
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Sun et al. BMC Bioinformatics          (2023) 24:454  
https://doi.org/10.1186/s12859-023-05566-9

BMC Bioinformatics

PMFFRC: a large‑scale genomic short reads 
compression optimizer via memory modeling 
and redundant clustering
Hui Sun1, Yingfeng Zheng1, Haonan Xie2, Huidong Ma1, Xiaoguang Liu1* and Gang Wang1* 

Abstract 

Background:  Genomic sequencing reads compressors are essential for balancing 
high-throughput sequencing short reads generation speed, large-scale genomic 
data sharing, and infrastructure storage expenditure. However, most existing 
short reads compressors rarely utilize big-memory systems and duplicative information 
between diverse sequencing files to achieve a higher compression ratio for conserving 
reads data storage space.

Results:  We employ compression ratio as the optimization objective and propose 
a large-scale genomic sequencing short reads data compression optimizer, named 
PMFFRC, through novelty memory modeling and redundant reads clustering tech-
nologies. By cascading PMFFRC, in 982 GB fastq format sequencing data, with 274 GB 
and 3.3 billion short reads, the state-of-the-art and reference-free compressors HARC, 
SPRING, Mstcom, and FastqCLS achieve 77.89%, 77.56%, 73.51%, and 29.36% average 
maximum compression ratio gains, respectively. PMFFRC saves 39.41%, 41.62%, 40.99%, 
and 20.19% of storage space sizes compared with the four unoptimized compressors.

Conclusions:  PMFFRC rational usage big-memory of compression server, effectively 
saving the sequencing reads data storage space sizes, which relieves the basic stor-
age facilities costs and community sharing transmitting overhead. Our work furnishes 
a novel solution for improving sequencing reads compression and saving storage 
space. The proposed PMFFRC algorithm is packaged in a same-name Linux toolkit, 
available un-limited at https://​github.​com/​fahai​hi/​PMFFRC.

Keywords:  Short reads data, Data compression, Fastq, Parallel algorithm

Background
With the prosperity of next-generation sequencing (NGS) technologies, genomic 
sequencing data holds the characteristics of large data volumes, multiple files, and 
prosperous species sources [1]. For example, until September 2023, through 829,822 
sequencing times of 845,109 bio-samples, the bio-sequencing data compressed by the 
gzip (http://​www.​gzip.​org) in the CNGB Sequence Archive (https://​db.​cngb.​org/​cnsa) 
was up to 11,920 terabytes (TB), if stored in Amazon cloud at $0.125 each gigabyte (GB), 

*Correspondence:   
liuxg@nbjl.nankai.edu.cn; 
adairmillersh@gmail.com

1 Nankai‑Baidu Joint Laboratory, 
College of Computer Science, 
Nankai University, Tianjin, China
2 Institute of Artificial 
Intelligence, School of Electrical 
Engineering, Guangxi University, 
Nanning, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05566-9&domain=pdf
https://github.com/fahaihi/PMFFRC
http://www.gzip.org
https://db.cngb.org/cnsa


Page 2 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 

will cost $1,525,760 per year. Therefore, compressing large-scale genomic sequencing 
data is essential in reducing the storage infrastructure construction expenditure and 
data transmission consumption, especially for sequencing reads, which account for 42% 
of the whole genomic sequencing data [2, 3].

Different from ordinary textual data (such as big social data), genomic reads data has 
the following bioinformatic attributes. (i) The formatting of reads characters is uncom-
plicated, which consists of the alphabet Σ = {A, C, G, T, N} simply. (ii) The redundancy 
reads data is high, mainly relying on sequencing coverage of diverse platforms. (iii) 
Homologous species reads data retains heightened similitude. Recently, reference-based 
and reference-free dedicated genomic sequencing reads compressors have been pro-
posed by taking full advantage of reads’ bioinformatic attributes [4, 5].

The first category, of reference-based compressors, acquires the position details of 
reads in the reference genome via sequence alignment technology to achieve redundant 
substrings replacement, such as RENANO [6], HRCM [7], and NRGC [8]. Reference-
based methods are more helpful in compressing reference-matched reads, but their high 
compression ratio relies on reference genome selection. In contrast to reference-free 
compressors, the weaknesses of reference-based approaches can be summarized as fol-
lows. (i) Selecting an appropriate reference genome for a target dataset to be compressed 
can be challenging, and using a mismatched reference genome may result in inferior 
compression performance. (ii) Reference-based methods incorporate additional knowl-
edge for encoding and decoding. This flexibility-limited technology hinders compressed 
data sharing and the widespread adoption of compressors. (iii) Aligning short reads 
data to a selected reference genome is a CPU-intensive and memory-unfriendly com-
putational process, which demands higher time and memory consumption. However, 
in contrast, reference-free compressors utilize reads’ redundant details and character 
formatting attributes for compression optimization, which have heightened application 
prospects in multi-species reads compression, such as Quip(-a) [9], BEETL [10], DSR2C 
[11], FQSqueezer [12], and NanoSpring [13]. Here, we will introduce some state-of-
the-art and reference-free short reads compressors relevant to our work. See references 
[4] and [5] for more detailed reviews of fastq format genomic sequencing reads data 
compressors.

HARC [14] reorders short reads via their genome position details and then removes 
the redundancy sub-strings between consecutive reads, which achieves 1.4–2 × com-
pression ratio improvement over Orcom [15] and Leon [16] in 3 billion Illumina short 
reads data. From the same research team, SPRING [17] enhances HARC by supporting 
variable-length reads and handles all fastq streams. In their experiment, SPRING com-
presses 195 GB of 25 × whole genome human data from Illumina’s NovaSeq platform to 
7 GB, around 1.6 × smaller than Fastore [18].

PgRC [19] assembles pseudo-genomes through approximate common superstring 
reads and then encodes them by reads’ mapping sites on the pseudo-genome, which 
bests in compression ratio over Minicom [20] and SPRING by up to 20% and 15% on 
average, respectively. CURC [21] improves PgRC by CPU and GPU collaborative com-
puting, which achieves 2.76–3.14× and 4.15–6.54× speedup in compression and 1.26–
1.65× and 1.6–2.52× decompression speedup compared with SPRING and PgRC on 18 
single-end and 13 paired-end sequencing datasets.



