to be constant, the optimization problem is independent of 
the first two lines of Eq. (7). In this scenario, community steady state is only possible for 
organisms that independently developed the exact same (condition dependent) maximal 
growth rate, a situation that will never occur in practice.

Rational community models

To represent a chemostat environment and a rational community, using a concatenated 
flux variable ν = [ν1, , , νnX ] ∈ R

nν , the CC model reads:

Note that, contrary to the rational agent models, Eq.  (3) is now inside the optimiza-
tion problem, and therefore, so are also all instances of the global variables C. Another 
important detail of the CC model is that the abundances X do not enter the optimization 
problem as optimization variables.

The BC model, as for the BA model, has no explicit representation of C, but different 
from the BA model, the community takes the macroscopic equation u−

∑

i Tiνi · xi ≥ 0 
into account in the decision making process, leading to the system:

(7)

u−
∑

i Tiν̂i · xi ≥ 0
xi(ν

⋆
µ − ν̂µ,i) = 0, ∀i
∑

i xi = 1
x ≥ 0

ν̂i = argmax
νi∈R

nνi

νµ,i, ∀i

s.t. Siνi = 0, ∀i
Aiνi ≤ bi, ∀i .

(8)

Xi(D − ν̂µ,i(X)) = 0, ∀i
X ≥ 0

ν̂(X) = argmax
ν∈Rnν ,C∈RnC

∑

i νµ,iXi

s.t. D(Cin − C)−
∑

i TiνiXi = 0
Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i
C ≥ 0 .
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Symbolic solutions

The models defined by Eqs. (6)–(9) are algebraic systems (if bi(C) is algebraic) with inner 
optimization problems. All computations in this manuscript were performed using a 
reformulation of the original systems using KKT, which turns Eqs.  (6)-(9) into purely 
algebraic systems (Additional file  1: Table  S3). Notice that the optimization problems 
in Eqs. (6)–(9) are all linear in the optimization arguments, implying that KKT provides 
sufficient conditions for global optimality [25]. The small examples (Fig. 2 and 3) were 
solved symbolically in Mathematica 9. Symbolic solutions have the advantage that we 
are confident that all solutions are found.

Numerical approach to the chemostat models

For larger systems, prompted by computational infeasibility of the symbolic approach, 
we developed a numerical approach. As numerical methods applicable to Eq.  9 have 
been developed elsewhere [19, 20], we focus on the chemostat models.

Introducing the Lagrange multipliers �1 ∈ R
nA for CA ( �1 ∈ R

nA+nC for CC) and 
�2 ∈ R

nS for CA ( �2 ∈ R
nS+nC for CC), corresponding to inequality and equality con-

straints and an element wise product ⊙ , the algebraic, optimization free formulations 
of CA and CC ensue (Eqs. (10) and (11)) [25]. The last rows of (10) and (11) are the 
so-called complementary slackness conditions, assuring that, either an inequality con-
straint has to be an equality, or its corresponding Lagrange multiplier has to be zero. The 
multiplicative representation used in (10) and (11) is only one of many possible formula-
tions of complementary slackness.

CA

(9)

xi(ν
⋆
µ − ν̂µ,i(x)) = 0, ∀i

∑

i xi = 1
x ≥ 0

ν̂(x) = argmax
ν∈Rnν

∑

i νµ,ixi

s.t. u−
∑

i Tiνi · xi ≥ 0
Siνi = 0, ∀i
Aiνi ≤ bi, ∀i .

(10)

D(Cin − C)−
�

i

TiνiXi = 0

Xi(D − νi,µ) = 0, ∀i

C ,X ≥ 0

Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i






0

.

.

.

−1







T

+ �
T
i,1Ai + �

T
i,2Si = 0, ∀i

�i,1 ≥ 0, ∀i

�i,1 ⊙ (Aiνi − bi(C)) = 0, ∀i
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CC

Limiting bi(C) to be piece-wise linear concave functions, Eqs. (10) and (11) are 
quadratic systems, with potential to have many solutions. Querying the solutions 
that optimize some quadratic polynomial of the system variables ( ν,X ,C , � ) results 
in a non-convex quadratic program, which can be solved directly with branching 
techniques; this includes guarantees of feasibility and global optimality [35]. The 
drawback with this approach is that it has no favorable bounds on the required com-
putation time (NP-hard).

The non-convex quadratic program can be reduced to a more standard mixed integer 
linear problem (MILP), which still is NP-hard, but which has proven solvable for many 
problem instances with large numbers of variables [36]. To arrive at a MILP, for both 
(10) and (11), we (1) fix X to a grid and (2) make a linear formulation of the complemen-
tary slackness conditions. With this, no quadratic expressions remain.

(1) Specifying a grid for the X vector and solving the system (10) or (11) for each grid 
point turns all quadratic expressions, except the complementary slackness condi-
tions, into linear expressions. By fixing X, the equality constraints including X may 
no longer be feasible. For these equality constraints, two non-negative slack vari-
ables are introduced, one with positive and one with negative sign. With the slack 
variables, the system is feasible. Direct minimization of the slack variables gives the 
solution with minimal constraint violations.

(2) (2) By introducing a vector of binary variables � with the same number of elements 
as �1 , a large constant � and a variable q which is either equal to Aν − b(C) or 
−C , depending on which equation we consider, the linear complementary slackness 
conditions are:

(11)

D(Cin − C)−
�

i

TiνiXi = 0

Xi(D − νi,µ) = 0, ∀i

C ,X ≥ 0

Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i





























0

.

.

.

−X1

0

.

.

.

−XnX

0

.

.

.





























T

+ �
T
1

�

A −
db(C)
dC

0 −I

�

+ �
T
2

�

S 0

−
�

i

TiXi −ID

�

= 0, ∀i

�1 ≥ 0

�1 ⊙

�

(Aν − b(C))

−C

�

= 0



Page 20 of 22Theorell and Stelling  BMC Bioinformatics          (2023) 24:262 

Note that 0 ≤ �1 and q ≤ 0 are not introduced in Eq. (10), but exist already in Eqs. 
(10) and (11).

By introducing a grid in the X variable, we have traded the difficulty of solving a non-
convex quadratic problem for solving many MILPs. The precision of the results obtained 
this way will depend on the granularity of the grid and thus the number of MILPs. Keep-
ing the grid point density fixed, the number of MILPs increases exponentially with the 
number of organisms. A work around to avoid an intractable number of MILPs is utiliz-
ing a relatively sparse grid and refining the obtained solutions using gradient based opti-
mization. Setting the objective as the sum of squares of constraint violations of system 
(10) or (11) the solutions were refined using the Levenberg-Marquardt algorithm [25]. 
Note that, for the refinement step, the optimizer may get stuck in a local minimum and 
never reach a feasible solution. For a solution to be feasible (and globally optimal), the 
maximal constraint violation should be virtually zero ( < 10−8 used here).

Quantitative criteria for syntrophic growth

Mee et. al. [29] investigated 14 single amino acid deletion mutants, leading to 91 
pair experiments. The data provided for the growth experiments is in terms of meas-
ured fold increase on a per strain level; it captures by how much the optical density 
of a strain increases when paired with another strain, compared to when alone in the 
same medium. To state syntrophic growth, we required both strains to display at least a 
10-fold increase.
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