Page 3 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 	

Mstcom [22] introduces the concept of Hamming-shifting graphs to encode similar 
redundant reads and employ compressors BSC (http://​libbsc.​com) and LZMA (http://​
www.​7zip.​org) for compressing the encoded file streams. Like Coil [23] and ReCoil [24], 
Mstcom reduces redundant information by cross-referencing similar reads. Because the 
similarity comparison between different string reads is time-consuming, such methods 
consume more time and memory space. The compression performance of Mstcom can 
be 10–30% better than SPRING, Minicom, and PgRC on 14 single-end and 7 paired-end 
datasets.

FastqCLS [25] is the latest compressor, handy for compressing long and short genomic 
sequencing reads. It first extracts the features of reads via a novel scoring model and 
reorders them according to the numeral eigenvalues. Once the similarity reads are 
aggregated, the reads are compressed by the general-purpose compressor ZPAQ (http://​
mattm​ahoney.​net/​dc/​zpaq.​html) to improve the overall compression ratio. The experi-
mental results on the MPEG [2] and LFastqC [26] benchmark datasets demonstrate that 
FastqCLS achieves compression ratios of 2.28–3.37 for long reads datasets, and 4.01–
17.17 for short reads datasets. Compared with the pure ZPAQ compressor, FastqCLS 
achieves an average compression ratio boost of 4% (up to 18%) via the reads scoring 
model.

According to our investigation, existing reference-free short reads compressors rarely 
use redundancy information between different fastq files and large equipment memory 
in actual compression scenes to improve compression ratio. For example, in medium 
and long-term genomic data backup systems, the memory of the compression server 
often reaches hundreds or thousands of gigabytes (GB). Suppose the peak memory of 
the compressor holds only hundreds of megabytes (MB). In that case, it has advantages 
in memory usage but is ineffective for large memory to improve the compression ratio 
in multi-fastq files. To this end, we take the genomic sequencing reads compression ratio 
as the optimization objective and propose a large-scale reads compression optimization 
method named PMFFRC (Parallel Multi-Fastq-File Reads Clustering). The experimental 
results of actual 982 GB fastq format sequencing data, with the size of 274 GB and 3.3 
billion reads, show that the average maximum compression ratio gains of compressors 
HARC, SPRING, Mstcom, and FastqCLS optimized by PMFFRC are 77.89%, 77.56%, 
73.51%, and 29.36%, respectively. The maximum percent storage savings of the four cas-
caded compressors are 39.41%, 41.62%, 40.99%, and 20.19%, respectively. In the current 
version, the PMFFRC optimizer only compresses short reads, which accepts a folder 
containing multiple fastq files and outputs a compressed file *.pmffrc.

Implementation
Let F = {F0, F1, …, Fv-1} denotes a group of fastq files, Ri = {Ri

0,R
i
1,R

i
2, . . . , R

i
(|Fi|/4)−1 } 

denotes a collection of string short reads in the i-th fastq sequencing file, |Fi| denotes the 
number of lines in Fi, n denotes the average length of sequencing reads, Y represents the 
cascaded optimization compressor, Uram represents the user-preset safe memory thresh-
old (less than system memory), and K represents the number of clusters, where i = 0, 
1, 2, …, v-1. The proposed optimization method PMFFRC includes two parts: sequenc-
ing file clustering (Section “Sequencing files clustering”), joint compression and decom-
pression (Section “Joint compression and decompression”). PMFFRC benefits from the 

http://libbsc.com
http://www.7zip.org
http://www.7zip.org
http://mattmahoney.net/dc/zpaq.html
http://mattmahoney.net/dc/zpaq.html


Page 4 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 

redundant short reads information entropy of similar fastq format sequencing files. 
Additional file 1: Section S1 gives more details for theoretical entropy analysis.

Sequencing files clustering

The PMFFRC optimizer achieves high compression ratios by clustering redundant 
reads together in different fastq files and increases cascaded compressor robustness by 
memory modeling. In the PMFFRC workflow, sequencing files clustering includes four 
stages. (i) Pre-compression: estimates the peak memory consumption on the overall 
fastq files by using random sampling technology. (ii) Feature extraction: converts short 
reads strings into numerical features, simplifying calculations and improving the optimi-
zation efficiency of PMFFRC. (iii) Similarity calculation: evaluates the similarity of each 
group file through the collection similarity assessment method. (iv) Fastq files clustering: 
ensures the algorithm robustness of the optimized compressor via a two-level clustering 
parameter selection strategy.

Pre‑compression

The purpose of pre-compression is to evaluate the maximum memory consumption of 
the compressed short reads data in dataset F. Let Yres denotes the resident memory of 
compressor Y (such as dictionaries and hash tables), and Yreads denotes the extra mem-
ory space opened for genomic sequencing reads. To evaluate compression peak memory 
Ycpm = Yres + Yreads of Y on dataset F, PMFFRC performs the following steps:

Step 1: Randomly select x1 and x2 sets of sequencing data from Fi to construct pre-
compression fastq files X1 = {x10 , x

1
1 , x

1
2 , …, x1v×x1−1 } and X2 = {x20 , x

2
1 , x

2
2 , …, x2v×x2−1 }, each 

group xej  contains description information, sequencing reads, and quality scores, where 
j = 0, 1, 2, …, v × xe-1, i = 0, 1, 2, …, v-1, x2 >  > x1 and e = 1, 2.

Step 2: Run compressor Y for pre-compressing datasets X1 and X2, getting Y’s peak 
memory Y 1

peak and Y 2
peak on datasets X1 and X2.

Step 3: Estimate the compression peak memory Ycpm of algorithm Y on datasets 
F = {F0, F1, …, Fv-1} according to the formula (1):

In formula (1), |Fi|/4 denotes the total number of reads in Fi, where i = 0, 1, 2, …, v-1.

Feature extraction

In pre-compression stage, PMFFRC estimated the maximum memory consumption Ycpm 
of compressor Y on F. However, the calculated Ycpm might exceed the system memory. 
Thus, PMFFRC compresses similar fastq files in batches via redundant reads clustering 
method, using reads’ feature vectors and user-preset safe memory threshold. However, 
converting string reads to digitized feature vectors is time-consuming. Therefore, PMF-
FRC utilizes CPU multi-cores to accelerate this stage in parallel.

Let Pr denotes the number of utilized CPU cores, Ri = [ ̇Ri
0, Ṙ

i
1, Ṙ

i
2, . . . , Ṙ

i
(|Fi|/4)−1 ] 

denotes a numeral feature vector of Ri, and Ṙi
j is the feature value of read Ri

j . Referring to 
the design idea of the reads scoring model in FastqCLS [25], PMFFRC employs Pr CPU 

(1)Ycpm = Yres + Yreads = Y 1
peak +

Y 2
peak − Y 1

peak

v × (x2 − x1)
×

v

i=0

|Fi|

4



Page 5 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 	

cores to extract sequencing reads feature values in parallel through the data cycle divi-
sion strategy [27], as shown in the formula (2):

In formula (2), E = {A, C, G, T}, I
(

R
i,p
j [r] = E[e]

)

 is an indicator function, p denotes 

the p-th CPU core, and p = i % Pr, where j = 0, 1, 2, …,(|Fi|/4)-1, i = 0, 1, 2, …, v-1.

Similarity calculation

After obtaining the feature vector Ri = [ ̇Ri
0, Ṙ

i
1, Ṙ

i
2, . . . , Ṙ

i
(|Fi|/4)−1 ] of Ri in Fi, PMFFRC 

evaluates the redundant reads similarity between different fastq files. Let S denotes a 
similarity collection of feature vectors Ra and Rb . In practical scenarios, the data scale 
between Fa and Fb is unbalanced, usually. To offset the impact of fastq file size differences 
on similarity calculation between Fa and Fb, PMFFRC introduces correction parameters 
α and dice coefficient [28], uses Pr CPU cores, and improves the parallel similarity calcu-
lation model as shown in formula (3):

In formula (3), sim(Ra,Rb) denotes the similarity value between the feature vectors Ra 

and Rb . Where α = 1/(1−

∣

∣

∣

∣

∣

∣
R
p
a

∣

∣

∣−

∣

∣

∣R
p
b

∣

∣

∣

∣

∣

∣

∣

∣

∣R
p
a

∣

∣

∣+

∣

∣

∣R
p
b

∣

∣

∣

) , p = s % Pr, s = 0, 1, 2, …, |S|-1, |S|= v×(v−1)
2

 , a = 1, 

2, 3, …, v-1, b = 0, 1, 2, …, v-2, and a > b.

Fastq files clustering

For computing friendly, PMFFRC converts the string reads files into numerical vectors 
to calculate S via formula (3). After that, it sorts S in descending order using the quick-
sort algorithm [29] and performs fastq files clustering. In order to select an appropriate 
parameter K, PMFFRC utilizes a two-level clustering parameter selection strategy. Spe-
cifically, PMFFRC first determines the files-level parameter K1 and then slightly adjusts 
it to get the reads-level parameter K2.

In actual experimental observations, the peak memory Ycpm of Y shows a nonlinear 
growth trend with the fastq data scale growth of F in some cases (such as FastqCLS). 
Considering algorithm robustness, by modeling Uram and Ycpm, PMFFRC introduces an 
empirical correction factor β to artificial-fixed the files-level clustering parameter K1, the 
calculation model as shown in formula (4):

In formula (4), the parameter K1 represents the number of files-level clusters deter-
mined by the memory modeling method. However, there is a significant variation in 
the number of reads across different sequencing files. When the number of short reads 

(2)Ṙ
i,p
j =

3
�

e=0









�

�

�
R
i,p
j

�

�

�

�

r=0

I
�

R
i,p
j [r] = E[e]

�

+ 1









/n

(3)sim
(

R
p
a,R

p
b

)

= α ×
2×

∣

∣

∣
R
p
a ∩ R

p
b

∣

∣

∣

∣

∣

∣R
p
a

∣

∣

∣+

∣

∣

∣R
p
b

∣

∣

∣

(4)K1 = ⌈β ×
Yreads

Uram − Yres
⌉



Page 6 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 

within a cluster becomes too large, it may exceed the predefined memory threshold Uram 
for compression. Therefore, optimizer PMFFRC dynamically adjusts t K1 to get the num-
ber of clusters K2 at reads-level as the final clustering parameter K.

Figure 1 illustrates the clustering of five sequencing fastq files using the proposed two-
level (where v = 5 and K1 = 2) clustering parameter selection strategy.

In Fig. 1, K1 = 2, and M = 1060 denotes the overall reads number. According to K1 and 
M, PMFFRC gets the average number of reads in each cluster as ave = ⌊M/K1⌋  = 530. 
However, the value of ave is calculated under the K1 condition, and due to significant 
variations of the reads number in different fastq files, it is challenging for the optimizer 
PMFFRC to achieve the ideal reads number average state for each cluster. Therefore, 
PMFFRC fine-tunes at the reads level to ensure that the actual number of reads within 
each cluster is close to the ave value. Figure 1a shows the similarity matrix calculated 
from formula (3). In Fig.  1b, our optimizer PMFFRC initiates the analysis from the 
matrix element with the highest similarity score and employs a straightforward "first 
cluster first priority" principle when clustering fastq files. This straightforward imple-
mentation strategy guarantees an overall time advantage for the optimizer. PMFFR first 
detects that max(S) is sim(R3,R0) = 0.92, which indicates the redundant reads between 
fastq files F3 and F0 have the highest similarity, so it adds F0 and F3 to the cluster C0. 
Then, PMFFRC calculates the total number of reads |C0| is 340 in C0, which is less than 
ave, so it tries to add the fastq file F1 in C0. However, |C0| is 650 at this time, which is 
greater than ave, so it discards F1 and obtains the first cluster C0 = {F0, F3}. After the 
above steps, the first cluster C0 has been received. Thus, PMFFRC removes the elements 
in collection C0 from the similarity matrix and selects the second cluster files. In Fig. 1c, 

Fig.1  Example of clustering fastq files using a two-level parameter selection strategy



Page 7 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 	

d, after the first cluster has been built, the remaining components are sim(R2,R1 ), 
sim(R4,R1 ), sim(R4,R2 ), and sim(R4,R3 ), where sim(R4,R1) = 0.90 is the highest similar-
ity score. Therefore, PMFFRC adds F4 and F1 to a new cluster C1. Now, |C1|= 460, which 
is less than ave. If PMFFRC adds F2 to cluster C1, |C1| will exceed ave. Consequently, 
PMFFRC ends the second clustering stage to obtain cluster C1 = {F1, F4} and adds fastq 
file F2 to another cluster C2 = {F2}.

Via user-preset safe memory threshold and reads feature vectors, PMFFRC clusters 
similar fastq files together. Thus, the high-similarity files in the same cluster generate 
more highly similar redundant reads, which is more helpful for subsequent cascaded 
compressors. Additional file  1: Algorithm S1 summarizes the proposed optimization 
method PMFFRC. Additional file  1: Section S2 details the algorithm description and 
analysis.

Joint compression and decompression

When obtaining the cluster record files, Ck.info, of the sequencing files collection F = {F0, 
F1, …, Fv-1}, the fastq files in each cluster Ck are merged according to temp files Ck.info, 
where k = 0, 1, 2,…, K-1. After that, dedicated state-of-the-art short reads compressors 
can be used to compress these clustered files.

The PMFFRC optimizer further improves the compression ratio for the optimized 
algorithm on the cluster files at the joint compression and decompression phase. Due to 
its heightened scalability, PMFFRC can be applied to the latest short reads compressors. 
To better embody the optimization idea, Fig. 2 shows the overall processing workflow of 
the PMFFRC optimizes algorithm Y to compress and decompress fastq format files col-
lection F = {F0, F1, …, Fv-1}.

In Fig.  2a, Ck.ycom is the compressed files by compressor Y, and the *.pmffrc file is 
the optimized compressed files, where k = 0, 1, 2, …, K-1. In Fig. 2b, Fi.reads denote the 
recovered files corresponding to Fi.fastq, where i = 0, 1, 2, …, v-1.

Fig. 2  The overall processing workflow of the optimized cascaded compressor Y via PMFFRC, on fastq format 
sequencing files collection F 



Page 8 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 

Results
Experimental configuration and datasets

Evaluation experiments were carried out on a Sugon-7000A supercomputer system of 
the National High-Performance Computing Center Nanning Branch (https://​hpc.​gxu.​
edu.​cn). Computing nodes are equipped with 2*Intel Xeon Gold 6230 CPU (2.1 Ghz, 
40 cores), 512 GB DDR4 SDRAM, and 8*900 GB disk space. The experimental node 
runs the 64-bit version of centos 7.4. The PMFFRC was implemented by C +  + 11 
and OpenMP. The overall workflow has been encapsulated into the PMFFRC toolkit. 
Additional file  1: Section S3 gives the installation and configuration details of the 
PMFFRC optimizer. The PMFFRC toolkit follows the Apache-2.0 License, available 
freely at https://​github.​com/​fahai​hi/​PMFFRC.

Three large-scale datasets from the NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​sra) data-
base were used to assess optimization effects. For paired-end sequencing files, PMF-
FRC arranges them as two separate single-end files. Table  1 gives the details of the 
experimental datasets.

The proposed algorithm PMFFRC was tested on three large-scale datasets, and 
its compression size (cs), compression ratio (cr), compression peak memory (cpm), 
compression time (ct), decompression time (dt), and decompression peak memory 
(dpm) were compared to most state-of-the-art and reference-free reads compressors, 
more specifically, HARC [14], SPRING [17], Mstcom [22] and FastqCLS [25]. We also 
employed the compression ratio gains (crg) and percent storage savings (pss) to evalu-
ate the optimization results. The crg and pss calculations are as follows:

All experiments assume the compression server has a maximum memory of 300 GB 
and utilizes the default 8 CPU cores for joint compression and decompression.

(5)crg =
cr_with_PMFFRC

cr_without_PMFFRC
− 1

(6)pss = 1−
cs_with_PMFFRC

cs_without_PMFFRC

Table 1  Datasets used for optimizing large-scale genomic sequencing reads compression

Datasets download by employing sra-tools (https://​github.​com/​ncbi/​sra-​tools). For complete NCBI registration numbers, see 
Additional file 1: Section S4

Dataset name 
(species)

Sequencing 
platform 
(method)

Number 
of reads 
(millions)

Total size (GB) Reads size 
(GB)

Length (bp) Number of 
files

Homo sapiens NextSeq-550 
(SE)

507.40 111.25 36.78 75 24

Cicer arietinum HiSeq-2000 
(PE)

2060.96 680.60 178.54 90 60

Salvelinus 
fontinalis

Ion-Torrent (SE) 757.46 189.66 58.14 80 360

Total – 3325.82 981.52 273.46 – 444

https://hpc.gxu.edu.cn
https://hpc.gxu.edu.cn
https://github.com/fahaihi/PMFFRC
https://www.ncbi.nlm.nih.gov/sra
https://github.com/ncbi/sra-tools


Page 9 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 	

Performance on Homo sapiens dataset

Table 2 shows the results for HARC, SPRING, Mstcom, and FastqCLS using the pro-
posed algorithm PMFFRC on the H. sapiens dataset.

As seen in Table  2, using PMFFRC for compression optimizing, when K = 1, the 
crg of HARC, SPRING, Mstcom, and FastqCLS is increased up to 118.54%, 126.95%, 
108.51%, and 4.76%, respectively. The four special compressors save 45.74%, 55.87%, 
52.04%, and 4.51% storage spaces compared with the without-mode.

In Table 2, we also observed that HARC, SPRING, and Mstcom held compression 
ratio gains of over 100% (when k = 1), while FastqCLS only achieved 4.76%. This phe-
nomenon is attributed to the particular reads reorder model employed by FastqCLS. 
In reference [25], FastqCLS introduces the concept of "constructed score" for reor-
dering reads collection, which relies on calculating the probability distribution of 
each nucleotide base within the reads range. When the length of the reads collec-
tion is shorter, it becomes challenging for the sequence scoring model of FastqCLS 
to generate local clustering effects among similar short reads. As a result, this limita-
tion hampers the optimization efficiency of PMFFRC. Moreover, for reference-free 
compressors based on reads reorder technologies, the index that records the relative 
positions of short reads is crucial for restoring the original data. For a collection of 
shorter reads, the abovementioned record file occupies a higher proportion in the 
compressed file, which is another potential reason for the low optimization efficiency 

Table 2  Performance of PMFFRC on H. sapiens dataset

The parameter without indicates that the PMFFRC algorithm is not used for compression optimization. (-u10, k3) denotes 
the clustering parameter K = 3 of PMFFRC when Uram = 10 GB. HARC, SPRING, Mstcom, and FastqCLS are used in with-order 
mode (lossless). Compression parameters: Pr = 20, T = 8 (threads for cascaded algorithm), βHARC​ = 1.05, βSPRING = 0.15, 
βFastqCLS = 0.15, βMstcom = 0.30, x1 = 100, x2 = 100,100. The compression gains obtained by the cascaded PMFFRC algorithms is 
marked in boldface. “–” means the result of not being optimized by the PMFFRC algorithm. For the experimentally optimized 
algorithms, we ensure the data integrity of the lossless compression optimization by comparing data hash fingerprints

Algorithm Parameter Compression Decompression

cs (GB) pss (%) cr (bits/base) crg (%) cpm (GB) ct (h) dpm (GB) dt (h)

HARC​ Without 7.15 – 1.61 – 1.78 1.37 1.57 1.51

-u10, k3 4.68 34.55 1.06 52.77 9.49 1.29 5.22 1.65

-u20, k1 3.27 45.74 0.74 118.54 19.61 1.01 5.89 1.74

SPRING Without 7.16 – 1.62 – 3.64 0.97 1.22 0.26

-u10, k4 4.75 33.66 1.07 50.68 7.09 1.39 2.85 0.19
-u20, k3 4.19 41.48 0.95 70.91 10.29 1.26 4.63 0.22
-u40, k1 3.16 55.87 0.71 126.95 20.71 1.20 4.95 0.23

Mstcom Without 6.13 – 1.38 – 13.60 8.97 6.22 1.32

-u40, k4 5.70 7.01 1.29 7.50 38.09 12.25 33.71 1.51

-u80, k3 3.72 39.31 0.84 64.57 53.71 10.24 69.08 0.94
-u120, k1 2.94 52.04 0.66 108.51 107.39 10:91 69.08 0.82

FastqCLS Without 7.99 – 1.80 – 23.08 8.46 5.32 5.08

-u40, k4 7.98 0.13 1.80 0.22 35.35 6.88 6.45 5.34

-u80, k3 7.89 1.25 1.78 1.24 35.43 6.76 6.47 5.31

-u120, k1 7.63 4.51 1.72 4.76 35.48 7.12 6.46 5.36



Page 10 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 

of PMFFRC. Although PMFFRC did not achieve the expected optimization results for 
FastqCLS on the H. sapiens dataset, PMFFRC remains highly competitive in saving 
storage space. As shown in Table  2, the proposed PMFFRC saved 4.51% of storage 
space for FastqCLS merely through joint compression.

PMFFRC requires extra time for fastq files clustering, merging, and splitting, so ct and 
dt are slightly higher than the without-mode. The parallel clustering speedup and rela-
tive memory consumption by employing multiple CPU cores on the H. sapiens dataset 
are also evaluated. See Additional file 1: Table S1 for more details.

Performance on Salvelinus fontinalis dataset

To evaluate the optimizing efficiency of PMFFRC on large-scale fastq files, Table 3 shows 
the compression performance of the four cascaded algorithms by running PMFFRC on 
the S. fontinalis dataset, which contains 360 sequencing files with a total size of 190 GB. 
Additional file 1: Table S2 details the clustering speedup and memory consumption on 
the S. fontinalis dataset using the different numbers of CPU cores.

Table  3 shows that the compression ratio cr using the PMFFRC optimizer for the 
four cascaded compression algorithms reaches the peak at K = 1. The cr increases by 
56.22%, 57.45%, 71.12%, and 62.56% compared with without-mode. By sacrificing sys-
tem memory, the MPFFRC optimizer makes four special compressors save storage space 
of 36.02%, 36.43%, 41.60%, and 38.44%, respectively. The optimizer PMFFRC deliv-
ers remarkable results on the S. fontinalis dataset due to its maximal utilization of the 
redundancy information within the compressed datasets.

Performance on Cicer arietinum dataset

Table 4 presents the optimization results of HARC, SPRING, Mstcom, and FastqCLS by 
running PMFFRC on C. arietinum dataset, which contains 60 fastq files, and the average 
data size of every single fastq file is 11 GB (the total size of the Cicer arietinum dataset 
is 681 GB). The speedup and time consumption by using different CPU cores on the C. 
arietinum dataset are shown in Additional file 1: Table S3.

As shown in Table 4, for HARC and SPRING compressors, when the safe threshold 
Uram takes 80–100  GB, the clustering parameter K = 1. Simultaneously, the compres-
sion ratio cr of HARC and SPRING increased by 58.90% and 48.29%. By leveraging sys-
tem memory, the PMFFRC optimizer saved 36.44% and 32.55% storage space sizes for 
HARC and SPRING, respectively. For compressors Mstcom and FastqCLS, when the 
safe threshold Uram takes 300 GB (maximum system memory), the clustering parame-
ter K = 4, and the compression ratio cr is improved by 40.91% and 20.76%. In this case, 
PMFFRC preserved 28.98% and 17.16% of storage space sizes for Mstcom and FastqCLS, 
respectively.

In C. arietinum dataset, the compression time ct of four cascaded compressors was 
reduced by running PMFFRC compared with without-mode. This contribution can 
be attributed to the following reasons: (i) PMFFRC accelerates computation-intensive 



Page 11 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 	

stages by multi-core CPU parallelism. Therefore, the time consumption of fastq files 
clustering and merging steps is far lower than the total time consumption. (ii) Similar 
sequencing reads are gathered by redundant clustering in different fastq files, which 

Table 3  Performance of PMFFRC on S. fontinalis dataset

Parameters: Pr = 20, T = 8, βHARC​ = 1.05, βSPRING = 0.95, βFastqCLS = 0.28, βMstcom = 0.75, x1 = 100, x2 = 100,100. The compression 
gains obtained by the PMFFRC cascaded algorithms is marked in boldface. “–” means the result of not being optimized by 
the PMFFRC algorithm

Algorithm Parameter Compression Decompression

cs (GB) pss (%) cr (bits/base) crg (%) cpm (GB) ct (h) dpm (GB) dt (h)

HARC​ Without 5.33 – 0.76 – 0.67 2.05 0.45 2.24

-u20, k3 3.49 34.52 0.50 52.48 11.90 1.75 5.22 3.05

-u40, k1 3.41 36.02 0.48 56.22 23.69 2.04 6.71 3.78

SPRING Without 5.49 – 0.78 – 1.02 1.46 0.56 0.29

-u20, k3 3.58 34.79 0.51 50.38 12.76 1.74 1.49 0.59

-u40, k1 3.49 36.43 0.49 57.45 25.51 1.69 1.53 0.91

Mstcom Without 3.87 – 0.55 – 5.91 7.19 2.29 1.06

-u40, k6 2.40 37.98 0.34 64.31 33.24 5.09 20.03 0.76
-u100, k3 2.31 40.31 0.33 67.93 78.97 5.47 50.36 1.11

-u180, k1 2.26 41.60 0.32 71.12 159.13 6.22 100.72 1.60

FastqCLS Without 4.37 – 0.62 – 16.66 21.51 6.35 16.25

-u80, k4 2.82 35.47 0.40 55.15 60.36 11.66 6.38 14.44
-u180, k3 2.77 36.61 0.39 58.00 59.09 12.98 6.43 14.04
-u280, k1 2.69 38.44 0.38 62.56 63.60 14.03 6.39 15.95

Table 4  Performance of PMFFRC on C. arietinum dataset

Parameters: Pr = 20, T = 8, βHARC​ = 1.05, βSPRING = 0.30, βFastqCLS = 0.28, βMstcom = 0.75, x1 = 100, x2 = 100,100. The compression 
gains obtained by the PMFFRC cascaded algorithms is marked in boldface. “–” means the result of not being optimized by 
the PMFFRC algorithm

Algorithm Parameter Compression Decompression

cs (GB) pss (%) cr (bits/base) crg (%) cpm (GB) ct (h) dpm (GB) dt (h)

HARC​ Without 16.96 – 0.79 – 1.99 5.24 1.74 6.14

-u20, k5 11.17 34.14 0.52 51.85 17.75 3.05 6.30 6.60

-u40, k3 10.95 35.44 0.51 51.94 34.73 3.16 7.11 7.60

-u80, k1 10.78 36.44 0.50 58.90 66.90 3.53 6.97 5.05
SPRING Without 15.82 – 0.73 – 1.89 5.73 1.04 0.66

-u20, k5 11.05 30.15 0.51 43.15 18.91 3.55 2.93 0.95

-u40, k3 10.87 31.29 0.50 43.54 36.78 3.60 4.09 1.02

-u100, k1 10.67 32.55 0.49 48.29 70.79 4.09 4.13 1.19

Mstcom Without 13.01 – 0.60 – 14.54 66.52 6.49 2.94

-u100, k15 10.34 20.52 0.48 25.88 37.52 64.52 22.45 2.31
-u200, k7 9.59 26.29 0.44 35.71 77.51 61.85 50.98 2.29
-u300, k4 9.24 28.98 0.43 40.91 149.86 59.62 102.78 2.15

FastqCLS Without 27.62 – 1.28 – 33.79 50.36 6.49 28.84

-u100, k9 25.08 9.20 1.16 10.15 36.30 28.13 6.56 23.88
-u200, k5 23.65 14.37 1.10 16.81 36.01 30.76 6.53 22.16
-u300, k4 22.88 17.16 1.06 20.76 35.84 30.32 6.55 22.42



Page 12 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 

favors reference-free compressors in the joint compressing stage. For example, HARC 
[14] utilizes a redundant substitute step for replacing reverses complimentary and direct 
repeat reads, which benefit from our clustering algorithm. (iii) The joint compression 
stage reduces the preprocessing time consumption, such as building hash tables and 
dictionaries. For example, in the without-mode, HARC needs to perform 60 hash table 
construction processes on the Cicer arietinum dataset. However, joint compression only 
needs to build hash table once when K = 1.

Discussion
We presented PMFFRC, a CPU-parallel algorithm for optimizing large-scale genomic 
sequencing reads lossless compression. On real datasets, PMFFRC achieves a 20–80% 
maximum compression ratio gains and an additional 20–40% file size reduction com-
pared with non-optimized reference-free compressors. Our work pointed out a fea-
sible idea for large-scale genome sequencing reads compression, which is to use the 
redundant information of reads in different fastq files to improve the compression 
ratio. In some cases, the PMFFRC algorithm can also reduce the compression and 
decompression time. Compared with non-optimized reference-free compressors, the 
significant compression advantage for optimized algorithms is achieved through a 
"three-stage redundancy utilization strategy" (fastq files, reads string, and nucleotide 
character) provided by the optimizer and the optimized algorithm. A typical sample 
implementation is PMFFRC + FastqCLS. (i) The PMFFRC optimizer employs a two-
level clustering method to group similar fastq format data, resulting in highly similar 
data within each group. This clustering strategy allows the FastqCLS algorithm to take 
advantage of redundant information at the files level in the compressed datasets. (ii) 
The FastqCLS algorithm uses a novel scoring model to reorder short reads by leverag-
ing redundancy information at the short reads string level. This preprocessing phase 
takes advantage of the redundancy between short reads. (iii) The FastqCLS compres-
sor incorporates the ZPAQ algorithm, which employs context modelling and arithme-
tic coding. This enables FastqCLS to detect patterns and character dependencies in 
the reads data, utilizing context models and exploiting redundancy at the nucleotide 
character level to improve compression ratios.

Our optimizer PMFFRC showed promising results on 444 sequencing files. How-
ever, it is undeniable that PMFFRC nonetheless has some limitations. On the one 
hand, the PMFFRC algorithm may not achieve the expected optimization results for 
small memory devices and small-scale genome sequencing data. Since PMFFRC uti-
lizes system memory and files-level redundancy information, it is more suitable for 
compressing medium to large-scale sequencing datasets. On the other hand, the high 
compression ratio achieved by PMFFRC restricts its flexibility in decompression, 
making it more suitable for medium and long-term backup applications of sequencing 
short reads data. Based on current work, potential future work includes: (i) Improving 
computation of PMFFRC by using CPU and GPU (Graphics Processing Unit) collab-
orative computing for large-scale and long sequencing reads optimization compres-
sion. (ii) Achieving the accurate compression and decompression of clustering files to 



Page 13 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 	

enhance application flexibility. (iii) Creating a block index for each joint compressed 
file and reducing the overall compression memory consumption through block com-
pression, so that small memory devices can also benefit from the proposed PMFFRC 
algorithm. (iv) Another interesting direction is to explore machine learning and deep 
learning techniques for predicting the compression peak memory Ycpm and clustering 
parameters K accurately, to maximize utilization the user-preset safe memory thresh-
old Uram.

Availability and requirements

Project name: PMFFRC
Project home page: https://​github.​com/​fahai​hi/​PMFFRC
Operating system(s): Linux
Programming language: C +  + , OpenMP
Other requirements: FastqCLS, Mstcom, Harc, Spring, and gcc 5.4.0.
License: Apache-2.0 license
Any restrictions to use by non-academics: For commercial use, please contact the 
authors.

Abbreviations
MB	� Megabyte
GB	� Gigabyte
TB	� Terabyte

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05566-9.

Additional file 1: PMFFRC_Supplementary_Material.

Acknowledgements
The experimental work is supported by the High-performance Computing Center of Guangxi University. The authors 
thank the editor and anonymous reviewers for their constructive comments and suggestions to improve our manuscript. 
The authors also thank Dr. Meng Yan for guiding the manuscript revision.

Author contributions
HS and YFZ implemented the code. HS and HNX wrote the manuscript. XGL and GW guided the project. HDM com-
pleted a part of the experiments and prepared the dataset. XGL and GW also helped to modify the manuscript. All 
authors read and approved the manuscript.

Funding
This work is partly supported by NSF of China (62141412, 62272253, 62272252), Fundamental Research Funds for the 
Central Universities.

Availability of data and materials
The datasets generated and analyzed during the current study are available in the PMFFRC repository, https://​github.​
com/​fahai​hi/​PMFFRC/​tree/​master/​data.

Declarations

Ethics approval and consent to participate
The ethic approval is not required since we used publicly available datasets.

https://github.com/fahaihi/PMFFRC
https://doi.org/10.1186/s12859-023-05566-9
https://github.com/fahaihi/PMFFRC/tree/master/data
https://github.com/fahaihi/PMFFRC/tree/master/data


Page 14 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 12 September 2023   Accepted: 13 November 2023

References
	1.	 Voges J, Hernaez M, Mattavelli M, Ostermann J. An introduction to MPEG-G: the first open ISO/IEC standard for 

the compression and exchange of genomic sequencing data. Proc IEEE. 2021;109(9):1607–22. https://​doi.​org/​10.​
1109/​JPROC.​2021.​30820​27.

	2.	 Numanagić I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, et al. Comparison of high-throughput sequencing 
data compression tools. Nat Methods. 2016;13(12):1005–8. https://​doi.​org/​10.​1038/​nmeth.​4037.

	3.	 Kokot M, Gudyś A, Li H, Deorowicz S. CoLoRd: compressing long reads. Nat Methods. 2022;19(4):441–4. https://​doi.​
org/​10.​1038/​s41592-​022-​01432-3.

	4.	 Zhu Z, Zhang Y, JiZ HS, Yang X. High-throughput DNA sequence data compression. Brief Bioinform. 2015;16(1):1–15. 
https://​doi.​org/​10.​1093/​bib/​bbt087.

	5.	 Hernaez M, Pavlichin D, Weissman T, Ochoa I. Genomic data compression. Annu Rev Biomed Data Sci. 2019;2:19–37. 
https://​doi.​org/​10.​1146/​annur​ev-​bioda​tasci-​072018-​021229.

	6.	 Dufort y Álvarez G, Seroussi G, Smircich P, Sotelo-Silveira J, Ochoa I, Martín Á. RENANO: a REference-based compres-
sor for NANOpore FASTQ files. Bioinformatics. 2021;37(24):4862–4. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btab4​37.

	7.	 Yao H, Ji Y, Li K, Liu S, He J, Wang R. HRCM: an efficient hybrid referential compression method for genomic big data. 
BioMed Res Int. 2019. https://​doi.​org/​10.​1155/​2019/​31089​50.

	8.	 Saha S, Rajasekaran S. NRGC: a novel referential genome compression algorithm. Bioinformatics. 2016;32(22):3405–
12. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw505.

	9.	 Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation sequencing reads aided by highly efficient 
de novo assembly. Nucleic Acids Res. 2012;40(22):e171. https://​doi.​org/​10.​1093/​nar/​gks754.

	10.	 Cox AJ, Bauer MJ, Jakobi T, Rosone G. Large-scale compression of genomic sequence databases with the Burrows-
Wheeler transform. Bioinformatics. 2012;28:1415–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts173.

	11.	 Roguski Ł, Deorowicz S. DSRC2 industry-oriented compression of FASTQ files. Bioinformatics. 2014;30:2213–5. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu208.

	12.	 Deorowicz S. FQSqueezer: k-mer-based compression of sequencing data. Sci Rep. 2020;10(1):1–9. https://​doi.​org/​10.​
1038/​s41598-​020-​57452-6.

	13.	 Meng Q, Chandak S, Zhu Y, Weissman T. Reference-free lossless compression of nanopore sequencing reads using 
an approximate assembly approach. Sci Rep. 2023;13(1):2082. https://​doi.​org/​10.​1038/​s41598-​023-​29267-8.

	14.	 Chandak S, Tatwawadi K, Weissman T. Compression of genomic sequencing reads via hash-based reordering: algo-
rithm and analysis. Bioinformatics. 2018;34(4):558–67. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx639.

	15.	 Grabowski S, Deorowicz S, Roguski Ł. Disk-based compression of data from genome sequencing. Bioinformatics. 
2014;31:1389–95. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu844.

	16.	 Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, et al. Reference-free compression of high throughput 
sequencing data with a probabilistic de Bruijn graph. BMC Bioinform. 2015;16(1):1–14. https://​doi.​org/​10.​1186/​
s12859-​015-​0709-7.

	17.	 Chandak S, Tatwawadi K, Ochoa I, Hernaez M, Weissman T. SPRING: a next-generation compressor for FASTQ data. 
Bioinformatics. 2019;35(15):2674–6. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty10​15.

	18.	 Roguski Ł, Ochoa I, Hernaez M, Deorowicz S. FaStore: a space-saving solution for raw sequencing data. Bioinformat-
ics. 2018;34(16):2748–56. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty205.

	19.	 Kowalski TM, Grabowski S. PgRC: pseudogenome-based read compressor. Bioinformatics. 2020;36(7):2082–9. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz919.

	20.	 Liu Y, Yu Z, Dinger ME, Li J. Index suffix–prefix overlaps by (w, k)-minimizer to generate long contigs for reads com-
pression. Bioinformatics. 2018;35(12):2066–74. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty936.

	21.	 Xie S, He X, He S, Zhu Z. CURC: a CUDA-based reference-free read compressor. Bioinformatics. 2022;38(12):3294–6. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btac3​33.

	22.	 Liu Y, Li J. Hamming-shifting graph of genomic short reads: Efficient construction and its application for compres-
sion. PLoS Comput Biol. 2021;17(7):e1009229. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10092​29.

	23.	 White WTJ, Hendy MD. Compressing DNA sequence databases with coil. BMC Bioinformatics. 2008;9(1):242. https://​
doi.​org/​10.​1186/​1471-​2105-9-​242.

	24.	 Yanovsky V. ReCoil-an algorithm for compression of extremely large datasets of DNA data. Algorithms Mol Biol. 
2011;6(1):23. https://​doi.​org/​10.​1186/​1748-​7188-6-​23.

	25.	 Lee D, Song G. FastqCLS: a FASTQ compressor for long-read sequencing via read reordering using a novel scoring 
model. Bioinformatics. 2022;38(2):351–6. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btab6​96.

	26.	 Al Yami S, Huang CH. LFastqC: A lossless non-reference-based FASTQ compressor. PLoS ONE. 2019;14(11):e0224806. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​02248​06.

https://doi.org/10.1109/JPROC.2021.3082027
https://doi.org/10.1109/JPROC.2021.3082027
https://doi.org/10.1038/nmeth.4037
https://doi.org/10.1038/s41592-022-01432-3
https://doi.org/10.1038/s41592-022-01432-3
https://doi.org/10.1093/bib/bbt087
https://doi.org/10.1146/annurev-biodatasci-072018-021229
https://doi.org/10.1093/bioinformatics/btab437
https://doi.org/10.1155/2019/3108950
https://doi.org/10.1093/bioinformatics/btw505
https://doi.org/10.1093/nar/gks754
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1093/bioinformatics/btu208
https://doi.org/10.1038/s41598-020-57452-6
https://doi.org/10.1038/s41598-020-57452-6
https://doi.org/10.1038/s41598-023-29267-8
https://doi.org/10.1093/bioinformatics/btx639
https://doi.org/10.1093/bioinformatics/btu844
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1093/bioinformatics/bty1015
https://doi.org/10.1093/bioinformatics/bty205
https://doi.org/10.1093/bioinformatics/btz919
https://doi.org/10.1093/bioinformatics/bty936
https://doi.org/10.1093/bioinformatics/btac333
https://doi.org/10.1371/journal.pcbi.1009229
https://doi.org/10.1186/1471-2105-9-242
https://doi.org/10.1186/1471-2105-9-242
https://doi.org/10.1186/1748-7188-6-23
https://doi.org/10.1093/bioinformatics/btab696
https://doi.org/10.1371/journal.pone.0224806


Page 15 of 15Sun et al. BMC Bioinformatics          (2023) 24:454 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	27.	 Cheng J, Grossman M, McKercher T. Professional CUDA c programming. Beijing: China Machine Press; 2017.
	28.	 Cha SH. Comprehensive survey on distance/similarity measures between probability density functions. Int J Math 

Models Methods Appl Sci. 2007;1(2):300–7.
	29.	 Hoare CAR. Quicksort. Comput J. 1962;5(1):10–6. https://​doi.​org/​10.​1093/​comjnl/​5.1.​10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/comjnl/5.1.10

	PMFFRC: a large-scale genomic short reads compression optimizer via memory modeling and redundant clustering
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation
	Sequencing files clustering
	Pre-compression
	Feature extraction
	Similarity calculation
	Fastq files clustering

	Joint compression and decompression

	Results
	Experimental configuration and datasets
	Performance on Homo sapiens dataset
	Performance on Salvelinus fontinalis dataset
	Performance on Cicer arietinum dataset

	Discussion
	Availability and requirements
	Anchor 21
	Acknowledgements
	References


